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Quenches are now routinely used in synthetic quantum systems to study a variety of fundamental effects,
including ergodicity breaking, light-cone-like spreading of information, and dynamical phase transitions. It was
shown recently that the dynamics of equal-time correlators may be related to ground-state phase transitions
and some properties of the system excitations. Here, we show that the full low-lying excitation spectrum of a
generic many-body quantum system can be extracted from the after-quench dynamics of equal-time correlators.
We demonstrate it for a variety of one-dimensional lattice models amenable to exact numerical calculations,
including Bose and spin models, with short- or long-range interactions. The approach also applies to higher
dimensions, correlated fermions, and continuous models. We argue that it provides an alternative approach to
standard pump-probe spectroscopic methods and discuss its advantages.
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I. INTRODUCTION

The properties of low-lying excitations on top of the
ground state are an essential feature of a quantum many-body
system. They govern a variety of fundamental phenomena,
from electronic conductivity and superfluidity to quasi-long-
range order in low dimensions [1-3]. For a wide range of
correlated systems, they are efficiently described by the no-
tion of quasiparticles (including phonons, plasmons, spinons,
magnons, Bogoliubov particle-hole pairs, and doublon-holon
pairs). In practice, the elementary excitations of a system at
equilibrium are commonly probed through the spectral repre-
sentation of an unequal-time correlator (UTC), for instance,
the spectral function or the dynamical structure factor [4,5].
Yet, the analytical or numerical derivation of the latter remains
a formidable task in strongly correlated systems, even for
integrable ones [6-8]. In experiments, they arise from tedious
pump-probe spectroscopic techniques, such as angle-resolved
photoemission spectroscopy (ARPES), inelastic neutron or
x-ray Raman scattering, and two-photon Bragg spectroscopy
[9-15].

The dramatic progress made in recent years on the time-
resolved control and the out-of-equilibrium dynamics of iso-
lated quantum systems [16-23] allows us to reconsider these
issues from the perspective of quench dynamics. A large
body of work is devoted to understanding fundamental ef-
fects, including the onset of thermalization and its breaking,
dynamical phase transitions, and the emergence of causality
in information spreading. Out-of-equilibrium dynamics may
also be considered in connection to equilibrium properties
[24-26], and it was recently proposed to probe ground-state
phase transitions using quenches [27-31]. It is then natural
to ask whether information about the system excitations can
be extracted from quenches. For instance, it has long been
recognized that the Lieb-Robinson bound for information
spreading in short-range lattice models may be related to the
maximum group velocity [32-34]. More recently, it has been
shown that the structure of correlations in the vicinity of the
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causal edge can be related to basic properties of the elemen-
tary excitations, including characteristic velocities, dynamical
exponents, and gaps [35,36].

In this paper, we show that the full low-lying excitation
spectrum of a correlated quantum system can be extracted
from equal-time correlators (ETC) following a global quench.
We develop a general framework for unravelling excitation
spectra and measure them experimentally. It generalizes previ-
ous results using power spectrum analysis of density ripples in
one-dimensional quasicondensates [37] and spin correlations
in two-dimensional models with flatbands [38]. We introduce
the quench spectral function (QSF) and show that it yields
the quasiparticle dispersion relation, irrespective of the system
dimension, particle statistics, range of interactions, and the
discrete or continuous nature of the model. We illustrate
this on one-dimensional models by computing the exact
QSF using time-dependent matrix product state calculations.
We first use the Bose-Hubbard model as a benchmark in
both the Mott insulator and mean-field superfluid phases,
and recover known analytical dispersion relations. In the
strongly interacting superfluid regime, where no exact result
is known, we show that the QSF exhibits a continuum of
excitations, which we interpret by devising an approximate
Bethe ansatz (ABA) method. Further, we extend our results
to other quantum models, using the long-range transverse
Ising (LRTI) model as a paradigmatic example. We argue
that the QSF approach provides an accurate method to probe
the excitation spectrum of correlated quantum models and
discuss its advantages compared to standard pump-probe
spectroscopy.

II. QUENCH SPECTRAL FUNCTION

We start with the system in some initial state, described by
the density matrix p;, and induce out-of-equilibrium dynamics
by performing a quench at time ¢ = 0. The dynamics is then
governed by the Hamiltonian A, such that p; is nonstationary

©2019 American Physical Society
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([, H] # 0). We consider the ETC
G(R, 1) = (O](R,1)05(0, 1)), 1)

where O (R, 1) is a local operator at position R and time ¢,
and (X) = Tr(p;X) is the average over the initial state. For
a translation invariant system, its spectral representation (aka
quench spectral function), reads as (see Appendix A 1)

Gk, ) o< Y pi'" (n] Of |m) (m| Oz )

X 8(E11 - En’ - a))a(Pm - Pn’ - k)a(Pn - Pn’)' (2)

The kets |n) have a well-defined momentum P, and span an
eigenbasis of H, O = 0 (0, 0) is the operator at the origin
of space and time, and we set i = 1. The most important
feature of Eq. (2) is the emergence of the dynamical selection
rule E, = E,; + w. This applies regardless of the nature of the
eigenstates, provided that the operators O; and O, couple the
states |n) and |n’). It permits us to identify the transition en-
ergies E, — E,, to the resonance frequencies w, as in standard
spectroscopy.

It is worth noting, however, that the QSF differs from
the dynamical structure factor associated to the operators O,
and O,, which is measured by pump-probe spectroscopic
methods. The fundamental difference is that, here, p; and
H cannot be diagonalized simultaneously. The density ma-
trix therefore contains nonvanishing coherence (off-diagonal)
terms, ,0{"” # 0 with n’ # n. The latter create the dynamical
selection rule in Eq. (2). This is an essential consequence of
the fact that the state being probed is out of equilibrium. In
contrast, the dynamical structure factor probes an equilibrium
state and the dynamical selection rule appears only if one
considers an UTC, i.e., G(R, 1) = (O1(R, 1)0,(0,1")) with
t #1t (see Appendix A 2). Another important difference is
that, in contrast to dynamical structure factors, the QSF can be
measured using global, homogeneous, quench experiments.
The latter are now routinely performed in atomic, molecular,
and optical (AMO) physics and may considerably simplify the
spectroscopy of many-body systems (see below).

Let us now assume that the initial state is close to the
ground state |0), so pi”/” is non-negligible only when either
|n) or |n') is |0). This condition is fulfilled for weak enough
quenches. Focusing on the positive frequency sector, it sets
|n') = |0). Assuming that O ; is a weakly coupling operator,
the intermediate states |m) in Eq. (2) can be restricted to single
quasiparticle excitations (see Appendix A 1). The second se-
lection rule in Eq. (2) imposes |m) = |k}, i.e., a quasiparticle
of momentum k. Finally, the third selection rule imposes
P, = 0. The lowest-excited states that meet this criterion are
composed of pairs of quasiparticles with opposite momenta,
|k, —k). For each momentum k, the QSF thus produces a
resonance at the frequency w = 2Ey, hence providing the
excitation dispersion relation.

III. BENCHMARKING

We now benchmark our approach against exact results,
using first the one-dimensional Bose-Hubbard model (BHm),
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FIG. 1. Benchmarking in the Bose-Hubbard chain. (a) Absolute
value of the two-body correlation function G»(R,t) obtained by
t-MPS simulations for a global quench in the superfluid mean-field
regime with 7 = 5, from (U/J); = 0.2 to U/J = 0.1 and (b) Corre-
sponding QSF, Eq. (2), and comparison to the Bogoliubov dispersion
relation, Eq. (4) (dashed, red line). (c) Same as (a) for G(R, 1)
and a global quench in the strongly interacting Mott phase with
i =1from (U/J); = 25toU/J = 26 (inset: magnification). (d) QSF
and comparison to the doublon-holon dispersion relation, Eq. (5)
(dashed, red line). Note that the colorbars in (a) and (c) are cut
off to improve visibility, the correlators being normalized by their
maximum value.

whose in and out-of-equilibrium properties have been exten-
sively studied [39—47]. In brief, the BHm describes interacting
bosons on a lattice, characterized by the nearest-neighbor
hopping amplitude J > 0 and the on-site interaction energy
U > 0. The quantities ag and a; are, respectively, the anni-
hilation and creation operators of a boson at the lattice site
R, and fig = ayag is the corresponding occupation number.
The average filling is 7 = (7ig) and we use unit lattice spacing
(R € Z). The equilibrium, zero-temperature phase diagram
displays a Mott-insulating phase at integer fillings and suffi-
ciently high values of U/J, and a superfluid phase otherwise.
For unit filling in 1D, the critical interaction parameter is
U./J =3.3(1) [48-51].

We study the quench dynamics using a numerically ex-
act time-dependent tensor network approach within time-
dependent matrix product state (r-MPS) representation. We
typically use L ~ 96 lattice sites and an evolution time of
t = 10/J, comparable with current experiments [43,52]. The
MPS bond and the local Hilbert-space dimensions, which are
particularly demanding in the superfluid phase, are adjusted
by checking the convergence of the numerical results.

Figure 1(a) shows the absolute value of the space-time
evolution of the two-body correlation function G,(R,t) =
(6n(R, 1)671(0, t)) where SA(R,t) = (R, t) — (A(R,t)) for a
quench at high filling, 7 = 5, from (U/J); =02 to U/J =
0.1, both in the superfluid phase. A characteristic linear
conelike propagation is clearly visible, outside which corre-
lations decay exponentially [32]. Inside the cone, the corre-
lations show a complex space-time dependence. Computing
the space-time Fourier transform of G»(R,?), we find the
QSF shown in Fig. 1(b). As expected, it shows a sharp line,
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consistent with a well-defined dispersion relation of elemen-
tary excitations. The result is in excellent quantitative agree-
ment with the analytical prediction based on the Bogoliubov
theory [53],

% = 4\/2 sinz(k/2)|:2 sin®(k/2) + #] )
valid in the weakly interacting regime, i >> U /2J.

The same analysis can be alternatively performed using the
one-body correlation function G(R,t) = (a'(R, 1)a(0, 1)).
While the result in real space and time is significantly blurred
compared to the two-body correlation function, and the linear
cone is hardly visible, the QSF allows us to extract the
excitation spectrum with an accuracy comparable to Fig. 1(b)
(see Appendix B).

We also performed the same analysis for a global quench
in the strongly interacting Mott phase at unit filling, 7 = 1,
from (U/J); = 25 to U/J = 26. The result for G is shown in
Figs. 1(c) and 1(d). The G, function again shows a linear cone
whose precise structure appears only on small timescales, see
Inset of Fig. 1(c). The QSF, however, shows a sharp spectral
branch, which compares very well with the doublon-holon
pair dispersion relation [45]:

2F 2J 2162
7]( ~ \/|:1 — U(2ﬁ+ l)cosk] + 2 i+ 1) sin® k.
&)

Note that, in contrast to the superfluid phase, choosing G, is
instrumental for the Mott phase. This is because the ground
state of the latter is nearly an eigenstate of the local density
operator, O, = i, and the couplings (m| O, |0) in Eq. (2) are
suppressed.

IV. STRONGLY INTERACTING SUPERFLUID REGIME

Having validated the QSF approach to extract the excita-
tion spectrum in the mean-field superfluid and Mott insulator
limits, we now turn to the strongly interacting superfluid
regime, U/Jii > 1 and 7 ¢ N, where no exact dispersion
relation is known. The QSF probed by the G, correlation
function for a quench to U/J = 50 is shown in Fig. 2 for
increasing values of the filling factor 7. It displays a broad
but finite structure, which is easily interpreted within the
continuous limit. For low filling, 7 < 1, and long-wavelength
excitations, k < 1, the BHm may be mapped onto the Lieb-
Liniger model, which is exactly solvable by Bethe ansatz
[54,55]. The excitation spectrum of the Lieb-Liniger model
is a continuum delimited by two branches, called Lieb-I and
Lieb-II modes, associated to particlelike and holelike excita-
tions, respectively. We checked that for low filling [Figs. 2(a)
and 2(b)] the low k sector of the QSF quantitatively agrees
with the Lieb-Liniger spectrum (see Appendix C). Yet the
condition k < 1 is very restrictive and the continuous Lieb-
Liniger model is not sufficient to capture the breaking of
convexity of the excitation branches observed in Fig. 2.

To overcome this issue, we developed an ABA approach
for the lattice model. While the BHm is not exactly integrable
for finite interactions, ABA approaches have been devised to
compute the ground state properties of several models, giving
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FIG. 2. QSF of the Bose-Hubbard chain in the strongly interact-
ing superfluid regime. The quench is performed from (U /J); = 40 to
U/J=50at(a)n=0.1,(b) n=0.2,(c) n=0.5, and (d) 7 = 0.9.
The dashed blue line represents a phonon branch propagating at
2vs. The approximate Bethe ansatz continuum (delimited by the
dotted-dashed red lines) is shown in panels (a) and (b).

accurate results compared to exact numerical methods for low
excitation densities [56-58]. In the BHm, the breaking of
integrability can be traced back to the presence of triply (or
more) occupied sites [59]. For low filling, 7 < 1, and strong
interactions, U/J > 1, the number of such highly occupied
sites is strongly suppressed [60] and we expect the ABA
approach to be accurate. This is consistent with Monte Carlo
simulations comparing the complete and truncated BHm at
zero temperature [61].

We compute the approximate excitation spectrum of the
BHm extending the approach of Refs. [56,57,59] and includ-
ing particlelike and holelike excitations, similar to for the
Lieb-Liniger model [55]. We force the many-body scattering
to be factorized into two-body scattering processes. The ABA
yields a closed equation for the excitation backflow function,
which is solved by an iterative algorithm. The energy and
the momentum of the two modes are then computed from
this backflow (see Appendix D). The possible excitations of
the BHm combine a particlelike with a holelike mode, which
forms a continuum. For a low filling 7, the boundaries of the
latter, shown in red in Figs. 2(a) and 2(b), and are in good
agreement with the QSF results within the full Brillouin zone.

When 7 increases, many-body collisions become relevant
and significantly alter the quasi-integrability of the model. The
ABA approach breaks down and is not reported in Figs. 2(c)
and 2(d). Approaching half filling, the two modes merge into
a single, almost linear, branch, see Fig. 2(c). This branch is
consistent with the phonon pair branch at the velocity 2vy =
4J [62] (dashed blue line). For higher fillings, a continuum
is recovered within which two distinct, nearly linear excita-
tion branches stand out, see Fig. 2(d). Here, however, they
should not be confused with the phonon pair branch, which
appears only at very low momentum, k < 1 — 71, and has a
significantly smaller velocity 2vs >~ 1.4J. The upper linear
branch corresponds to the fastest quasiparticles induced by
the quench at the velocity 2v >~ 4.8J. It is consistent with the
emergence of a unique characteristic velocity, faster than the
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FIG. 3. QSF for the LTRI chain. (a) Normalized absolute value
of the spin correlation function G*(R,t) obtained from 7-MPS
simulations for a quench at ¢ = 1.8 from (k/J); = 50 to h/J = 20.
(b) Corresponding QSF and comparison with the LSWT prediction,
Eq. (7) (dotted red line). (c) and (d) same as (a) and (b), respectively,
foraquenchtoh/J = 1.

speed of sound, in the vicinity of the causal cone as reported
in Ref. [36] (see also Ref. [63]).

V. LONG-RANGE INTERACTING SYSTEM

Finally, we show that the QSF approach equally allows
us to probe the excitation spectrum of exotic models. We
illustrate this on the LRTI chain, which can be realized experi-
mentally using trapped ions [64,65] and has recently attracted
significant attention [35,66—70]. The 1D Hamiltonian reads as

. T aa .
H= Z mSRSR, —2h) 8, (6)
R#R R

where S‘,é is the spin operator along the direction j at site R, J
is the spin-exchange amplitude, and % the magnetic field. We
perform quenches from (h/J); = 50 to h/J = 20 [Figs. 3(a)
and 3(b)] and h/J =1 [Figs. 3(c) and 3(d)], and compute
the spin correlation function G**(R, t) = (88*(R, )85*(0, 1))
with 88*(R, 1) = §*(R, t) — (§*(R, 1)) using £-MPS. For both
quenches, with 1 < @ < 2, the spin correlations display a
quasilocal cone, with algebraic leaks and a complex internal
structure. Instead, the QSF shows a sharp single-branch exci-
tation spectrum. For the quench deep in the z-polarized phase,
it is in excellent agreement with the linear spin-wave theory
(LSWT) prediction [66,69],

2B _ g bk 7
T— j|:j+ o(():|’ @)

with Py (k) = [ dRe "R /|R|", see dashed red line in Fig. 3(b).
For a stronger quench, to h/J =1, closer to the critical
point at (h/J). ~ 0.4 [71], we still find a well-defined single
excitation branch. It, however, shows significant deviations
from the LSWT near the edges of the Brillouin zone, see
Fig. 3(d).

VI. CONCLUSION AND OUTLOOK

We have shown that the low-lying excitation spectrum of
a many-body quantum system may be accurately extracted
from the spectral representation of an ETC following a global
quench via the QSF. We explicitly demonstrated it for various
1D lattice models amenable to exact numerical calculations,
including Bose and spin models with short or long range inter-
actions. The approach is, however, general and applies equally
well to other systems, e.g., correlated fermions, continuous
models, and in dimensions higher than one.

From an experimental point of view, the QSF approach
may considerably simplify the measurement of excitation
spectra in correlated systems compared to standard pump-
probe spectroscopy techniques, such as ARPES or Bragg
spectroscopy. The latter consists of exciting the system at
well-defined frequency and wave vector, and observing the
response of the system after some interaction time. In practice,
it requires us to control the probe and systematically scan both
the frequency and the wave vector. In the QSF approach, the
global quench replaces the pump. It generates a complete set
of excitations that propagate throughout the system by simply
changing one parameter of the Hamiltonian. At a given time
t after the quench, the spatial dependence of the ETC is mea-
sured by direct imaging of the full system, as now commonly
done in AMO experiments. For one-body correlators, this can
be done by standard time-of-flight techniques. For two-body
correlators, it requires a series of images to measure density
fluctuations. Nevertheless, it avoids any tedious scan of probe
parameters, in particular its momentum. The full correlation
pattern G(R, 1) is then obtained by scanning only ¢ from O to
some final time 7.

Note that the QSF resolution is similar to that of standard
approaches: the finite size of the system L and the finite
observation time 7 used in experiments or numerical sim-
ulations typically lead to a spectral broadening of the QSF
resonances of Ak ~2mw /L and Aw ~ 2m /T, respectively.
These effects can be straightforwardly included in the theory.
Moreover, the finite lifetime 7 of the quasiparticles induces an
additional frequency broadening Aw ~ 2 /7, which can be
described by adding the Weisskopf-Wigner factor i/t to the
quasiparticle energies in Eq. (2).
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APPENDIX A: QUENCH SPECTRAL FUNCTION AND
DYNAMICAL STRUCTURE FACTOR

In the main paper, we consider a system in some non-
stationary state represented by the density matrix p;, whose
dynamics is governed by the Hamiltonian H at time ¢ > 0.
We study the dynamics of the two-point correlator

G(x,y;t,1") = (01(x,1)0x(y, 1))
= Tr[p0] (x, )0 (y, )], (A1)
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where 0] and 02 are local operators in the Heisenberg picture.
Note that here, beyond the precise scope of this paper, we
consider the most general case of a possible unequal-time
correlator (¢ #~ t'). Since the dynamics of the operators in
the Heisenberg picture is governed by the Hamiltonian H,
it is convenient to use an eigenstate basis {|n’)} of the latter
to compute the trace and insert two completeness relations,
>, imynl =), Im)y(m| =1, in Eq. (Al). Setting =1,
we find

G(X, yit, l‘/) — Z pin/nei(Ent—Enrt’)e—iE,,,(t—t’)

n,n',m

x (n| O] (x) |m) (m| Ox(y) '), (A2)

where the operators O, , are now written in the Schrodinger
picture and the time dependence disappears.

We now consider a translation invariant system. Using the
translation operator from the origin to x, we have O i(x) =
e ®X0;(0)et ™, where P is the total momentum operator.
Moreover, we can use an eigenbasis common to H and f’,
so each eigenstate |n) has a well-defined momentum P,,.
Equation (A2) then reads as

G(x,y;t,t') = Z pl et Ent =Ext") g=iEn (=)

n,n’,m

i Pn=P)(X=) i(P, ~P,)y

x (n| O] |m) (m| Oz |n') (A3)

where O; is a short form for 0;(0,0). Since the correlator
G only depends on x —y, it is convenient to use the coordi-
nates R=x —y and r = (x + y)/2, and write G(R;¢,t') =
LLD [drG(r+R/2,r —R/2;1,1"), where LP is the volume

J

of the system in dimension D. Equation (A3) becomes

27\? /
. N — | 2 § _ nn
G(R,t,t ) - < L ) S(Pn Pn’)pi

n,n',m

5 @ Ent=Eyt") y=iEn(t—1") 5P —P,)R

x (n| OF |m) (m| O 1) . (Ad)

Below, we separately examine the cases of the quench spectral
function, which is associated with an equal-time correlator
(t =1'), and of the dynamical structure factor which is as-
sociated to an unequal-time correlator (7 £ t), see Secs. A 1
and A 2, respectively.

1. Quench spectral function
a. Derivation
The QSF is defined as the space-time Fourier transform of
an ETC and an out-of-equilibrium initial state. It corresponds
to p; such that [p;, H] # 0 and # =’ in Eq. (A4). We then
write

Gk, w) := / dR dt e ®R7 G(R; 1, 1)

@2r )2D+l n'n A A /
= =5 2_ A"l O Im) (m| O |n)
X 8(Ey — Ey — )5(Py — Py —K)S(P, — Py),
(AS5)
which is equivalent to Eq. (2) of the main paper.

For a weak quench as considered in the main text, the initial
state is close to the ground state |0), so

pi = p10) (01 + > o™ [0) (nl + p[° In) (O] (A6)

n#0
For instance, a pure initial state close to the ground state
is represented by |y;) >~ |0) + Zn;éo €, |n) with €, < 1, and
we find Eq. (A6) with p!® = (p”)* = €,. Therefore, the only

nonvanishing terms pi’"" correspond to eithern =0 orn’ =0
in Eq. (AS5), and the QSF simplifies into

Gk, w) = @)1 Y~ 0} (0] 0] Im) (m] 0210) ()8 (Py, — k)

(27.[)2D+l 0 At R

—p > p1°8(R,) (01 OF Im) (m| Oz |n) 8(E,, + )8(P,, — k)

(27T)2D+l ’ . R

S D P8R, (1] O Im) ] 0210) 8(E, — 0)8(P,, — K). (A7)

Note that the momentum of the ground state is zero for
symmetry reasons, Pp = 0. The first term in Eq. (A7) is space
and time independent and thus irrelevant for the dynamics.
The last two terms include a resonance at negative and positive
frequencies, respectively, associated to the Dirac distributions
S(E, £ w). In the main paper and in the following, we focus
on the positive frequency sector were only the last term is
relevant.

We now detail the selection rules mentioned in the main
text, which allow us to probe the excitation spectrum. For
weakly coupling operators, we can restrict the intermediate
states |m) to single quasiparticles excitations (see Sec. A 1 b).
The term §(P,, — k) imposes that |m) = 13:; |0) = |k), where
1311 is the creation operator of a quasiparticle of momentum
k. Owing to the term §(P,), the first nonzero contribution is
given by states |n) composed of two quasiparticles of opposite
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momenta, |n) = ET_kEIT( |0), and energy E, = 2Ex. It finally
yields

Gk,w>0)= Z]—"(k)(S(ZEk — ), (A8)
k

where the coefficient 7 (k) depends on the operators O; and
05, and on the quench through the initial density matrix
coefficients p. Equation (A8) justifies the interpretation of
the QSF as a direct probe of the excitation spectrum, through
the resonance frequencies w = 2E.

b. Weakly coupling operators

In most cases of interest, the operators O, and O, can only
create or annihilate a single quasiparticle excitation, and we
refer to them as weakly coupling operators. This applies to a
large number of situations, in particular all those considered
in this paper, as detailed below.

Consider first the one-body correlation function,

1R, 1) = (@' (x + R, )a(x, 1))

=Y e Raln)an), (A9)
k

where dx is the annihilation operator of a particle with mo-
mentum K. It corresponds to the correlation function G(R, t)
considered in the main paper [Eq. (1)] with the single-particle
operators O = O, = a. The operator O ; may now be rep-
resented in terms of the single-quasiparticle operators. A
quasiparticle of momentum k representing a particle excita-
tion dressed by other particles or holes is associated to an
annihilation operator Ek, which is a linear combination of
the operators ax and al. Reciprocally, the operators ay are
linear combinations of the operators by and 1311. Hence, the
operator O ; can only create or annihilate a single quasiparti-
cle. Therefore, the ground state |0) can only be coupled to a
single-quasiparticle state, as assumed to derive Eq. (A8).

For instance, the Bogoliubov quasiparticles representing
the collective excitations of a Bose-Einstein condensate are
related to the particle operators by

ax = by +vh’ |, (A10)
where ux and vk are the solutions of the Bogoliubov-de
Gennes equations [53]. A similar linear expression relating
single-particle operators to single-quasiparticle operators also
holds for doublon and holon excitations in the strongly inter-
acting Mott phase of the BHm, see for instance Ref. [45].

More generally, higher-order operators can be cast in a sim-
ilar form with generic hydrodynamic formulations. Consider
for instance the two-body correlation function

&R, 1) = (a(x + R, Hi(x, 1))

- Z e RGOy (1)) (A11)
k

It corresponds to the correlation function G(r, ¢) considered
in the main paper for the density operators O; = O, = /. The
density operator may be expanded as 7 = ny + 57t where ny is
a classical field and §71 represents the density fluctuations. The

operator 871 can be written in momentum space,

S = Ax(bi + b)), (A12)
see, for instance, Ref. [53]. Similar to the one-body corre-
lation function, the two-body correlation function can thus
be decomposed in quasiparticle operators. For instance, the
hydrodynamic formulation may be used to describe a weakly
interacting Bose gas. Within Bogoliubov theory, one finds

Ax = ug + vx, (A13)

where the quantities ux and vg are still the solutions of the
Bogoliubov-de Gennes equations. Note that this applies to
both condensates [53] and quasicondensates [73,74]. More
generally, the hydrodynamic formulation may be applied to
many correlated systems. For instance, a similar form holds
for 1D Luttinger liquids [3]. Notice also that the phase opera-
tor, which is the conjugate of the density operator, can also be
expanded in terms of single-quasiparticle operators.

Finally, for spin models in a polarized phase, for in-
stance, the LRTI model considered in this paper, the Holstein-
Primakoff transformation can be used to map each spin op-
erator onto bosonic operators. This transformation considers
small deviations with respect to the mean-field ground state
((a"(R)a(R)) « 1 for a spin 1/2). It permits us to map the
spin operator in the direction orthogonal to the polarization
axis into a single-particle bosonic one as [75,76]

o~ a(R) +a'(R)

R— " 5

In terms of these bosonic variables, the Hamiltonian is

quadratic and can therefore be diagonalized by introducing the

linear Bogoliubov transformation in the form of Eq. (A10).

Hence, for a spin-correlation function as considered in this

paper, the relevant operators are linear in the quasiparticle
annihilation and creation operators.

(Al4)

2. Comparison to the dynamical structure factor

For the sake of comparison, we now consider dynamical
structure factors (DSF), which are the quantities typically
measured in pump-probe spectroscopy. The latter exploits the
linear response induced by a weak perturbation of a system
at equilibrium [2,4,53]. The dynamical susceptibility (more
precisely its imaginary part) is related to the DSF

Gk, ) =2m Z p" (n] O] (k) |m) (m| Ox(—k) |n)

n,m

x 8(E, — Ep + @)
= Q2m)"" " p™ (n] O] Im) (m| Oy |n)

n,m

x 8P, — P, —K)S(E, — E,, +®). (AlS)

The most usual case is that of equal operators, 01 = 02,
where the DSF reads as

Gk, w) =21 ) p"| (n| O' (k) |m) I’8(E, — Ep + ).

n,m

(Al6)
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Equation (A15) is nothing but the spectral representation
(space and time Fourier transform)' of Eq. (A2) for an UTC,
that is, the spectral representation of

G, y;t, 1) =" p" (n| O](x,1) Im) (m| Oz(y, 1') In) .

n,m

(A17)

It is worth noting that linear response theory implies that the
same, unperturbed Hamiltonian H governs both the initial
state and the time evolution of the operators 0, and O in
Eq. (A17) [2,4,53]. In usual cases, the system is taken at ther-
modynamic equilibrium, where p = exp(—H)/Z with Z =
Tr{exp(—BH)] in the canonical ensemble. More generally, it
is sufficient to assume that the state is stationary, i.e., [p, H] =
0. In this case, the dynamical selection rule §(E,, — E,;, + ) in
Egs. (A15) and (A16) is a direct consequence of the fact that
the relevant correlator in real space and time representation,
Eq. (A17), is an UTC, i.e., with t #¢'. This is the main
difference with the QSF discussed in Sec. A 1, where the state
is out of equilibrium and the dynamical selection rule emerges
from the spectral representation of an ETC.

It is also worth noting that while both the quench spectral
function and the dynamical structure factor allow us to deter-
mine the quasiparticle dispersion relation through dynamical
selection rules, they are different quantities. To illustrate this,
consider the DSF, assuming for simplicity that the system is
in the ground state, so Eq. (A15) reads as

Gk, ®) = 2m)”*' Y~ p™ (01 O] m) (m] O 10)

x 8(Py, — K)é(w — Ep). (A18)

Then, as for the QSF, the quasiparticle dispersion relation
appears assuming that O; and O, are weakly coupling op-
erators, i.e., they couple the ground state |0) only to single-
quasiparticle states of the form |m) = |k) of momentum k and
energy E,, = Ex. In this case, the DSF peaks at w = Ey, hence
providing the quasiparticle dispersion relation. In contrast,
the QSF couples the ground state to a single-quasiparticle
states |m) = |Kk) and then to a pair of quasiparticles with
opposite momenta and same energies, so that the QSF peaks
at w = 2Fk, see Sec. A 1.

APPENDIX B: QUENCH SPECTRAL FUNCTION FOR THE
G; CORRELATION FUNCTION IN THE SUPERFLUID
MEAN-FIELD REGIME

In the main text, we discussed the determination of the ex-
citation spectrum in the superfluid mean-field regime from the
QSF associated to the two-body correlation function G, (R, t).
Here, we show the counterpart of this analysis for the one-
body correlation function G(R, t), computed using the same
numerical approach and the same quench. The G| (R, t) func-
tion and the associated QSF are shown in Figs. 4(a) and 4(b),
respectively. As observed in Fig. 4(a), the G| (R, t) function is

"Here we use the usual convention [ dRdte*®+TG(R;1). For
the QSF, we used another convention [see Eq. (AS5)] which appears
more convenient.

1.0 10 (b) ol 0.2
0.8

\ »’
0(,) 390 0.1
0.4 "
0.2

~0.0 OG /2 . 0.0

FIG. 4. (a) Absolute value of the space-time evolution of
G (R, t) obtained by t-MPS calculations after a global quench in
the superfluid mean-field regime with7# = 5, from U/J = 0.2 t0 0.1.
(b) Associated QSF and comparison to the Bogoliubov dispersion
relation, Eq. (4) of the main text (dashed red line). Note that the
colorbar in (b) is cut off to 20% to improve visibility and the
correlator is normalized by its maximum value.

quite blurred owing to quasi-long-range correlations already
present in the initial state. In particular, the causal cone is
hardly visible here. The associated QSF, however, displays
a clear single branch, see Fig. 4(b). The latter is in good
agreement with the Bogoliubov dispersion relation given by
the Eq. (4) of the main text (dashed red line). It shows that the
excitation spectrum can also be extracted from the one-body
correlator in spite of a signal in real space and time that is
significantly less sharp than for the two-body correlator.

APPENDIX C: COMPARISON BETWEEN THE QUENCH
SPECTRAL FUNCTION OF THE BOSE-HUBBARD
MODEL AND THE LIEB-LINIGER MODES IN
THE CONTINUOUS LIMIT

In the continuous limit, 7 < 1, and for low-momentum
excitations, k < 1, the BHm can be mapped onto the Lieb-
Liniger model,

h2
H=—0m ,- Za(x,— x),  (Ch)

i<j

where m is the particle mass, x; is the position of the ith
particle, and ¢ (homogeneous to the inverse of a length)
stands for the interaction strength. The mapping is found by
discretizing the wave function on a length scale a, associated
to the lattice spacing of the BHm. It yields U = fi*c/ma,
J = h?/2ma?, and thus ¢ = U/2Ja.

The Lieb-Liniger model is known to be integrable by
Bethe ansatz [54,55]. Its excitation spectrum is a continuum
delimited by the so-called Lieb-I (particlelike) and Lieb-II
(holelike) branches. In Fig. 5, we reproduce the Figs. 2(a)
and 2(b) of the main paper, showing the QSF for the Bose-
Hubbard chain in the strongly interacting superfluid regime at
low fillings, together with the Lieb branches of the continuous
Lieb-Liniger model (dashed blue lines). For small momenta,
k <« 1, the two Lieb branches are in quantitative agreement
with the QSF result (green) as well as with the predictions
of the ABA (dotted-dashed red line, see below). In contrast,
for larger momenta, k 2> 1, the lattice discretization becomes
relevant and the Lieb branches deviate from the QSF result.
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FIG. 5. QSF (green) associated to the two-body correlation func-
tion for the Bose-Hubbard chain in the strongly interacting super-
fluid regime, together with the Lieb branches of the continuous
Lieb-Liniger model (dashed blue lines). The Lieb-like branches
found using the approximate Bethe ansatz approach for the Bose-
Hubbard model are also shown (dotted-dashed red lines). The quench
is performed from (U/J); =40 to U/J =50 at (a) 7 =0.1 and
(byn =0.2.

APPENDIX D: APPROXIMATE BETHE ANSATZ FOR
EXCITATIONS IN THE BOSE-HUBBARD CHAIN

Here we outline the main steps for the derivation of the
ABA approach used in the main text. For a comprehensive
introduction to the general Bethe ansatz formalism, see for
instance Refs. [77-79] and references therein. The approach
detailed below was originally developed in Ref. [57] to derive
the ground-state properties of the BHm. We extend it to the
derivation of the excitation spectrum.

We first review the ABA approach for the ground state,
starting with two particles. In one dimension, the particles
can be ordered such that x; < x,, where x; is the position of
the particle j. For bosons as considered here, the global wave
function is symmetric under the exchange of coordinates, and
we may restrict the discussion to x; < x, without loss of gen-
erality. We take A(ky, ko )e'®1¥1752%2) - A(ky, ky )e!R2¥1Hh1%2) a5
an ansatz for the reduced two-body wave function, with k; the
quasimomentum of the particle j. The amplitudes A(k;, k7)
and A(k», k1) are the unknown coefficients, which we want to
determine. The reduced wave function with x, < x| is given
by the same formula simply exchanging x; and x;, keeping the
same amplitudes. As for any formulation of the Bethe ansatz,
we impose that the energy involved in the time-independent
Schrodinger equation is the one associated to free particles,
and include the interaction in the way the quasimomenta
are distributed. Here we use E = —2J(cosk; + cosk,) as
suggested by the Bose-Hubbard Hamiltonian with U = 0. The
ansatz for the reduced wave functions, the continuity of the
global wave function at x; = x, and the previous form of
the energy can be simultaneously imposed if the following
condition is satisfied:

Ak, k) i(sink; —sink)) — % _ o o)
Alko. k) i(sink —sinky) + & '

This result is found by working along the lines of
Refs. [54,55], adding the presence of the lattice in the formu-
lation. This equation defines the scattering phase 6;, which
can be rewritten conveniently as

2J
01> = —2arctan [F(sin ki — sin kz)] (D2)

This fully solves the problem in the case N = 2.

We now turn to N > 2 particles. The BHm is not integrable
for a finite interaction parameter U/J. This means that a
many-body scattering cannot be factorized in an exact way
as a product of two-body collisions. Already including a
third boson into the description cannot be done in an exact
way, i.e., following the same procedure, as was first pointed
out in Ref. [59]. To be more specific, when the ansatz of
the reduced wave function } 5 s Ape™™ | where Sy is
the permutation group of N! elements, and the form of the
energy £ = —2J vazl cos k; are simultaneously imposed, the
continuity of the global wave function when all x; are equal
cannot be satisfied. Such pathological cases occur when at
least three bosons interact in the same lattice site. For low
densities and high interactions, however, such multioccupied
states are very strongly attenuated [80]. In this regime, we
expect that the previous description, now called ABA, yields
a reasonable description. This point was originally pointed
out in Ref. [57]. To adapt the N = 2 solution to the ther-
modynamic limit, we impose periodic boundary conditions
on the global wave function: Vj, ¥ (x,...,x; +L,...xy) =
Y(x1,...,x; +L,...xy). Generalizing Eq. (D2), this condi-
tion reads as

A i(sink; —sink;) — £ iy 0u
SRl — 1_[ J 2UJ — (_1)N_1€ A

=11-= - (D3)
i(sink; —sink;) + 5;

I#j
with 0;; defined above. In log form, this gives the so-called
Bethe equations for the BHm,

kL =271+ 6,
1]

(D4)

where I; are integers (for N odd) evenly distributed between
—(N —1)/2 and +(N — 1)/2. This equation relates the quasi-
momentum distribution to the interactions through the scatter-
ing phase. Moving to the thermodynamic limit, we introduce
the quasimomentum density

p(kj) = lengoo Lhon =k (D5)
We then take the difference between Eq. (D4) for k1 and k;,
respectively. Considering k as a continuous variable, one then
shows that the quasimomentum density p(k) obeys the linear
integral equation:

U e k)dk'
271,0(k)=1+—cosk/ 5 ) )
J ~ke (Z)" + (sink — sink’)?
(D6)

where the Fermi momentum kg is determined by the density n

through the relation
+kr
n= / p(k)dk.

kg

(D7)

From these two equations, all ground-state quantities can be
computed. In practice, we fix the density » and the interaction
parameter U/2J, and solve iteratively Egs. (D6) and (D7) for
both kg and p(k) until convergence has been reached. The
equations (D6) and (D7) were first derived in Ref. [56] (see
also Ref. [57] for the correction of a typo about a factor of 2).
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We now extend the ABA approach to the determination
of the low-energy number-conserving excitations. They are
found by removing one quasimomentum k;, from (i.e., create
a hole in) the Fermi sea, such that —kr < ky < kg, and put
it back (create a particle) above the Fermi level at k,, such
that —m < k, < —kg or kr < k, < 7. This excited state is
characterized by the new values of the quasimomenta k7,
which are distributed according to the Bethe Eq. (D4) for
k;. In analogy with Refs. [55,81], we introduce a backflow
function. It accounts, to first order, for the redistribution of the
quasimomenta between the excited state and the ground state.
Its expression is J(k;) = Lp(k;)Akj, where Ak; =k} — k;
is assumed to be small compared to k;. Taking the difference
between the Bethe equations for k% and k; yields, in the
thermodynamic limit, the following linear equation for the
backflow function:

2n J (k) = O(sink — sink,) — 0(sink — sinky)
N U /“‘F J (k') cosk'dk'
J J ke (%)2 + [sink — sink']>
Equation (D8) can be solved numerically for a given excita-
tion (ky, k) and with kg determined previously for a given set

of the physical parameters n and U/J. We can then compute
the momentum difference AP between the excited state and

(D8)

the ground state, and their energy difference AE in terms of
this backflow:

+hp
AP =Yk —k)Eky—kn+ | Tkdk,
J F
AE
- = -2 Z(cosk; —cosk;)
J
L +kg
= —2coskp + 2cosky + 2 J(k)sinkdk.
—kp

(DY)

where = stands for the thermodynamic limit. The continuum
of excitations (AP, AE) is computed numerically by first
solving Eq. (D8) and then varying —kr < ky < kp, and —1 <
ky < —kporkp <k, <.

Note that, in the limit U/J — oo, we find § — 0 and
J(k) — 0 in Eq. (D8). We recover the well-known fully
fermionized regime. Moreover, in the continuous limit where
the lattice spacing is set to 0, and therefore the quasimomenta
k — 0 (recall the quasimomentum is measured in units of the
lattice spacing), we recover the known Bethe equations for the
Lieb-Liniger model, see for instance Egs. (43), (45), and (46)
in Ref. [81] (written there for finite temperature).
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