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Emergence of singularities from decoherence: Quantum catastrophes
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We use a master equation to study the dynamics of two coupled macroscopic quantum systems (e.g., a Joseph-
son junction made of two Bose-Einstein condensates or two spin states of an ensemble of trapped ions) subject to
a weak continuous measurement. If the coupling between the two systems is suddenly switched on, the resulting
dynamics leads to caustics (fold and cusp catastrophes) in the number-difference probability distribution and
at the same time the measurement gradually induces a quantum-to-classical transition. Decoherence is often
invoked to help resolve paradoxes associated with macroscopic quantum mechanics, but here, on the contrary,
caustics are well behaved in the quantum (many-particle) theory and divergent in the classical (mean-field)
theory. Caustics thus represent a breakdown of the classical theory towards which decoherence seems to
inevitably lead. We find that measurement backaction plays a crucial role in softening the resulting singularities
and calculate the modification to the Arnol’d index which governs the scaling of the caustic’s amplitude with the
number of atoms. The Arnol’d index acts as a critical exponent for the formation of singularities during quantum
dynamics and its modification by the open nature of the system is analogous to the modification of the critical
exponents of phase transitions occurring in open systems.
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I. INTRODUCTION

Decoherence plays an important role in our current under-
standing of the quantum-to-classical transition. In particular,
it provides an explanation for why macroscopic quantum
superpositions (Schrödinger cat states) are not observed in
everyday life: Decoherence destroys quantum interference at a
rate that depends sensitively upon the size of the superposition
and thereby reduces the associated probability distribution to
a sum of classical probabilities [1–3]. This occurs whenever
a system becomes entangled with its environment, causing a
continuously monitored quantum system to behave classically
[4–7] and even to display elements of chaotic dynamics
(something that is generally absent in quantum mechanics)
[8–11]. Pioneering experiments using atoms interacting with
electromagnetic fields have observed the decay to classical-
ity [12–17], including the appearance of chaos [18–21] and
measurement-induced suppression of tunneling [22].

In this paper we consider the measurement-induced de-
coherence of a pair of coupled macroscopic quantum sys-
tems. For concreteness we will base our discussion on a
bosonic Josephson junction (BJJ) made from two atomic
Bose-Einstein condensates (BECs) coupled via a tunneling
barrier [23]. These have been demonstrated in a number
of experiments [24–29] where the interatomic interactions
introduce a nonlinearity responsible for macroscopic quantum
self-trapping [24,26,30–32] and a symmetry-breaking phase
transition [29]. Both these phenomena can be understood at
the classical-field level of the Gross-Pitaevskii equation (GPE)
[33], and at the many-body level the interactions generate
entanglement which manifests itself as reduced atom number

fluctuations [34–36] (and increased phase fluctuations) be-
tween the BECs. This entanglement has been characterized
in terms of Fisher information [37] and used to perform
sub-shot-noise magnetometry [38]. However, the results we
find in this paper also apply to other macroscopic quantum
systems such as trapped ions with two spin states which can be
used, for example, to realize the transverse field Ising model
(TFIM) with long-range interactions [39–42] and the Dicke
model [43] or indeed solid-state realizations of Josephson
junctions such as superconducting quantum interference de-
vices [44,45].

A macroscopic description of a BJJ can be given in terms
of the conjugate variables φ = φL − φR and z = (NL − NR)/N
[31,32,46], which are the phase and relative number differ-
ence, respectively, between the left- and right-hand BECs,
where N is the total number of atoms. The phase difference φ

can be measured via a matter-wave version of Young’s double-
slit experiment in which the BECs are released from their
trapping potential to produce an interference pattern [47–50],
and this technique has been used experimentally to study
dephasing [51–54]. Nondestructive phase measurements can
be performed via light scattering in situ [55]. Instead of
measuring φ, the number difference z can be measured by
light absorption imaging [24] or phase contrast [26] imaging,
where the latter method can also be nondestructive.

There have been a number of previous theoretical studies
of a BJJ subject to decoherence [56–61]. The particular case
we study here, a weak continuous measurement of z, has been
studied in [61], where it was found that if the measurements
are frequent enough to resolve the dynamics then measure-
ment backaction causes the system to behave classically. In
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this context, “classical” means “mean field,” indicating the
absence of many-body entanglement; in coordinate space the
condensates still obey the Gross-Pitaevskii wave equation,
which is a classical field equation conceptually analogous to
Maxwell’s wave equation for light in the sense that neither
takes account of the quantization of field excitations (atoms
and photons, respectively).

The specific dynamics we consider here arise from a
quench in the tunneling rate from zero to a finite value,
describing the case of two independent condensates suddenly
placed in contact [62–64]. This sets the combined system into
motion and a series of collapses and partial revivals of the
many-body state occur as a function of time [30,65]. The
revivals can be interpreted as caustics akin to those studied in
optics, but living in the Fock space inhabited by the number-
difference amplitudes rather than coordinate space [66–68].

Caustics in optics are singular in the classical limit (ray
optics). Specifically, caustics are regions of infinite intensity
indicating a fundamental breakdown of the ray theory. The
singularity can be tamed by going up one step in complexity to
the wave theory and thereby including interference, which is
the crucial ingredient needed to smooth a ray caustic. Interfer-
ence turns the divergent ray caustic into a smooth and nondi-
vergent interference pattern known as a wave catastrophe [69].
However, in our case the classical description is via the GPE,
which is already a wave equation and hence includes wave
interference in coordinate space. Nevertheless, the dynamics
of the GPE does generate singularities but this time in Fock
space, which is the natural arena where many-body dynamics
takes place. Such singularities are examples of quantum catas-
trophes and represent a breakdown of classical field theory
[70–72]. Analogously to how ray caustics are regulated by
the inclusion of phase interference, quantum catastrophes can
be regulated by going up another step in complexity to the
many-body theory where the discreteness of the quanta (in our
case atom number difference) regularizes the caustic [66–68].

Whereas the inclusion of decoherence usually helps rec-
oncile macroscopic quantum mechanics with our everyday
experience, we now see that in the presence of caustics it has
the potential to instead lead back to the paradoxical situation
of a theory with singularities. However, the missing ingredient
in this description is how the quantum noise introduced by
the measurement backaction affects the catastrophe, and this
plays an important role in our investigation.

In a recent paper by Naghiloo et al. [73], the dynamics
of a continuously measured qubit have been analyzed both
theoretically and experimentally. Specifically, the measured
fluorescence signal from a driven superconducting qubit was
used to construct a quantum trajectory representing the time
evolution of its quantum state during each experimental run.
The random nature of quantum measurement outcomes means
that these trajectories have the appearance of a stochastic
or random walk and can be simulated using a stochastic
master equation; summing over the trajectories leads to the
same probability distribution as would be obtained using
an ordinary (nonstochastic) master equation. Naghiloo et al.
observed that causticlike structures can emerge from among
the ensemble of quantum trajectories: regions or paths of high
probability in the configuration space of the qubit as a function
of time. They used the term “quantum caustics” to describe

these caustics because they are made from quantum trajecto-
ries as opposed to, say, ordinary optical caustics formed from
geometrical light rays.

Our work in this paper is related to that of [73], but differs
in some significant ways. One of the main differences is that
we consider a many-particle system described by a discrete
Fock space. The “quantum caustics (catastrophes)” that we
find are quantum due to the discreteness of Fock space even
without the effect of quantum measurements. The quantum
probability distribution in Fock space is discrete but also dis-
plays interference fringes which, in the semiclassical regime
N � 1, lead to structures resembling the wave catastrophes
introduced above. Wave catastrophes obey a remarkable set of
scaling relations determined by the Arnol’d and Berry indices
[69]. We use an ordinary master equation to see the effect
that weak continuous measurement has on these preexisting
caustics in the probability distribution; in this sense this paper
is about decoherence of a quantum catastrophe. We find that
for weak measurements and short times the caustics maintain
their qualitative shapes, although the measurement backaction
changes them in subtle ways such as modifying the scaling
exponents.

The rest of this paper is organized as follows. In Sec. II we
give the classical (GPE) description of the dynamics of a BJJ,
and we follow this in Sec. III with the equivalent quantum
(Bose-Hubbard model) description. In Sec. IV we introduce
the master equation describing a continuous measurement and
in Sec. V we present results showing the effects this has
upon the caustics, specializing in Sec. VI to showing how
the Arnol’d scaling exponent for the amplitude of a wave
catastrophe is modified by decoherence. We summarize and
give our conclusions in Sec. VII. In Appendixes A–F we
provide background information on topics such as the phase-
space dynamics and structural stability of catastrophes as well
as the details of various derivations and calculations.

II. CLASSICAL DYNAMICS

Catastrophe theory predicts that only certain shapes of sin-
gularity are structurally stable (stable against perturbations)
and hence occur frequently in nature with no requirement
for special symmetry. In four or fewer dimensions these are
Thom’s famous seven elementary catastrophes, each of which
forms an equivalence class [74,75]. Well-known everyday
examples include rainbows (fold catastrophes) and the bright
cusp shape (cusp catastrophe) formed in a coffee cup on a
sunny day [69]. More generally, catastrophes occur in hy-
drodynamics as rogue waves [76] and tidal bores [77] and
have also been observed in atom optics experiments [78–80].
In the present quenched BJJ problem catastrophes appear as
cusp caustics formed by the envelopes of families of classical
trajectories in the (z, t ) plane, as shown in Fig. 1(a) (for
the phase-space representation of the dynamics please see
Appendix A and Fig. 5). Each trajectory is a solution of
Josephson’s equations [31,32]

∂z

∂τ
= − ∂h

∂φ
= −

√
1 − z2 sin φ,

∂φ

∂τ
= ∂h

∂z
= �z + z√

1 − z2
cos φ + �E ,

(1)
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FIG. 1. Numerical solutions of the dynamics following a quench in a BJJ showing classical and quantum catastrophes. (a) Classical
trajectories for the fractional number difference z periodically form classical cusp caustics. Each trajectory has a different value of the initial
phase difference ranging from −π to π in steps of π/25, which samples the initial quantum distribution in accordance with the TWA. The tilt
bias �E = 0. (b) Quantum probability distribution for the number difference (|cz|2 = ρz,z) over time. The quantized probability distribution
resembles certain features of the classical trajectory density but with discretized values of number difference giving rise to quantum cusp
catastrophes. Interference fringes whose analytic form is described by a discrete Pearcey function [68] are visible within the arms of the
caustics. (c) Decoherence is turned on in the quantum evolution (D = 0.1). For this value of D the quantum interference remains visible for a
few oscillations, but at later times this is washed out and even the caustics are diffuse. When t → ∞ the system tends to ρsteady [Eq. (7)]. In all
panels � = 25 and in (b) and (c) N = 100.

which correspond to the GPE in the number-phase represen-
tation in the tight-binding regime [33]. As indicated, they
can be obtained as Hamilton’s equations of motion from the
dimensionless Hamiltonian h = H/EJ , where

H = EC

2

(
Nz

2

)2

− EJ

√
1 − z2 cos φ + EJ�Ez. (2)

Here EC characterizes the interatomic interactions, EJ is the
coupling energy between the two BECs, �E is a tilt bias (if
present) in units of the coupling energy, and time is scaled
as τ ≡ t (2EJ/Nh̄). Thus, the classical dynamics are governed
by just two parameters � ≡ ECN2/4EJ and �E . In the fully
quantum (many-body) description we need to additionally
specify N , which plays a role analogous to 1/h̄ [81].

The method of using an ensemble of noninterfering clas-
sical trajectories to approximate the quantum dynamics is
sometimes referred to as the truncated Wigner approximation
(TWA) [61,82,83]. The idea is to choose multiple initial con-
ditions for the dynamical variables (φ, z) by sampling them
from a probability distribution obtained from the full quantum
theory but evolve these initial values using the classical equa-
tions of motion, which in our case are the Josephson equations
given in Eq. (1). Summing over the time-evolved classical
trajectories thereby includes the quantum noise present in the
initial quantum wave function.

In the present case our initial state consists of two inde-
pendent BECs. This implies that there is no initial coherence
between the two BECs and also that the number difference
z is a precise number which we take to be zero. The latter
condition means that the two BECs have exactly the same
number of atoms, but by virtue of their structural stability,
the caustics we obtain are qualitatively unaffected if instead
we take z �= 0 (we explore the structural stability of caustics
further in Appendix B). In the classical theory the conju-
gate variables z and φ are continuous and commute with
each other, whereas in the quantum theory they obey the

commutator [φ̂, ẑ] ≈ 2i/N [84], at least when N is moderately
large. Thus, Heisenberg’s uncertainty relation implies that the
initial phase difference φ must be completely undefined. The
initial values we use for the classical trajectories are therefore
z = 0 for all, but φ uniformly distributed over the range −π

to π . The resulting classical trajectories are those plotted in
Fig. 1(a).

According to catastrophe theory, the stable singularities
in two dimensions [the (z, t ) plane] are fold lines that
meet at cusp points [69]. This is precisely what we see
in Fig. 1(a), which presents the results of solving Joseph-
son’s coupled equations numerically (note that energy con-
servation implies that all trajectories lie within the range
−2/

√
� � z � 2/

√
�). The thick green line traces the first

cusp caustic and thereafter cusp points occur periodically
at the plasma frequency ωpl =

√
2EJ (2EJ + N2Ec/2)/Nh̄ =

(2EJ/Nh̄)
√

1 + �, corresponding, in the harmonic approx-
imation, to the frequency of motion around the bottom of
the cosine potential well in the Hamiltonian. The density of
trajectories diverges on a caustic, as shown by the thick green
line in Fig. 2(a), which plots the probability distribution at
the time 1.5π/ωpl halfway between the first and second cusp
points.

These classical predictions are equivalent to solving Liou-
ville’s equation ∂ρcl/∂t = −{ρcl, H} for the classical phase-
space density ρcl(φ, z), where {·, ·} denotes the Poisson
bracket. The dynamics in phase space are discussed in
Appendix A and snapshots at different times are presented in
Fig. 5, where ρcl is given by the density of points. The phase-
space density corresponding to the present initial conditions
corresponds to a horizontal line along z = 0; the dynamics
winds this line into a whorl. The classical probability distribu-
tion for z alone is obtained by projecting ρcl onto the z axis
by performing the integral

∫ π

−π
ρcl(φ, z)dφ. This procedure

gives the thick green curve in Fig. 2(a) for the particular
time t = 1.5π/ωpl. In this way one sees that the caustics in
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FIG. 2. Comparison of the probability distributions for the fractional number difference z for classical, quantum, and quantum with
decoherence dynamics in a BJJ at the time slice t = 1.5π/ωpl with � = 25. (a) Classical (thick green line) versus the quantum with no
decoherence (thin blue line), with the latter having N = 400 particles. The classical probability diverges as the inverse square root of the
distance from the fold caustics at z ≈ ±0.5 and z ≈ ±1 (in units of 2/

√
�). The quantum probability distribution, which is always finite, is

actually discrete in z but drawn here with a continuous line. (b) Both distributions are for the quantum case with N = 400 but with different
decoherence strengths: D = 0.025 (red) and D = 0.4 (blue). (c) Both distributions are for the quantum case with D = 0.1 but with different
numbers of particles: N = 100 (blue) and N = 500 (red).

the probability distribution for z arise from the horizontal
portions of the whorl. We note that phase-space whorls have
been previously studied for the case of the rigid pendulum
in Ref. [85]; in that case it is possible to obtain analytic
expressions for ρcl(φ, z) in the long-time limit.

III. QUANTUM DYNAMICS

A fully quantum description of the dynamics can be
achieved with the Bose-Hubbard model. A crucial difference
between this and the classical treatment is that the num-
ber difference becomes quantized, recognizing the discrete
nature of field quanta. We consider two sites (L and R)
occupied by bosons that are created and annihilated by the
operators â†

L (â†
R) and âL (âR), obeying bosonic commutation

relations [âi, â†
j ] = δi j . In terms of these operators, the frac-

tional number-difference operator is defined as ẑ ≡ (â†
LâL −

â†
RâR)/N . The problem can mapped onto a spin model by

using the Schwinger mapping [86] to angular momentum
operators Ĵx ≡ (â†

LâR + â†
RâL )/2, Ĵy ≡ i(â†

RâL − â†
LâR)/2, and

Ĵz ≡ (â†
LâL − â†

RâR)/2, whence the Hamiltonian becomes [87]

Ĥ

2EJ/N
= N�

4
ẑ2 − 1

2
(â†

LâR + â†
RâL )

= �

N
Ĵ2

z − Ĵx, (3)

which describes a collective spin of total length N/2 made
up of N elementary spin- 1

2 particles and is a special case of
the Lipkin-Meshkov-Glick model [27,88]. One point to notice
with Eq. (3) is its scaling with N , which is most clearly seen
on the right-hand side. The maximum values that 〈Ĵx〉 and 〈Ĵz〉
can take are N/2, and so the factor of 1/N multiplying the Ĵ2

z

term not only ensures that the Hamiltonian is extensive but
also that both terms remain relevant in the thermodynamic
limit N → ∞.

In the absence of decoherence, the state of the system
can be represented by the pure state |�(t )〉 = ∑

z cz(t )|z〉,
where |z〉 is the number-difference (Fock) basis. Taking the
initial state to be |z = 0〉 (see Fig. 7 in Appendix B for the
generalization of the initial condition to a Gaussian; structural
stability again guarantees that as long as the Gaussian is nar-
row, the dynamics remain qualitatively unchanged), the time
evolution of the set of Fock-space amplitudes {cz(t )} is found
by solving Schrödinger’s equation ih̄∂t |�(t )〉 = Ĥ |�(t )〉 nu-
merically with the Hamiltonian given in Eq. (3).

A slice through the resulting quantum probability distribu-
tion at time 1.5π/ωpl is compared against the classical result
(thick green line) in Fig. 2(a) (see also Fig. 1 in [66]). The
shape of the discrete probability density |cz|2 has recognizable
features in common with the classical distribution, including
peaks where the slice crosses the caustics (fold lines), but
also displays interference causing it to oscillate around the
classical value. Crucially, the quantum distribution is always
finite whereas the classical distribution diverges as the inverse
square root of the distance from the caustic (as expected [69]).
In fact, in the quantum theory the fold caustics are decorated
by Airy functions, although these are hard to see here because
the Airy functions from different caustics interfere. As will
be discussed in more detail in Sec. VI, in the semiclassical
regime N � 1 the main peaks of the Airy function come to
dominate the probability distribution slice, growing as [66]

|�|2max ∝ N1/3. (4)

However, the “brightest” parts of the entire pattern are the re-
gions around the cusp points which are decorated by functions
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known as Pearcey functions [89] and grow as [68]

|�|2max ∝ N1/2. (5)

The exponents 1/3 and 1/2 determine how the caustic di-
verges as the classical limit N → ∞ is approached [69].

Another feature of the semiclassical regime is that each
of the double peaks in Fig. 2 becomes narrow. As N gets
large the two fold lines therefore correspond to approximate
Schrödinger cat states, i.e., superpositions of two macroscopi-
cally different number states on the two sides of the Josephson
junction [90]. Related twin Fock states have been made in
experiments on spatially separated atomic clouds [91–93].

IV. MASTER EQUATION

The effect of decoherence due to a weak continuous mea-
surement of z can be incorporated into the quantum theory via
the master equation [56,94]

∂ρ̂

∂τ
= i[Ĵx, ρ̂] − i

�

N

[
Ĵ2

z , ρ̂
] − D

�

N
[Ĵz, [Ĵz, ρ̂]], (6)

where D governs the strength of the measurement. Here ρ̂(τ )
is the density operator, which can be expanded in the Fock (Ĵz)
basis as ρ̂(t ) = |�(t )〉〈�(t )| = ∑

q,z ρq,z(t )|q〉〈z|. The diago-
nal elements give the populations ρz,z(t ) of the Fock states as
plotted in Figs. 1(c), 2(b), and 2(c). The populations ρz,z(t ) are
the quantum equivalent of the classical probability distribution
for the z variable as given by the projection of the classical
phase-space density onto the z axis:

∫ π

−π
ρcl(φ, z)dφ. When

D = 0, Eq. (6) reduces to the quantum Liouville equation
∂ρ̂/∂t = −i[ρ̂, Ĥ ], which is in turn the quantum version of
the classical Liouville equation ∂ρcl/∂t = −{ρcl, H}.

The master equation (6) is in Kossakowski-Lindblad form,
which ensures that the density matrix is positive definite at
all times (see Appendix C) [95,96]. The double commutator
is responsible for measurement-induced decoherence, which
suppresses the density matrix’s off-diagonal elements in the
number-difference basis due to the gain in information about
the number difference by the measurement. Experimentally,
the atom number can be counted continuously (nondestruc-
tively) in time using phase contrast imaging [97–99]. Other
techniques have also been suggested, such as homodyne de-
tection when one of the two BECs is placed inside an optical
cavity [94]. As long as the measurements are not projective,
off-diagonal long-range order between the two wells can be
preserved [56].

It is important to realize that the populations ρz,z(t ) given
by solving the master equation are probabilities, i.e., corre-
spond to the average over many experimental runs. The mea-
surement records of individual experimental runs are inher-
ently stochastic but can be simulated by unraveling the master
equation into an ensemble of quantum trajectories obtained by
solving a stochastic differential equation or master equation
[100–103]; averaging over many quantum trajectories or dis-
carding the measured values then reproduces the predictions
of Eq. (6). The singularities we discuss in this paper therefore
do not appear in any single experimental run but only in
the probability distribution. For a relevant example of the
quantum trajectory method, we refer the reader to the paper
by Naghiloo et al. [73].

V. DYNAMICS WITH DECOHERENCE

Decoherence is known to smooth rapidly oscillating terms
in Schrödinger dynamics [104]. In Fig. 2 we see that as D is
increased the oscillations are progressively damped out and in
this sense the system becomes more classical. However, we
also see that the caustic peaks are softened too, signaling a
departure from the naive classical result given by the TWA. By
contrast, increasing N increases the sharpness of the caustics,
increasing the similarity to the classical distribution. These
observations are quantified in Fig. 3, where the width of the
caustic is found to increase linearly with D and decrease as a
fractional power law with N . Furthermore, if the root mean
square of the difference between the quantized probability
distribution and the classical one is computed, one finds that
this also decreases as a power law in N (see Appendix D).
This suggests that the required limit for classicality, if defined
as the TWA distribution, is D → 0 and N → ∞ but such that
D × Nγ is always finite, where γ is some exponent.

Another interesting limit is the long-time limit for fixed D
and N . In this case the density matrix becomes diagonal and
the probability distribution tends to a steady state that is flat
(see Appendix E)

〈q|ρ̂steady|z〉 ≡ ρsteady q,z = δq,z

N + 1
, (7)

corresponding to an equal probability of occupying any Fock
state. This behavior can be seen in Fig. 1(c), where the caustics
gradually blur out and dissipate over time.

In order to provide an intuitive explanation of the above
results, let us examine what the decoherence term (double
commutator) in the master equation is actually doing. (In
formulating the following arguments we have been influenced
by a study on the continuous measurement of the position of
a particle in a double-well potential presented in [105].) It
should first be noted that as long as the tilt term �E is zero, the
eigenstates of the Hamiltonian (3) have a well-defined parity
in Fock space, being either even or odd (the ground state is
even, the first excited state is odd, the second excited state
is even, and so on, alternating up the spectrum). The initial
quench excites only the even eigenstates. In the absence of de-
coherence the system will evolve as a coherent superposition
of these eigenstates and thus have even symmetry about the
center point z = 0. However, the decoherence term in Eq. (6)
breaks this symmetry and couples in the odd eigenstates. A
linear combination of an even and an odd eigenstate produces
a wave function biased to one side or the other of z = 0. Thus,
the measurement backaction can be thought of as effectively
adding a stochastically varying tilt term to the time evolution.
Indeed, as information continuously flows out of the system
about the number difference z, any nonzero value of z will tilt
the probability distribution to one side or the other mimicking
the effect of an actual tilt �E .

How does the measurement lead to a smoothing out of
oscillations in the probability distribution? The double com-
mutator causes a decay in the probability of finding the system
in an even energy eigenstate and increases the probability of
finding it in an odd energy eigenstate, as shown in Fig. 3(c).
Now, a single eigenstate leads to a probability distribution that
oscillates in z with nodes between peaks: In order to obtain
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FIG. 3. (a) and (b) Effect of varying the decoherence strength D and the number of particles N on the width of a caustic in the quantum
probability distribution. The caustic in question is located at t = 1.5π/ωpl near z = −0.5, where � = 25. We measure the full width at
three-quarters of the maximum of the peak because the half maximum is too low for large values of D and small values of N . (a) For N = 400,
the width of the peak increases linearly with D. (b) For D = 0.1, the width of the peak decreases as the power law N−2/3. This is in line with
the expected scaling of the width of a fold catastrophe [69]. All of these trends are maintained if we vary the value of t but track the same fold
line. (c) and (d) Effect of decoherence on eigenstate populations, for N = 100 and � = 25. (c) Overlaps between ρ̂ and the eigenstates of the
Hamiltonian [Eq. (3)] for the first six eigenstates (labeled 0–5 and with increasing line thickness). Dashed lines show the coherent evolution
(D = 0) and solid lines show evolution with decoherence (D = 0.1). The coherent evolution couples only to even eigenstates, so the dashed
lines representing the populations of states 1, 3, and 5 remain zero for all time whereas decoherence allows the odd eigenstates’ populations to
grow with time. (d) Probability distributions of the first four eigenstates of the Hamiltonian. The ground state is even and the states alternate in
parity.

a smooth nonoscillating distribution we require many eigen-
states be populated and in particular that adjacent eigenstates
be populated. This is because adjacent eigenstates in energy
have adjacent peaks in number-difference space as shown in
Fig. 3(d), and thus it is necessary to combine both even and
odd eigenstates to fill in the gaps. In this way decoherence
smooths the oscillations and broadens the peaks in compari-
son to the coherent system’s probability distribution.

Another way to understand the effect of the double-
commutator term is to map the master equation onto a
Fokker-Planck style equation, which is the equation of mo-
tion for the probability distribution. Choosing the Glauber-
Sudarshan quasiprobability distribution in phase space P(φ, z)
(the Glauber-Sudarshan quasiprobability is positive if the
quantum system has a classical analog), we obtain

∂P

∂τ
= 4

[
−

(
∂h

∂φ

)
∂z +

(
∂h

∂z

)
∂φ + 2

D�

N
∂2
φ

]
P, (8)

where h = �z2/2 − √
1 − z2 cos φ is the dimensionless

Hamiltonian (see Appendix F for the derivation). The authors
of Ref. [61] obtained a very similar equation for the Wigner
distribution and pointed out that the last term, which takes
the form of a diffusion term in φ, arises as the backaction
due to a measurement of the conjugate variable z. Diffusion
can of course be expected to eliminate quantum interference
such that the probability distribution settles to the classical
distribution and also broadens the peaks at the caustics such
that the resultant probability distributions are nonsingular. It
is also significant that the diffusion constant D�/N depends

linearly on D and inversely upon N , supporting our earlier
observations that these two parameters have opposing effects
upon the width of caustics.

The diffusion equation given in Eq. (8) for the quasiprob-
ability distribution under the influence of decoherence im-
plies another method for smoothing the caustics: the ad hoc
addition of diffusive noise terms to the classical Liouville
equations. However, classical noise can be reduced by tech-
nical improvements, e.g., by going to very low temperatures
as in the experiments with ultracold atoms. By contrast,
quantum mechanics introduces fundamental noise that cannot
be removed so we will not pursue these alternative approaches
here.

VI. MODIFICATION OF THE ARNOL’D EXPONENT
BY DECOHERENCE

In the wave theory of caustics divergent singularities are
replaced by interference patterns which smooth catastrophes
at the scale of the wavelength. Each class of catastrophe is
associated with its own characteristic wave function, and for
the catastrophes of relevance to us (folds and cusps), these can
be expressed as [69]

�(C) ∝ k1/2
∫ ∞

−∞
ds eik(s;C), (9)

where k is the wave number and C = {C1,C2, . . .} are control
parameters representing coordinates and other parameters. In
addition, (s; C) is the generating function and for folds it
takes the form of a cubic polynomial 1(s;C) = s3/3 + Cs,
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where C = C(z, t ). This gives a wave catastrophe of the form

�1(C) ∝ (2πk1/6)Ai(k2/3C), (10)

where Ai(x) is the Airy function [89]

Ai(x) = 1

2π

∫ ∞

−∞
exp[i(s3/3 + xs)]ds. (11)

Cusps have a quartic generating function featuring two control
parameters 2(s;C1,C2) = s4/4 + C2s2/2 + C1s, giving

�2(C1,C2) ∝ (2πk1/4)Pe(C1k3/4,C2k1/2), (12)

where Pe(x, y) is a complex function of two variables known
as the Pearcey function [89]

Pe(x, y) = 1

2π

∫ ∞

−∞
exp[i(s4/4 + ys2/2 + xs)]ds. (13)

The higher catastrophes contain the lower ones: Away from
its tip the cusp evolves into two fold lines. The same is true of
wave catastrophes: Away from the cusp tip at x = y = 0, the
Pearcey function evolves into two Airy functions whose tails
overlap in the middle.

It is evident from the above expressions that wave catas-
trophes have remarkable scaling properties as k is varied. The
powers of k multiplying the control parameters (coordinates)
in the arguments of the Airy and Pearcey functions show that
varying k is equivalent to varying the fringe spacing of the
interference patterns. For example, if k is increased (smaller
wavelength) the fringe spacing of the interference pattern
dressing a fold catastrophe decreases as k−2/3. In our case the
role of k is played by the total number of atoms N [68] and
we have in fact already seen in Fig. 3(b) that the width of the
main peak decreases as N−2/3, in agreement with the wave
catastrophe prediction. This is therefore a purely coherent
wave effect.

For present purposes, the most interesting scaling is that
of the amplitude as this seems to be more strongly affected
by decoherence. We have previously given, in Eqs. (4) and
(5), the wave catastrophe predictions for the scaling of the
peaks |�|2max of the probability distribution with N . Now we
can see where these results come from: They are (twice)
the amplitude scaling given in Eqs. (10) and (12), respec-
tively. The exponents β = 1/6 and β = 1/4 are known as
the Arnol’d exponents and show how the wave catastrophe
diverges �max ∼ Nβ in the classical limit N → ∞ [69]. In
Fig. 4 we plot the dependence of β on measurement strength
D. The curve was obtained by finding the highest peak in
the time-dependent probability distribution |�(z, t )|2 from the
numerical solution of the master equation (excluding very
early times where the dominant peak comes from the initial
condition of starting in a single Fock state) and tracking the
height of this peak as N is varied. We find that at D = 0
we recover the result for a cusp, namely, β = 1/4, but the
effect of decoherence is to reduce β, making the catastrophe
less singular even though it is at the same time making
the system more classical. Once again, this result illustrates
the dual effects of decoherence in removing quantum interfer-
ence but also adding noise that softens classical singularities.
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FIG. 4. The blue curve shows the dependence of the Arnol’d
scaling index β (evaluated at the cusp points) on the strength of the
decoherence D. This curve is evaluated for � = 8, but we find the
same trend for all values of �. At D = 0 we recover the standard
wave catastrophe prediction for a cusp of β = 1/4.

VII. CONCLUSION

Classical theories break down at caustics where they pre-
dict singularities. Furthermore, catastrophe theory predicts
that caustics occur generically, without the need for fine-
tuning or symmetry, due to their structural stability. In many-
body theories caustics can occur in more subtle ways, such as
the probability distribution in Fock space, rather than the more
tangible coordinate space, but nevertheless this represents a
striking failure of classical field theory. If decoherence merely
reduced the quantum prediction to the classical one this would
precipitate trouble because true singularities would exist even
in finite systems (N �= ∞). Caustics therefore represent a
particularly stern test of decoherence theory.

In this paper we compared and contrasted numerical solu-
tions of the master equation describing a continuously mea-
sured many-particle two-mode quantum system against those
of the classical (GPE) and quantum (Bose-Hubbard) theories
for the equivalent closed system. We found that continuous
weak measurements do not lead us precisely to the closed
classical result and instead measurement backaction intro-
duces noise that softens the singularities, thereby resolving
any potential paradox.

The results one obtains in such quantum-to-classical tran-
sitions will depend sensitively on the order in which the limits
N → ∞ and D → 0 are taken. At any finite N the results of
decoherence of a quantum system must be finite. However,
in the thermodynamic limit (N → ∞) singularities are al-
lowed, although without decoherence the quantum probability
distribution will oscillate infinitely fast. In the “old” way of
taking the classical limit these oscillations were presumed
averaged out by the finite resolution of a detector [106], but
with decoherence a range of classical limits exist by letting
N → ∞ while keeping D > 0. The degree to which caustics
are softened will depend on the magnitude of D. One way
to quantify this is through the Arnol’d scaling exponents: We
found that the Arnol’d exponent for the amplitude of cusp
points is reduced as D increases.
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Since caustics are formed during dynamics, the Arnol’d
exponent can be considered as a type of critical exponent for
nonequilibrium quantum dynamics analogous to the critical
exponents that describe equilibrium phase transitions. Both
situations fundamentally involve singularities, and in both
cases the exponents depend on the class of singularity. It is
noteworthy in this context that critical exponents for phase
transitions in open quantum systems can be modified from
their closed values. This has, for example, been predicted
[107–109] and observed [110] for the Dicke phase transition.
We propose that the modification of the Arnol’d exponent in
an open quantum system is a dynamical analog of this type of
effect.

Finally, we would like to point out that although we
have focused here on the scalar bosonic Josephson junc-
tion (two-mode Bose-Hubbard model), our Hamiltonian in
its spin form (3) is exactly that of the TFIM with infinite-
range interactions [111]. Thus, the physics described here
can also be realized in spin systems with long-range interac-
tions such as trapped ions [39–43] or Rydberg atoms [112]
where two internal states form the spin degrees of freedom.
Controllable decoherence can be achieved in these systems
through continuous measurement of the difference between
the number of spin-up and spin-down spins (which can be
read out using a global fluorescence measurement [42]), in an
exactly analogous fashion to the scheme discussed in Sec. IV.
Alternatively, in the case of crystals of ions in a Penning trap,
the spins are coupled to a bath of phonons which can act
as the decohering environment [43]. These phonons, which
play the role of photons in an analog of the Dicke model,
mediate the long-range interactions between spins and are
activated by pairs of lasers allowing for a high degree of
control.

Concerning future directions, we note that both the
infinite-range TFIM and the Dicke model undergo Z2

symmetry-breaking quantum phase transitions between para-
magnetic (normal) states and ferromagnetic (superradiant)
states [111,113,114]. However, there is a difference: The
Dicke model is chaotic (i.e., in the classical limit the dynamics
are chaotic) in the superradiant phase whereas the infinite-
range TFIM is integrable and hence has regular dynamics
in both phases [115–117]. An interesting question concerns
the fate of caustics in the chaotic phase: Structural stability
guarantees they must survive if the chaos is weak (this is
essentially the famous Kolmogorov-Arnol’d-Moser theorem,
which says that most of the tori in phase space, which
characterize integrable systems, survive in the presence of
small nonintegrable perturbations [118]), but strong chaos
must eventually disrupt the whorl structures in phase space
(Fig. 5 in Appendix A) so thoroughly that the caustics should
melt away, possibly evolving into scars [119].
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FIG. 5. Dynamics in classical phase space (φ, z) obtained by
numerically solving Josephson’s equations as given in Eq. (1) with
� = 25 and �E = 0. Each panel is for a different elapsed time
τ = {0, 0.1, 0.5, 20} and is made up of 1001 points corresponding
to different initial conditions. As explained in Appendix A, the
dynamics cause the initial distribution to wind up into a whorl, the
stationary points of which give rise to the successive caustics seen
in Fig. 1(a). Projecting onto the z axis gives the classical probability
distribution given by the green solid line in Fig. 2(a). At long times
the phase-space distribution is spread ergodically (but nonuniformly)
over phase space as discussed in Ref. [85].

APPENDIX A: DYNAMICS IN CLASSICAL PHASE SPACE

The Josephson equations of motion given in Eq. (1) corre-
spond to those of a classical pendulum of variable length, i.e.,
a length which depends on the angular momentum represented
by z through the square root factor

√
1 − z2 [31]. Apart

from the oscillatory and rotational motion that is present
in the standard rigid pendulum, such a nonrigid pendulum
can also sustain a periodic motion about its inverted posi-
tion known as π oscillations [32]. However, when � > 1
as here, the π oscillations disappear [67]. Furthermore, the
initial conditions we use in this paper, namely, z = 0 and φ

drawn uniformly from the range {0, . . . , 2π}, do not excite
the rotational modes. We are therefore exclusively exciting
the standard oscillatory modes (known as plasma oscillations
in the Josephson-junction literature) which appear at low
energies as ellipses in phase space.

The larger the initial value of φ (i.e., the larger the initial
value of the energy), the greater the period of the pendulum.
This basic feature of the motion of a pendulum generates a
flow in phase space that leads to whorls as shown in Fig. 5.
Each panel in this figure is made up of 1001 points, each
point being a pendulum with a different initial value of φ.
In Figs. 5(a)–5(c) the points are so dense they form what
appears to be a solid curve and only at longer times do
the individual points become evident. In particular, Fig. 5(a)
shows the ensemble of initial conditions at τ = 0 which give
a straight line along z = 0 and Fig. 5(b) shows a short time
later, τ = 0.1, where the line has evolved into a curve. By the
time τ = 0.5, shown in Fig. 5(c), the higher-frequency motion
of the low-energy pendulums near the origin of phase space
relative to the lower-frequency motion of the higher-energy
pendulums further out causes the curve to evolve into a whorl
[85]. The stationary points of this whorl as a function of φ
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FIG. 6. Classical trajectories with the same parameters as in
Fig. 1, except with �E = 1. Having a finite tilt bias knocks the cusps
off axis, but due to their structural stability in two dimensions they
remain as cusps.

give rise to caustics in the z variable and vice versa, as can be
seen by projecting the phase-space distribution onto either the
z or φ axis, respectively. As time evolves further, the curve
continues to wind up, generating more and more caustics.
By the time τ = 20, shown in Fig. 5(d), the different points
are spread out over the energetically allowed region of phase
space which is bounded by the separatrix E = EJ . In fact, the
motion is ergodic because in one-dimensional systems such as
this the dynamics at each value of the energy explores the en-
tire available energy surface (which corresponds to an ellipse
at low energy but is shaped like an eye near the separatrix).
Using this insight, an expression for the phase-space density
at long times can be derived as shown in Ref. [85].

APPENDIX B: STRUCTURAL STABILITY OF
CATASTROPHES: STABILITY TO CHANGES IN
HAMILTONIAN PARAMETERS AND INITIAL

CONDITIONS

We evolve the Josephson equations using a tilt term with
the fiducial value �E = 1. Using the same parameters as in
Fig. 1, the tilt bias knocks the cusps off of the z = 0 axis as can
be seen in Fig. 6. However, caustics still form and retain their
qualitative properties, but with their cusps oscillating between
z = 0 and z = −0.2.

Next we examine the effect of taking the initial state in the
second-quantized formulation to be a Gaussian superposition
of states rather than a single Fock state

cz = 1

Z
e−z2N2/8σ 2

, (B1)

=1/2
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FIG. 7. Stability of a quantum catastrophe to varying the width
of the initial state in Fock space. Evolution of the 100-particle system
with � = 25, in the initial state given by Eq. (B1). (a) With the
initial width σ = 1/2, the behavior is quite similar to the z = 0 initial
condition case. (b) Increasing the initial width to σ = 16 again yields
the catastrophe structures, which now begin at t = 0.5π/ωpl.

where

Z =
√∑

z

c2
z . (B2)

These initial conditions are then evolved using the
Schrödinger equation with the Hamiltonian (3) exactly as in
the case of the single Fock state. For values of σ up to 1/2,
the behavior is nearly identical to starting in the z = 0 state
[see Fig. 7(a)]. Since these initial conditions are qualitatively
similar to |0〉, this further verifies the stability prediction of
catastrophe theory.

Large σ values correspond to starting in a state with
maximal uncertainty in z but minimal uncertainty in φ, and the
initial cusp moves to a later time t > 0, as seen in Fig. 7(b),
but still occurs. We note that the pixelation in Fig. 7 is not
a resolution limit but rather the result of z being quantized.
It is this very quantization that corrects the classical results
through a quantized Airy function.

APPENDIX C: FORM OF THE MASTER EQUATION

We here show that Eq. (6) is in Kossakowski-Lindblad
form. This is the most general form that ensures the positivity
of the reduced density matrix ρ̂S at all times, where

ρ̂S = TrE [ρ̂SE (t )], (C1)

and S, E , and SE denote the system, environment, and com-
posite system, respectively [3]. We rewrite the master equation
in this general form by defining the Lindblad superoperator L,

Lρ̂ = L̂ρ̂L̂† − 1
2 (ρ̂L̂†L̂ + L̂†L̂ρ̂ ). (C2)

With

L̂ = L̂† ≡
√

2D�/NĴz (C3)
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FIG. 8. The rms of the difference between the classical probabil-
ity distribution [Fig. 2(a)] and the quantum distribution for varying
decoherence strength and number of particles for � = 25 and time
tωpl = 1.5π . The rms is calculated for various ranges of z, all of
which show the same trends. Since the inside of a caustic is well stud-
ied by catastrophe theory [69], we use ranges between the caustic at
z = −0.5 and the three locations z = −0.45 (blue circles), z = −0.4
(red squares), and z = −0.3 (green triangles), as well as the range
−1 � z � 1 (cyan stars). (a) Here N = 400. For all ranges of z, the
difference between the classical probability and the probability with
decoherence increases linearly with D. The fits are as follows: −0.5
to −0.45 has a rms of 0.0035D + 0.021, −0.5 to −0.4 has a rms of
0.0027D + 0.016, −0.5 to −0.3 has a rms of 0.0019D + 0.011, and
−1 to 1 has a rms of 0.0011D + 0.0054. (b) Here D = 0.1. For all
ranges of z, the difference between the classical probability and the
probability with decoherence decreases as a power law in N . The fits
are as follows: −0.5 to −0.45 has a rms of 0.22N−0.39, −0.5 to −0.4
has a rms of 0.24N−0.45, −0.5 to −0.3 has a rms of 0.23N−0.50, and
−1 to 1 has a rms of 0.13N−0.53. All of the above trends are conserved
while varying the value of t .

and the reduced Hamiltonian

˜̂H ≡ −Ĵx + �

N
Ĵ2

z , (C4)

we see that the promised equation

˙̂ρ = −i[ ˜̂H, ρ̂] − Lρ̂ (C5)

is equivalent to our master equation (6).

APPENDIX D: QUANTIFYING THE RETURN TO
CLASSICALITY

Here we investigate further the effects of varying deco-
herence strength D and particle number N on obtaining the
classical limit from the system with decoherence. We use the
root-mean-square (rms) difference between the classical and
quantum probability distributions to measure the return to
classicality, ensuring that our measurement is not obscured
by an averaging effect. Figure 8 plots this quantity versus
D and N for various ranges in z. Three of the ranges focus
on the inside edge of the caustic and the fourth looks at the
entire range −1 � z � 1. We find that the rms value increases
linearly with D and decreases as a power law in N , the same
trend as the widths of the peaks in Fig. 3. The trend is seen not
only on the inside edge of the caustic, but also across the entire
range −1 � z � 1. We see again that increasing decoherence
slowly pushes the system away from the classical distribution
and that increasing the number of particles while decoherence
is turned on rapidly pushes the system toward classicality.

APPENDIX E: STEADY-STATE DERIVATION

The master equation can be expressed in the number-
difference basis as

d ρq,z

d τ
= i

N�

4
ρq,z(z2 − q2) − i

N

4

[
ρq,z+1

√(
1 + z + 2

N

)
(1 − z) + ρq,z−1

√(
1 − z + 2

N

)
(1 + z)

−ρq+1,z

√(
1 + q + 2

N

)
(1 − q) − ρq−1,z

√(
1 − q + 2

N

)
(1 + q)

]
− D

N�

4
ρq,z(q − z)2. (E1)

Choosing, e.g., z = q − 1 yields

ρ̇q,q−1 = i
N�

4
ρq,q−1(−2q + 1) − i

N

4

[
ρq,q

√
(1 + q)

(
1 − q + 2

N

)
+ ρq,q−2

√(
1 − q + 4

N

)(
1 + q − 2

N

)

−ρq+1,q−1

√(
1 + q + 2

N

)
(1 − q) − ρq−1,q−1

√(
1 − q + 2

N

)
(1 + q)

]
− D

N�

4
ρq,q−1. (E2)

By inspection of (E1) with this case, the off-diagonal terms should decay to zero exponentially with increasing τ . Setting the
time derivative to zero and retaining only the diagonal elements of ρ yields

ρq,q = ρq−1,q−1, (E3)
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and so

ρsteady q,z = δq,z

N + 1
, (E4)

where we have employed the normalization condition Tr[ρ] = 1.
Alternatively, one can observe that 〈q|[Jz, [Jz, ρ]]|z〉 = (Jz q,q − Jz z,z )2ρq,z is only identically zero when ρq,z = 0 for all q �= z,

ensuring that the steady state is diagonal in the Fock basis. Elementary commutator algebra shows that

〈q|[H, ρ]|z〉 =
∑

j

Hq, jρ j,z − ρq, jHj,z = Hq,z(ρz,z − ρq,q ) (E5)

for ρ being diagonal. This commutator is only identically zero when ρq,q = ρz,z, which is the steady state derived above.
Reference [105] found the same steady state for the N = 2 reduced density matrix.

APPENDIX F: DERIVATION OF THE FOKKER-PLANCK EQUATION

Here we derive a Fokker-Planck equation from the master equation (6) using the P representation following Breuer and
Pettrucione [120]. The authors of Ref. [61] did a calculation for a similar system using the related Wigner function method, but
for a slightly different measurement scheme. We define the probability density function P(α, α∗, β, β∗; t ) by

ρ̂(t ) =
∫

d2α d2β P(α, α∗, β, β∗; t )|α〉〈α||β〉〈β| (F1)

for coherent states

|α〉 = exp(αâ†
L − α∗âL )|0〉 (F2)

and

|β〉 = exp(βâ†
R − β∗âR)|0〉. (F3)

These can be substituted into Eq. (6) using the correspondences

âLρ̂ ↔ αP, â†
Lρ̂ ↔ (α∗ − ∂α )P,

ρ̂âL ↔ (α − ∂α∗ )P, ρ̂â†
L ↔ α∗P,

(F4)
âRρ̂ ↔ βP, â†

Rρ̂ ↔ (β∗ − ∂β )P,

ρ̂âR ↔ (β − ∂β∗ )P, ρ̂â†
R ↔ β∗P

to yield

dP

dτ
=

(
i

2
(α∗∂β∗ − α∂β + β∗∂α∗ − β∂α ) − i

�

4N

[ − 2(αα∗ − ββ∗)(α∂α − α∗∂α∗ + β∗∂β∗ − β∂β )

+ α∂α − α∗∂α∗ + β∂β − β∗∂β∗α2∂2
α − α∗2∂2

α∗ + β2∂2
β − β∗2∂2

β∗ + α∂αβ∂β − α∗∂α∗β∗∂β∗]
+ D�

4N

{
−1

2
[(α∗∂α∗ − α∂α )2 + (β∗∂β∗ − β∂β )2] + (α∗∂α∗ − α∂α )(β∗∂β∗ − β∂β )

})
P. (F5)

Next we transform to the real variables z and φ,

α ≡
√

N

2
(1 − z) exp

(
− iφ

2

)
, β ≡

√
N

2
(1 + z) exp

(
iφ

2

)
, (F6)

as per Ref. [61]. We compute

∂α = 2

α
[(z − 1)∂z + i∂φ], ∂β = 2

β
[(z + 1)∂z − i∂φ], (F7)

noting that (∂α )∗ = ∂α∗ , etc. We substitute into Eq. (F5) to yield

∂P

∂τ
=

[
− 4

√
1 − z2 sin(φ)∂z + 4

z√
1 − z2

cos(φ)∂φ + 4�z∂φ + 8
D�

N
∂2
φ

]
P

= 4

[
−

(
∂h

∂φ

)
∂z +

(
∂h

∂z

)
∂φ + 2

D�

N
∂2
φ

]
P (F8)

for

h = �z2

2
−

√
1 − z2 cos φ. (F9)
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