PHYSICAL REVIEW A 100, 063623 (2019)

Mass-imbalance-induced structures of binary atomic mixtures in box potentials
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We consider the ground states of binary atomic boson-boson and fermion-fermion mixtures confined in
one-dimensional box potentials by simulating the systems using few-body models with §-function interactions
and many-body models with density-density interactions. For boson-boson mixtures with strong interspecies
repulsion, both models show sandwiched structures in the presence of mass imbalance but not in the equal-mass
case. The structural difference between equal-mass and mass-imbalanced systems is due to the minimization of
the interaction energy and the kinetic energies from the density distortion at the hard walls and at the phase-
separation interface. The mass imbalance adjusts the kinetic energies and causes the lighter species to avoid
the hard walls. For fermion-fermion mixtures, few-body simulations show mass-imbalance-induced structural
changes in the strong-repulsion regime, while many-body simulations show two-chunk phase separation due to
the strong bulk kinetic energy. For equal-mass mixtures with strong interspecies repulsion, the few-body and
many-body models predict different structures because of the different treatments of kinetic and interaction

energies.
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I. INTRODUCTION

Ultracold atoms trapped in optical potentials have been an
important system for studying many-body quantum physics
such as Bose-Einstein condensation (BEC) and superfluidity
[1-4]. However, conventional harmonic traps cause inhomo-
geneous density profiles and complicate comparisons between
theories and experiments. For instance, BEC may emerge
at the trap center while the normal phase still occupies the
edge. To construct theories for harmonically trapped gases,
one may use the local density approximation [2,3] to map out
the profiles of physical quantities before comparing the results
to experiments.

Realizations of box potentials for ultracold atoms [5—10]
have brought the possibility of measuring homogeneous bulk
properties directly. The introduction of hard-wall potentials
from the laser sheets for generating the box potential im-
poses open boundary conditions. On the other hand, one may
approximate homogeneous systems with periodic boundary
conditions by trapping ultracold atoms in ring-shaped poten-
tials [11-15]. One important difference between open and
periodic boundary conditions is the kinetic energy caused by
the vanishing of the wavefunction at the hard walls.

Mixtures of ultracold atoms in distinct internal states or
from different species exhibit interesting structures and ther-
modynamic properties [2,3]. When a binary atomic mixture
has strong interspecies repulsion, the two components tend
to separate from each other and form phase separation as
demonstrated in Ref. [16]. In a phase-separation structure,
the interface between the two species also creates additional
kinetic energy because the density profile changes drastically,
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which may be viewed as the surface tension of the interface
[17,18].

Here we focus on binary mixtures and label the two species
as 1 and 2. When the two species phase separate, a compe-
tition between the energy increase due to the distortion of
wavefunctions near the hard walls and at the phase-separation
interface can lead to different structures of the mixture. Since
the kinetic energy is inversely proportional to the mass, we
compare the structures with and without mass imbalance in
the strong-repulsion regime. For example, if the distortion of
species 2 at the hard wall leads to a substantial kinetic energy
increase compared to the interfacial energy between species 1
and 2, the system will form a sandwich structure with species
2 away from both hard walls. We show that the lighter species
tend to avoid the hard walls. In contrast, equal-mass mixtures
tend to remain miscible or separate into two chunks depending
on how the interactions are modeled.

There have been theoretical studies on confinement ef-
fects [19-22], including hard-wall potentials [23], and on
mass effects [24-31] on the structures of atomic mixtures.
In a recent review [32], a broad class of few-body sys-
tems in harmonic traps was covered, including the mass-
imbalanced systems discussed in Refs. [33-38]. However,
mass-imbalance-induced structural changes due to hard-wall
potentials have not been systematically investigated. Studies
on binary fermion mixtures have shown that repulsive inter-
actions are not the only factor determining phase separation.
Other factors such as population imbalance [39], mass imbal-
ance [25-29], and additional p-wave interaction [27] also af-
fect the structures. It has been proposed that phase separation
of fermion mixtures in the thermodynamic limit driven by a
large mass imbalance is possible in all dimensions, even in
the weakly interacting regime [26]. Moreover, there are recent
experiments on various atomic mixtures [40—43]. We mention
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that the physics of atomic mixtures of fermions with strong
repulsion is complex due to possible Stoner instability [44]
and the formation of bound states [45], but here we consider
a simplified scenario where the fermionic mixtures exhibit
phase separation in the strong-repulsion regime.

In ultracold atoms, one major difference between bosons
and fermions is the lack of intraspecies interactions between
identical fermions. This is because the Pauli exclusion prin-
ciple suppresses the dominant, two-body s-wave interaction
between identical fermions [2]. Another major difference
between bosonic and fermionic mixtures comes from the
Fermi pressure, which is related to the bulk kinetic energy and
depends on the fermion density nonlinearly [46]. The phase-
separation structure needs to settle the competition between
the interactions, kinetic energy due to the confinement, and
the Fermi pressure in the case of fermionic mixtures. Previous
studies of fermionic mixtures in harmonically trapped gases
[18] have shown good agreement with experiments [47]. Note
that the single-particle energies in a harmonic trap grow
linearly with the quantum number, but in a box trap they
scale with the square of the quantum number [48]. Thus, the
Fermi pressure is more significant in a box potential, making
it harder to reach spatial separation.

To investigate mass effects on the structures of atomic
mixtures in box potentials, we implement both the few-
body exact-diagonalization method [31,32,49] as well as
the many-body Gross-Pitaevskii and Hartree-Fock theories
[1,46,50]. We present the structures of boson-boson and
fermion-fermion mixtures with strong interspecies repulsion
confined in a one-dimensional (1D) box potential with two
hard walls in the x direction. Importantly, the wavefunctions
have to vanish at the hard walls. The systems are assumed
to be homogeneous in the y and z directions. Since thermal
excitations have been shown to be negligible in the box-
potential experiments at low temperatures [5-9], we focus
on the ground-state properties of the systems. In the strong-
repulsion limit, the ground state may be quasidegenerate [51]
and additional analyses will be needed.

The contact interactions between atoms are modeled
differently in the literature of few-body and many-body
theories: In the few-body approach, the interaction corre-
sponds to §-function terms following the Lieb-Liniger model
[20,49,52,53]. On the other hand, the § pseudopotential may
be approximated at mean-field level in many-body theories,
leading to the density-density terms in the many-body treat-
ments [1,2,46]. Bosons with attractive interactions at low
temperatures collapse as the interaction energy overcomes
the zero point motion induced by the confinement [54,55]
while two-component fermions with attractive interactions
may form Cooper pairs [2,3]. Here we only consider bosons
and fermions with repulsive interactions. In addition to the
mean-field and exact-diagonalization methods used here, the
multiconfigurational methods [56-58] were applied to cold-
atom systems recently.

The structures from the few-body and many-body cal-
culations agree in the case of boson-boson mixtures with
large mass imbalance and strong repulsion, where similar
sandwich structures are predicted. Otherwise, the structures
are different:

(1) For equal-mass boson-boson or fermion-fermion mix-
tures in the strong-repulsion regime, the few-body calculation
predicts a miscible phase with internal correlations showing
the tendency towards phase separation while the many-body
calculation predicts phase separation into two chunks.

(2) For fermion-fermion mixtures with large mass imbal-
ance and strong interspecies repulsion, the many-body model
predicts the two species separate into two chunks while the
few-body model predicts a three-chunk sandwich structure.

By comparing the structures with and without mass imbal-
ance, we found mass-imbalance-induced structural changes
when comparing the equal-mass and highly mass-imbalanced
cases: (1) the few-body calculations of bosonic mixtures pre-
dict a change from a miscible phase to a sandwich structure,
(2) the many-body calculations of bosonic mixtures predict
a change from two-chunk phase separation to a sandwich
structure, and (3) the few-body calculations of fermionic
mixtures predict a change from a miscible phase to a sand-
wich structure. On the other hand, the many-body calculation
predicts a two-chunk phase-separation structure of fermionic
mixtures that is insensitive to mass imbalance because of the
strong bulk kinetic energy in the many-body system.

The rest of the paper is organized as follows. Section II
presents the structures of boson-boson mixtures in a 1D
box potential from few-body and many-body theories. Mass-
imbalance-induced structural changes are found in both cases.
Section IIT presents the results of fermion-fermion mixtures
in a 1D box potential from few-body and many-body the-
ories. Only the few-body results predict a mass-imbalance-
induced structural change. Section IV summarizes some im-
plications for experiments. Section V concludes our work.
The Appendix summarizes some details of the few-body
calculations.

II. BOSON-BOSON MIXTURES IN A BOX POTENTIAL

A. Few-body theory and result

Here we present our investigation of a few-body boson-
boson mixture of equal number of particles Ny = N, = N in
a 1D box potential with hard walls at x = 0, L. The spatial
separation of a fermion-fermion mixture in a box potential
was recently studied by few-body calculations [49]. The
mechanism of the phase separation works in principle for
different statistics, including the bosonic mixtures studied
here.

The contact interaction in the few-body calculation is
modeled by a §-function pseudopotential similar to the Lieb-
Liniger model [52,53]. We assume the intraspecies interac-
tions are negligible compared to the interspecies interactions.
Although including the intraspecies interactions in our study
only leads to quantitative differences, richer physics may
happen when the interactions are in the ultrastrong regime
[51,59,60]. The boson-boson Hamiltonian of the system stud-
ied is given by

2 L
=>" /O dx ¥l () H, ¥, (x)
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L
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where the single-particle Hamiltonians contain only the ki-
netic part:

n* 92
2m, 9x%
The integrations are over the whole system of length L,
which sets the length scale. The effective one-dimensional
interspecies interaction g, can be obtained from the three-
dimensional scattering length by integrating out two dimen-
sions [61]. The field operator W, (x) annihilates a boson of
species « and mass m, at position x and obeys the stan-
dard bosonic commutation relation: [W] (x), Wg(x')] = §(x —
x")84p. The operators of different species commute. For con-
venience we denote the mass ratio by pu = my/m;.

Hy = — 2

1. Method

To obtain the ground state and to study its properties, we
expand the field operators in the single-particle basis ¢,;(x) of
a box potential for a given component o:

Vo) =) Gui(x)bai 3)
Then the Hamiltonian reads

2
7:[ = Z Z EaiI;LiBai + 812 Z quleLB;ki;Zvl;luv “4)
a=1 i uvkl
where E,; is the ith single-particle energy of species « and the
interaction is proportional with g, to the term that is defined
as

L
Uoir = /0 dx1; ()3 ()P0 ()1 (X). ®)

Here, due to the bosonic enhancement, g;, = 1 corresponds to
the regime where the interaction is comparable to the kinetic
energy.

The sum in Eq. (4) contains an infinite number of terms.
However, to tackle the problem numerically one should limit
the size of the Hilbert space, for example, by setting a cutoff
on the number of single-particle states. The size of the Hilbert
space grows rapidly, and it contains the states of different
orders of single-particle energies. To reduce the size of the
Hilbert space, we include all possible states up to a certain en-
ergy cutoff Epax [62]. We show the size of the Hilbert space
for binary boson-boson (fermion-fermion) mixtures in Table I
(Table IT). The complexity grows exponentially with the num-
ber of particles and single-particle eigenstates, setting a limita-
tion of the few-body calculations. The convergence of the few-
body calculations can be checked in many complementary

TABLE I. Size of the Hilbert space for N bosons of each type
and k single-particle orbitals.

k N=3 N=4 N=5 N=6

10 48 400 511225 4 008 004 25 050 025
11 81 796 1002 001 9018 009 64 128 064
12 132 496 1 863 225 19 079 424 153 165 376
13 207 025 3312400 38 291 344 344 622 096
14 313 600 5 664 400 73410 624 736 145 424

TABLE II. Size of the Hilbert space for N fermions of each type
and k single-particle orbitals.

k N=3 N =4 N=5 N=6
10 14 400 44 100 63 504 44 100
11 27225 108 900 213 444 213 444
12 48 400 245 025 627264 853 776
13 81796 511225 1656 369 2 944 656
14 132 496 1002 001 4008 004 9018 009

ways, such as overlap between wave functions or two-body
correlations [63,64]. In our simulations, we have checked that
the single-particle densities do not change significantly as the
many-body cutoff in energy is varied (see the Appendix).
The satisfaction of this condition is highly dependent on the
number of particles, statistics, and interaction strength, and it
should be adjusted individually for every set of parameters.

Subsequently, we perform exact diagonalization by using
the Arnoldi method for sparse matrices [65], which gives
access to the ground state and its energy. The wavefunction
is then used to obtain the observables of interest. The single-
particle density p,(x) for a given species « is defined for the
ground state |Gy) of a system as

() = (Go| W] (X)W, (x)|Gy). (6)

2. Equal-mass mixture

The single-particle density profile for an equal-mass mix-
ture of N = 5 particles of each type is shown in the left-hand
panel of Fig. 1. Due to the symmetry between the two species
in the Hamiltonian, the equal-mass case does not distinguish
between the species and the two density profiles coincide
with each other. From a practical point of view, the result
shown in Fig. 1 is the expectation value averaged over many
measurements. In reality, the measurement of the system from
shot to shot may show deviations. Moreover, our simplified
model does not take into account complications from system-
environment coupling or imbalance between the numbers of
particles that may serve as symmetry-breaking mechanisms.

The perfect match of the single-particle densities of the
two species does not reveal information about the correlations
between the bosons. However, there should be correlations
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FIG. 1. Single-particle density profiles of a system of N =5
bosons of each type. Here the interspecies repulsion strength is g, =
1 in the strongly interacting regime. The left- and right-hand panels
show the equal-mass case with ;. = 1 and the $"Rb-Li mixture case
(u = my/my = 87/7), respectively.
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FIG. 2. Two-particle density correlations C,p defined in Eq. (7)
for binary bosonic mixtures with N = 5 particles of each type. Here
X1, X, label the positions on the x axis of the box. The interspecies
repulsion is g, = 1 in the strong-repulsion regime. The left-hand
(right-hand) column shows the equal-mass case with mass ratio u =
1 ¢’Rb-"Li mixture with u = 87/7).

between bosons of the same species due to the Bose distribu-
tion and between different species due to the interspecies re-
pulsion. To analyze the correlations, we study the interspecies
and intraspecies two-body correlations defined on the ground
state |Gy) as (o, B =1, 2)

Cap(x1, 2) = (Gol W (1) ¥ § (2) Wp (x2) W (x1)Go). (7)

Note that due to the symmetry between species 1 and 2 in the
equal-mass case, Ci1(x1, x2) = Cpn(x1, X2).

As shown in the left-hand column of Fig. 2, the two-body
correlations reveal the ferromagnetic structure of the system,
where the correlations congregate into two chunks. The cor-
relations imply that when a measurement of the densities is
performed on the system, one species will tend to occupy
the left part of the box while the other species will occupy
the right. The average over many measurements, however,
reveals the same averaged density profiles for both species.
The ferromagnetic behavior is consistent with the many-body
result that is shown later.

3. Mass-imbalanced mixture

On the right-hand panel of Fig. 1, the single-particle
densities are presented for a 8’Rb-’Li mixture with mass
ratio . = 87/7. In this mixture, the symmetry between the

two species is broken by the mass imbalance. According
to Eq. (2), the single-particle energies depend explicitly on
the mass; namely, the excitation of the heavy particles costs
less energy than the excitation of the light particles. The
correlations shown in the right-hand column of Fig. 2 corrob-
orate the phase-separation structure. We have checked, similar
to Refs. [66,67], how many natural orbitals are needed to
properly describe the system. Explicitly, we diagonalized the
single-particle density matrix for each component and com-
pared the eigenvalues corresponding to the natural orbitals.
We found the light component in the central region can be
well described by just one natural orbital while the heavy
component on the two sides needs two natural orbitals.

The mass imbalance introduces a mechanism that low-
ers significantly the interspecies interaction energy by phase
separation. Although the local kinetic energy increases in
each chunk, different species avoid each other and reduce
the interaction energy. Moreover, the density of the light
species vanishes next to the hard walls while the heavy species
reside there. The sandwich structure further lowers the kinetic
energies due to distortion of the wavefunctions.

We note that phase separation often occurs when an asym-
metry is introduced. For example, mass imbalance differenti-
ates the two species and changes the single-particle energies in
a box potential [49] or harmonic trap [31]. Moreover, different
intraspecies interactions g;; # go> may also be used [67].

B. Many-body theory and result

Here we use the Gross-Pitaevskii (GP) theory of bosonic
condensates [1,2] to study the ground-state structures of
boson-boson mixtures in a 1D box potential. The GP theory
was mentioned in Ref. [16], which showed experimental
data of harmonically trapped two-component bosons in the
miscible phase and phase separation. Thus, we focus on the
weak- and intermediate-interaction regimes where the GP
theory works reasonably well.

1. Imaginary-time formalism

Here we consider a mixture confined by two hard walls at
x = 0, L modeled by the potential V,(x), and the system is
uniform in the other directions. The Gross-Pitaevskii energy
functional of a boson-boson mixture is [2]

L hZ 5 5 h2 5
E= | dx|—I0¥1l" +Vi)IYal” + —10:¥2]
0 Zm] 21’)12

1 1
+ Va0l + EgnN%wl I+ §§22N22|W2|4

+§|2N1N2|1ﬂ1|2|1/f2|2:|- (8)

The condensate wavefunctions are normalized by

fOL dx|y,|> =1, where o = 1,2 denotes components. The
mass m, and number of particles, N,, correspond to species
o. The coupling constants g1, 822, and g1, = g, are related
to the two-body s-wave scattering lengths a;;, ax, and a;, by

_ 2 ha
Bup = —2. ©)
myp
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mym . .
Here mys = — is the reduced mass of the pair of atoms
B my+mg

and «, B = 1, 2 denote the species. We focus on the repulsive
case with g,g > 0.

The minimization of the energy functional, 6E/§vy) =
0 for ¢ =1,2, leads to the time-independent Gross-
Pitaevskii equation [1]. To find the minimal-energy config-
uration starting from a given initial configuration, we im-
plement the imaginary-time formalism [2,46] by searching
for the solution to the imaginary-time evolution equations
—0v, /0t = 8E /8y in the T — oo limit with the normal-
ization [ |¥o|?dx = 1 imposed at each imaginary-time in-
crement. Here t = it is the imaginary time. The mechanism
behind the imaginary time evolution is that an arbitrary initial
state can be decomposed by the many-body energy eigenstates
by W? = Zn Y,exp(—pBE,). Here B = 1/(kgT). As T — 0,
the solution of the imaginary-time evolution in the 7 — oo
limit projects out the many-body ground state because the
excited-state contributions decay away due to the normaliza-
tion condition.

Therefore, we search for the solutions to the coupled
imaginary-time evolution equations in the x direction:

3 s
_hﬂ = — 32y + Vi + 80N | [
ot 2m,
+ 812V NiN: Y |21,
3 n*
A Vs + B Na WP
ot 2my
+ 812/ NiN2 | Y 22 (10)

The boundary conditions are ¥, =0atx =0, L fora = 1, 2.
We choose the units so that i = 2m; = 1. The conservation
of particle numbers imposes the following normalization con-
dition of the density: p, = N, |4 |?. The total particle number
of species & = 1, 2 can then be obtained from

L
Na:/ dxpy. (1
0

The GP equation provides an effective description of the
macroscopic wavefunction of the BEC. It works well at low
temperatures in the weakly interacting regime [1,2]. For a
homogeneous, equal-mass boson-boson mixture with repul-
sive inter- and intraspecies interactions in the thermodynamic
limit, the stability condition is summarized in Refs. [2,68,69].
The system exhibits phase separation when g;;82 < g%z.
Note that if any intraspecies interaction vanishes, g,, = 0,
the miscible phase is unstable against any finite interspecies
interaction. Here we study how the mass imbalance affects
the structure in the phase-separation regime when the sys-
tem is confined in a box potential. There have been other
methods for obtaining density profiles of bosons or bosonic
mixtures [70-73], but here we use the GP equation because
it reasonably describes the bosonic mixture experiment of
Ref. [16].

We use the split-step Crank-Nicolson method to solve
the coupled imaginary-time evolution equations [74,75]. The
spatial and temporal increments are calibrated by checking
against the exact solutions of nonlinear Schrodinger equations
[76]. In the following, we consider the structures of boson-

pyLb —— py-L ——
pol —— po.L m—
200 300
200 /\
= 100 =+
& <100+ /
/'/ \\

0 02 04 06 08 1 0 02 04 06 08 1
x/L x/L

(a) (b)

FIG. 3. Density profiles of equal-mass boson-boson mixtures in

a box potential from the imaginary-time GP equations (10). (a) Mis-

cible phase with low interspecies repulsion: The two density profiles

coincide. g;; = 0.1, g»» = 0.1, and gj, = 0.1. (b) Phase separation

due to high interspecies repulsion. gy; = 0.1, g2, = 0.1, and g, =
8ij

0.3. Here N = 100 for each species and g;; = o

boson mixtures with and without mass imbalance. For the
mass-imbalanced case, we consider a mixture of ‘Li and
87Rb, but our methods apply to other bosonic mixtures as
well. We use the following parameters: At = 0.0001%/E for
the imaginary-time increment, Ey = /i>/(2m,L?) is the energy
unit, and Ny = N, = 100 for the particle number of each
species. By defining gy = 47 i*L/m,, we express the coupling
constants in terms of g,g = Zup/80. A 500-point grid is used
to discretize the space, and we have checked that the results
are insensitive to a further refinement of the grid.

2. Results

From the two-component GP equations for equal-mass
boson-boson mixtures, we found a miscible phase when the
repulsive interspecies interaction is weak. When the inter-
species repulsion in strong, phase separation emerges and the
two species congregate into two chunks. Figure 3 shows the
density profiles of typical structures of the equal-mass case.
Importantly, the phase separation into two chunks breaks the
left-right parity symmetry. We remark that, for the equal-
mass mixture, the GP equations (10) are symmetric between
the two components. With a perfect overlap of the initial
condition and trap potentials, the system does not enter
phase separation if there is no noise during the evolution.
The system may enter a fragmented state [77] due the the
symmetry between the two components. Imperfections in the
initial condition or numerical noise in the simulations are
enough to drive the system to phase separation in the strongly
repulsive regime. Moreover, experiments on equal-mass
bosonic mixtures in harmonic traps [16] have shown phase
separation.

One reason the few-body and many-body calculations pre-
dict different density profiles in the strong-repulsion regime
is as follows. The many-body wavefunction is a continuous
function in space. In the few-body calculations the interac-
tions are spikelike due to the § functions, so the wavefunc-
tions of the two species can interpenetrate without incur-
ring enormous interaction energy. In contrast, the interaction
energy of the many-body calculations integrates over the
continuous densities and imposes a penalty for overlapping
wavefunctions. As shown in Fig. 2, the few-body results
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A. Few-body fermion-fermion mixtures

We consider a two-component mixture of fermions with
a Hamiltonian similar to Eq. (1). However, the symmetry
conditions of the many-body wavefunctions are different in
order to satisfy the Bose-Einstein and Fermi-Dirac statis-
tics, respectively. Here, we decompose the field operator for
fermions as (¢ = 1, 2)

(12)

300 300 Do () =Y i (x) fai-
- 200 200 i
< 100 < 100 which leads to the following second-quantization
Hamiltonian:

0 / \
0 02 04 06 08 1
x/L x/L

(c) (d)

FIG. 4. Density profiles of boson-boson mixtures with mass ratio
my;/my = 7/87, showing (a, b) partial phase separation and (c, d)
full phase separation. Here N = 100 for each species and g;; =
g2 = 0.1 fixed: (a) gi» =0.01, (b) g1 =0.1, (c) gio = 1.0, and
(d) g2 = 20.

0
0 02 04 06 08 1

suggest ferromagnetic behavior similar to phase separation
in the correlation functions. Moreover, imperfections of the
initial state and numerical noise have been included in the
many-body calculation but not the few-body calculations. If
those parity-breaking mechanisms are included in the few-
body calculations, the system may also exhibit phase sep-
aration in the density profiles. Realistic interactions in ex-
periments may have a finite range, and the dependence of
the interaction energy on the wavefunctions may be more
complicated.

For boson-boson mixtures with different masses, we take
the mixture of "Li and 3’Rb, for example. The system exhibits
partial and full separation of the two species as the inter-
species interaction increases. Figures 4(a) and 4(b) show the
partial separation in the intermediate interaction regime while
Figs. 4(c) and 4(d) show the full separation in the strong-
interaction regime. There is an important difference between
the full phase-separation structures of the equal-mass and
the different-mass cases. For the mass-imbalanced case, the
system exhibits a sandwich structure. The lighter species does
not touch either of the hard walls. This is because the kinetic-
energy increase of the light species at the hard walls can lead
to higher total energy, so the lowest-energy configuration has
the heavier species locating at both hard walls. In contrast,
there is no such advantage in the equal-mass case, and the
two species minimize the number of interfaces between them
by separating into only two chunks. As a consequence of the
mass imbalance, the phase-separation structure can break the
parity symmetry by forming two chunks in the equal-mass
case, or the system can keep the parity symmetry in the
sandwich structure when the mass imbalance is large.

There are theoretical frameworks for going beyond the GP
theory. For example, the auxiliary-field-based theory [78] or
the method with modified energy functionals [70] may be
employed to show higher-order correlation effects.

2
H=>"> Euifiifui+ g2 ) Uwaffifofi (13)

a=1 i uvkl

The fermions of the same kind do not interact with each
other because the Pauli exclusion principle suppresses the
two-body s-wave interactions between identical fermions. The
fermionic field operators anticommute: {CTDZ (x), <T>5(x’)} =
8(x — x")8p. After the anticommutation relation is properly
implemented, the method analogous to the one used for the
boson mixture can be utilized. To overcome the Fermi pres-
sure, the interaction-strength parameter has to be set bigger
than in the bosonic case: gj» = 50 to reach the strongly corre-
lated regime. Since the computation grows exponentially due
to the Hilbert space shown in Table II and the convergence of
our simulations, we present the results with Ny = N, = N =4
with controllable accuracy and manageable computation time.
Moreover, we have checked that the parity of the particle
number does not change the structures qualitatively.

1. Equal-mass system

For an equal-mass fermionic mixture, the single-particle
density profiles of the two species are exactly the same due
to the symmetry in the Hamiltonian. The density distributions
in real space minimizing the total energy are shown in the
left-hand panel of Fig. 5 for Ny = N, = 4. There are two
mechanisms causing the fermions to avoid each other, leading
to the density distributions of the two species. The first one
is the repulsion between different species that lowers the
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FIG. 5. Single-particle density profiles for binary fermionic mix-
tures with N = 4 particles of each type. The interspecies repulsion is
g12 = 50 in the strong-repulsion regime. The left-hand (right-hand)
panel shows the equal-mass case with mass ratio u = 1 (**K-Li
mixture with u = m,/m; = 40/6).
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right-hand columns show the equal-mass case with mass ratio u = 1
and a “K-SLi mixture with o = m,/m, = 40/6, respectively.

probability of finding two different fermions at the same point
in space. The other is the Pauli exclusion principle forbidding
identical fermions from occupying the same quantum state.
On the other hand, the §-function interactions allow the wave-
functions of the two species to interpenetrate. Therefore, the
density profiles show an overlap of the two species, but the
two-body correlations shown in the left-hand column of Fig. 6
exhibit strong anticorrelation in real space. Specifically, both
same-species and different-species correlation functions show
that the fermions are avoiding each other.

2. Mass-imbalanced system

The presence of the mass imbalance influences the single-
particle energy spectrum and makes the distortion of heavy-
particle wavefunctions more energetically favorable because
the single-particle kinetic energy is inversely proportional to
the mass. Since the wavefunctions are distorted at the hard
walls, the system will lower the total energy by placing the
heavy particles there. This implies that the system prefers
to make more complicated structures of the heavy particles
rather than the light particles.

Therefore, the mass-imbalanced fermionic mixture from
the few-body calculation exhibits phase separation, showing
that the heavy particles are pushed towards the walls and

the light particles stay at the center. The miscible structure
of the gas is then destroyed in the strong-repulsion regime.
Taking a mixture °Li-**K as an example, the density pro-
file from the few-body calculation is shown in the right-
hand panel of Fig. 5. A three-chunk sandwich structure is
observed.

Nevertheless, the mechanisms that lead to the anticorrela-
tion of fermions are still present, implying zero probability
of finding a pair of fermions at the same location. The phe-
nomenon can be seen as the vanishing two-body correlations
along the diagonals of the plots shown in Fig. 6, regardless
of mass imbalance. The tendency of fermions to avoid each
other is seen as the enhanced probability of finding fermions
in separate regions rather than at the same spot, which can
be observed in the plot of Cj, shown in Fig. 6. While Cj;
of the equal-mass case shows how the two species inter-
penetrate and form staggered correlations, Cj, for the mass-
imbalanced case is only finite at the interfaces of the sandwich
structure.

When compared to the equal-mass case, the light-particle
correlations are similar but they are confined in the cen-
tral region due to the sandwich structure. In contrast, the
heavy-particle correlations are significantly changed due to
the spatial separation and the distortion of the wavefunctions
at the two hard walls. In the presence of mass imbalance, the
phase-separation structure has the heavy particles confined
to two narrow regions near the hard walls. In systems with
N > 2, arranging the heavy particles in the two regions near
the walls gives rise to finite correlations of finding two heavy
fermions around the left or right corner, as seen in the plot of
C22 in Flg 6.

B. Many-body theory and result

Similar to the many-body approach to the bosonic mix-
tures, we model the interactions between fermions as density-
density contact interactions except there is virtually no in-
traspecies interaction between identical ultracold fermionic
atoms due to the Pauli exclusion principle. The second-
quantization Hamiltonian of a fermion-fermion mixture with
repulsive interactions in a 1D box is given by

L 2 R2 R
H-=| d 0Vel? + 212015 ). 14
. /0 o X 5totl +812,01/02) (14)

a=1

Here m,, is the mass of the «th species, and p, = 1&2 Y is the
density operator (o = 1, 2).

1. Equations for fermion-fermion mixtures

By using the Hartree-Fock approximation [46], we replace
the interaction term by the expectation values py, = (Dy)-
Assuming the hard-wall confinement is along the x direction,
we obtain the following eigenvalue equations for the two
species consistent with the stationary states of Eq. (14):

hZ 82
_Z_Hhﬁwl,n + 8o Vin = EvnVin,
hZ 82
2 32 V2n t BV = Exnan, 5)
2
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where E, , are the eigenvalues corresponding to the eigen-
states VY, ,, which are from the decomposition of v,. The
boundary conditions are v, , = 0 at x = 0, L. We choose m,
L, and 7> / (2mL?) as the units of mass, length, and energy,
respectively. In the ground state, fermions of species o = 1, 2
occupy the lowest N, levels of ¥, ,. As a consequence, p, =
S ™ |Yg.nl?. Thus, the densities satisfy

L
Na:/ dxpm (16)
0

o =1,2. We use Ny = N, = 100 in our illustrations.

For a given value of g = g12/80, we use an iteration
method similar to the one for solving the Bogoliubov—de
Gennes equation of superconductivity [79]. We start with a set
of trial density profiles and solve the coupled equations (15)
to obtain the eigenvalues and their normalized eigenvectors.
From the eigenvectors, we calculate the iterated densities p;
and p, and use them to solve the coupled equations (15)

again. The iteration converges if fOL | ,of“ — pjldx < € and

fOL lpy T — pyldx < € for the vth iteration. In our calculation,
we choose € =10~ and 10* grid points in x/L € [0, 1].
We have verified that further changing the tolerance or grid
size does not lead to qualitative change as long as the grid
number is much larger than the particle number; the latter
condition sets a limitation of our many-body calculations. We
remark that the mean-field, many-body treatment of fermions
overlooks the correlation effect, and the zero-range contact
interaction is not accurately incorporated. Moreover, Egs. (14)
and (15) assume continuous wavefunctions and smoothe out
possible local structures.

2. Results

Figure 7 shows the structures of fermion-fermion mixtures
from the Hartree-Fock theory. In the many-body calculation,
the Fermi pressure from the kinetic energy is a dominant
factor. The system tends to remain in the miscible phase
to minimize the kinetic energy until the repulsion is strong
enough to overpower the Fermi pressure.

For the equal-mass case shown in Figs. 7(a) and 7(b), the
system phase separates into two chunks when the interspecies
repulsion overpowers the bulk kinetic energy. The phase sepa-
ration is a consequence of the density-density interactions be-
cause the two species tend to occupy different spatial regions
to minimize the overlap of their densities. For the §-function
interaction used in few-body systems, the wavefunctions can
interpenetrate each other without incurring severe interaction-
energy penalty, and the left-hand panel of Fig. 5 shows no
spatial phase separation in the few-body case even in the
strong-repulsion regime. Since the density-density interaction
and the §-function interaction are idealized models of the
real interactions between atoms, experimental results may
depend on the details of the two-body scattering as well as the
density of the cloud. We remark that for bosonic or fermionic
mixtures, by reducing the particle numbers of the many-body
calculations to be below 10, the results start to show features
of the few-body results such as density modulations. However,
the density profiles are still different, showing the breakdown
of mean-field approximation in the few-body limit. The lack
of a full treatment of correlation effects in the Hartree-Fock
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FIG. 7. Density profiles of fermion-fermion mixtures in 1D box
potentials for (a, b) the case with equal mass, (c, d) for the case
with mass ratio m;/m, = 6/40, and (e, f) for the case with mass
ratio m; /m, = 6/86. The left-hand column [(a), (c), and (e)] shows
the miscible structures in the weak-repulsion regime, where the two
density profiles coincide. The right-hand column [(b), (d), and (f)]
shows the phase-separation structures in the strong-repulsion regime.
Here Ny = N, = 100 and the values of g, = g12/g0 are (a) 300,
(b) 5000, (c) 10, (d) 500, (e) 10, and (f) 500.

approximation limits the result to the competition of energies
due to the density profiles.

To test the mass-imbalance effect, we consider fermion
mixtures with larger mass ratios. The phase-separation struc-
tures of °Li-**K and °Li-3Rb mixtures from the many-body
calculations are shown in Figs. 7(d) and 7(f), respectively.
Due to the strong repulsive interactions countering the high
kinetic energy from the separation, the kinetic energies at the
boundary due to the distortion of the wavefunctions do not
play an important role. Thus, the system forms two chunks
in phase separation similar to the equal-mass case. This is
in contrast to the few-body case with §-function interactions,
where a sandwich structure is shown in the right-hand panel
of Fig. 5. For the few-body case, an intermediate mass ratio
(my/m; = 40/6) already leads to the sandwich structure. In
contrast, the bulk kinetic energy of a many-body system is
large in the phase-separation regime, so the mass-imbalance-
induced kinetic energy change at the boundary does not play
a significant role. Even with a large mass ratio of m,/m; =
86/6, no sandwich structure is observed in the many-body
calculation. We mention that (1) a further increase of the
interactions with a fixed mass ratio adds more bulk energy
to the system than the interfacial energies at the boundaries,
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so there is still no sandwich structure; and (2) it is possible
to introduce extremely large mass imbalance in the many-
body calculations to produce a sandwich structure, but the
parameters are inaccessible to cold-atom experiments due to
the limited atomic species.

The structures of fermion-fermion mixtures with tunable
repulsive interactions in a 1D box potential thus depend
on many factors, including how the atomic interactions are
modeled, the mass ratios, and how many particles are confined
in the box. Those factors are in principle tunable in experi-
ments, and the various structures may be realized with suitable
conditions. We mention in the ultrastrong-interaction regime,
few-body fermions in one dimension may be approximated
by spin chains [80,81] with the fermions forming a lattice
structure when the kinetic energy is a perturbation to the
interaction energy. However, if we consider 2N fermions with
equal population of the two species forming a lattice in a box
of length L, each fermion is confined to a region of the size
of L/(2N). The kinetic energy of the confinement is then of
the order of E; = i*N?/(2mL?) for each fermion. The total
kinetic energy increase is thus of the order of NE; oc N°.
Since the interaction energy scales as N2, one can see that
in a many-body system it may be energetically unfavorable to
form a spin chain. One has to caution whether the N — oo
or U — oo limit is taken first when discussing the systems
with extreme parameters. Here we focus on finite-number
systems in the intermediate-interaction regime. We also com-
ment that the many-body results of equal-mass boson-boson
or fermion-fermion mixtures in the strong-interaction regime
already exhibit phase-separation structures, unlike the few-
body results where the correlations, not the density profiles,
reveal the phase-separation structures. Therefore, the two-
particle correlation plots offer complementary information to
the few-body calculations but not the many-body calculations.

There are also methods beyond the few-body diago-
nalization and many-body Hartree-Fock approximation for
fermions. For example, the density-matrix renormalization
group method [82] allows accurate calculations of 1D systems
with intermediate size. Nonperturbative methods [83] may be
implemented to improve the many-body calculations in the
strongly interacting regime.

IV. EXPERIMENTAL IMPLICATIONS

The mass ratio of available atomic mixtures is not a con-
tinuously tunable parameter, and it is limited by the available
species in the periodic table. Moreover, the interspecies and
intraspecies interactions are not independently controllable in
cold-atom experiments because tuning the magnetic field will
adjust the values of the inter- and intraspecies two-body scat-
tering lengths [2]. However, the structures from the few-body
and many-body calculations with reasonable values of the
mass ratio and interaction strengths show that the structures
of atomic mixtures can be different with or without mass
imbalance due to the box potential. We remark that while
the structural difference in the box potential due to mass
imbalance is caused by local kinetic energy change at the hard
walls, the structural difference in harmonic traps is due to a
global competition of kinetic energy and potential energy. For

many-body equal-mass bosonic mixtures, noise and imper-
fection in experiments help break symmetry between the two
components and favor phase separation, similar to the case of
harmonically trapped bosonic mixtures [16].

The box potentials in Refs. [5—10] are three-dimensional
(3D) traps. If the argument based on the competition between
kinetic and interaction energies works for higher-dimensional
systems, the distortion of wavefunctions at the hard walls
leads to additional kinetic energy and may affect the struc-
tures of atomic mixtures in the presence of mass imbalance.
For an equal-mass bosonic mixture, a miscible phase with
strong internal correlations for the few-body case and a two-
chunk phase separation for the many-body case in the strong-
repulsion regime are expected. However, in the presence of
mass imbalance, the light species tends to avoid the hard walls
to lower the kinetic energy due to wavefunction distortion. In
a 3D box, a strong mass imbalance may lead to a core of the
light particles enclosed by the heavy particles to lower the
kinetic energy at the hard walls. Such a possibility has been
overlooked in analyses performed in the thermodynamic limit
where the boundary does not play a role [2,26,68].

While the few-body result of binary fermionic mixtures
with mass imbalance shows possible enclosure of the light
particles by the heavy ones, the dominating bulk kinetic
energies in the many-body case favors two-chunk phase sepa-
ration for reasonable range of mass imbalance. However, the
structures of fermionic mixtures are further complicated by
other instabilities [44,45,80,81], so the system may enter other
phases or cannot be stably trapped in the strongly interacting
regime.

Atomic clouds have been cooled down to the extent where
thermal excitations do not play a significant role [2,5-9]. If
thermal behavior is of interest, it is possible to incorporate
finite-temperature effects in many-body calculations using the
Bogoliubov—de Gennes method [2] or large-N expansion [84]
for bosons or including the Fermi distribution function in the
self-consistent equations for fermions [79]. The kinetic energy
increases with temperature and is expected to suppress the
regime where phase separation can be observed. However,
Ref. [31] shows phase separation at finite temperatures using
few-body calculations of fermions in a harmonic trap. As the
total kinetic energy increases with the particle number at finite
temperatures, the threshold for entering phase separation in
many-body systems will increase accordingly.

V. CONCLUSION

From the few-body calculations with §-function
interactions and many-body calculations with density-density
interactions, we have shown that mass imbalance can lead
to different structures of boson-boson mixtures in 1D box
potentials when compared to the equal-mass case. The
structural difference comes from the competition between
the interaction energy and kinetic energies due to the density
distortion at the hard walls and the phase-separation interface.
For fermion-fermion mixtures, different structures with
and without mass imbalance were found in the few-body
calculations in the strong-repulsion regime. For many-body
fermion mixtures to enter the phase-separation regime,
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FIG. 8. The single-particle density of a boson-boson mixture
with different many-body cutoffs: the equal-mass case (top), light
component (middle), and heavy component (bottom) of a S’Rb-"Li
mixture. The insets show the density difference from the density
profile with the maximal cutoff of each panel (Eyax = 194, 64, and
64 for the top, middle, and bottom panels, respectively).

however, the bulk kinetic energies increase due to the
reduced volume of each species in phase separation.
Therefore, many-body calculations of fermion mixtures
in the phase-separation regime show a two-chunk structure
within the reasonable range of mass imbalance. The few-body
and many-body calculations sometimes predict different
structures for bosonic or fermionic mixtures because of
the different models of the interactions. Depending on the
experimental conditions, one may check if the structures of
atomic mixtures resemble the many-body or few-body results.

Some related topics may be explored in the future:
While binary boson-fermion mixtures are also realizable in
cold atoms [85], their theoretical treatments are complicated
[50,86,87]. Nevertheless, their structures in box potentials
may be analyzed in a similar framework. Moreover, dynamics
of atomic mixtures across phase-separation transitions has
been studied [88-90]. The mass-imbalance effect may be
incorporated to enrich the physics.
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APPENDIX: NUMERICAL CONVERGENCE OF
FEW-BODY CALCULATIONS

We check the numerical convergence of the few-body
calculations by systematically varying the cutoff. If the ob-
servables do not change significantly, we assume that the
convergence has been achieved. In this paper we focus on
the phase separation in the single-particle densities; thus,
this is the observable that is checked for the convergence.
Here, we show how the results change with the many-body
energy cutoff for boson-boson and fermion-fermion mixtures
in Figs. 8 and 9, respectively. The chosen values are already
high enough for the densities to converge. The energy is
measured in units of the single-particle ground-state energy
of the lighter species, 7i*m2/(2m;L?).

It is worth noting that the cutoff for mass-imbalanced
systems is much smaller, due to the fact that the
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single-particle energy of a heavy particle is smaller than the
light one [see Eq. (2)]. Nevertheless, the dimensions of the
Hilbert spaces of equal-mass and mass-imbalanced mixtures
remain comparable. When the mass imbalance is large, there
are essentially two energy scales in the system. This explains
that the excitations among the heavy species are favored,

leading to a push of the heavy particles out to the boundaries.
From a technical point of view, the lighter species can be
accurately described with much fewer single-particle states
than the heavier species. Finally, the cutoff for the fermion-
fermion mixture is higher compared to the boson-boson case
due to the Pauli exclusion principle.
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