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Systematic effects in two-dimensional trapped matter-wave interferometers
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Trapped matter-wave interferometers (TMIs) present a platform for precision sensing within a compact
apparatus, extending coherence time by repeated traversal of a confining potential. However, imperfections
in this potential can introduce unwanted systematic effects, particularly when combined with errors in the
associated beam-splitter operations. This can affect both the interferometer phase and visibility, and can make
the performance more sensitive to other experimental imperfections. I examine the character and degree of these
systematic effects, in particular within the context of two-dimensional TMIs applicable for rotation sensing. I
show that current experimental control can enable these interferometers to operate in a regime robust against
experimental imperfections.
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I. INTRODUCTION

Matter-wave interferometry with ultracold atoms has
proven to be a powerful tool for precision sensing of numer-
ous physical quantities [1] such as gravitational acceleration
[2–4], the gravitational constant [5], rotations [6–9], and
various atomic properties [10–12]. It has also been used in
searches for new physics [13,14]. Many such experiments em-
body some version of the Ramsey method [15], where sensing
of the quantity of interest occurs during a “free-evolution”
time. In most matter-wave interferometers, this takes the form
of a period of “free flight,” where the wave packets are isolated
from external fields which could contribute to the measured
interferometer phase. This isolation, together with the precise
control of atom-light interactions, affords atom interferome-
ters their exquisite accuracy. However, imperfections such as
vibrations, velocity spread, and residual external fields can
still cause systematic effects [16,17].

By contrast, the free evolution in trapped matter-wave
interferometers (TMIs) occurs within a confining potential,
typically with either a toroidal [18–21] or harmonic [22–25]
geometry. In this paper, I will focus on the latter. The TMI
paradigm offers the benefit of an extended interaction time
in a compact apparatus as well as the ability to use charged
species—extremely challenging in conventional free flight in-
terferometers. TMIs also provide resilience to systematics: for
harmonic potentials, the accumulated phase has zero contribu-
tion from the confining potential and is insensitive to the initial
velocity of the wave packets. However, this demands that the
confining potential is well controlled [26]. The common-path
geometry also makes TMIs generally less sensitive to external
forces, e.g., from vibrations or external fields. This insensi-
tivity makes them ideally suited to rotation sensing through
Sagnac interferometry [27,28], an area of significant re-
cent interest [21,28–30]. Free-flight matter-wave interferom-
eters can provide precise rotation measurements [7,9,31,32],
but typically require large apparatuses with relatively low
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measurement bandwidth (recent experiments in free-flight
interferometers have made significant improvements in this
regard [33]). In this paper, I investigate the technical re-
quirements for effective operation of TMIs with harmonic
confinement, in particular examining the control of the matter-
wave packets and the associated trapping potential.

II. TRAPPED MATTER-WAVE INTERFEROMETRY

A. Interferometer sequence

In this section, I describe the general interferometer se-
quence under consideration, based largely on current work
to develop an ion-based TMI [24]. For simplicity, the treat-
ment is restricted to two spatial dimensions. In Sec. II A 2, I
describe the method for computing wave-packet trajectories
and the associated phases. The corresponding interferometer
visibility can be computed by direct relation to a coherent-
state description of the wave packets.

1. Coherent-state formalism

I shall describe the evolution of the interferometer’s wave
packets in the basis of coherent states. First, I consider the case
of a one-dimensional (1D) interferometer. The result is easily
extended to higher dimensionality. A harmonically confined
particle is assumed to be initially in a coherent motional state
(extension to thermal states is considered later) and a pure spin
state,

|ψ0〉 = |α〉 ⊗ |↑〉 ≡ |α,↑〉. (1)

I work in an interaction picture such that phases associ-
ated with the time evolution of the internal states are not
considered. The coherent state |α〉 is defined by a complex
number α that describes the expectation values of position and
momentum,

〈α|x|α〉 =
√

2h̄

mω
Re(α), (2)

〈α|p|α〉 =
√

2mωh̄ Im(α), (3)
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where m is the mass of the particle and ω is the trap frequency.
The state |α〉 can be expressed in terms of Fock states (“num-
ber” states) |n〉, as

|α〉 = e−|α|2/2
∑

n

αn

√
n!

|n〉. (4)

The internal state is prepared in a superposition by application
of a π/2 pulse,

Rπ/2 ≡ 1√
2

[(|↑〉 + |↓〉)〈↑| + (|↑〉 − |↓〉)〈↓|]. (5)

A series of state-dependent kicks (SDKs) is performed at time
t = 0, splitting the wave packet into two and entangling the
spin and motion, generating two distinct momentum states.
This can be represented by the following operator:

DSDK[inkη] ≡ D[inkη]|↑〉〈↑| + D[−inkη]|↓〉〈↓|, (6)

where nk is the number of kicks applied and η is the associated
Lamb-Dicke parameter, given by

η = k

√
h̄

2mω
, (7)

where k is the effective wave vector for the transition. The
displacement operator D is defined as

D[β]|α〉 ≡ eβâ†−β∗â|α〉 = e(βα∗−β∗α)/2|α + β〉. (8)

Following the SDKs, the wave packets evolve freely in the
trap for some time tfree. In the ideal case, the evolution time is
a multiple of the trap period, τ = 2π/ω, and the wave packets
return to their initial positions in phase space. Imperfections
which lead to a residual separation of the wave packets cause
a reduction in visibility. I represent such an effect as an
additional spin-dependent phase-space displacement of the
wave packets:

Dimp ≡ D[δ↑]|↑〉〈↑| + D[δ↓]|↓〉〈↓|, (9)

where, in general, δ↓ 
= δ↑. After the free-oscillation period,
another series of SDKs opposite to the first and a second π/2
pulse are performed. The final state of the system is thus given
by

|ψ f 〉 = Rπ/2DSDK[−inkη]Dimp

× DSDK[inkη]Rπ/2|ψ0〉. (10)

Given a calculation of the final state of the wave packet, one
can calculate the probability of being in a particular spin state
(the signal of such an interferometer) as

P↑(α) = |〈↑|ψ f 〉|2. (11)

It is then straightforward to extract the interferometer phase
and visibility.

The same procedure can be applied to the case of a 2D
interferometer, in which case the initial state is written as

|ψ0〉 = |αx, αy,↑〉, (12)

where αx and αy are the coherent states for the two orthog-
onal spatial axes. After preparing a superposition of internal
states, a real-space displacement Dy[d̃] is applied such that
the subsequent splitting of the wave packets occurs at a

y

d

x

+p–p
θrel

θdisp

y

vcom

x

θcom

V = c(x̃2 + ỹ2) V = c1x̃
2 + c2ỹ

2 + c3x̃ỹ+
c4x̃

4 + c5ỹ
4 + c6x̃

2ỹ2

FIG. 1. Schematic of 2D interferometer sequence. The left col-
umn shows the case with no imperfections present. Top: A wave
packet initially at rest a distance d from the center is split in the
orthogonal direction by imparting momenta ±p. The wave packets
recombine at the position that they were split (yellow circle). Bottom:
The ideal case assumes a purely harmonic potential. The right
column shows the various imperfections that may enter the system.
Top: Misalignment of the initial displacement or momenta and an
initial velocity common to both wave packets. Bottom: Anharmonic
imperfections to the trapping potential.

position d̃
√

2h̄
mω

ŷ = dŷ. This displacement is orthogonal to the
previously described momentum kicks, which are assumed to
be along ±x̂. Following recombination of the wave packets,
the initial real-space displacement is reversed (Dy[−d̃]). The
upper-left plot of Fig. 1 illustrates these displacements and the
resulting orbital motion of the wave packets. The final state of
the system can thus be calculated as

|ψ f 〉 = Rπ/2Dy[−d]Dx
SDK[−inkη]Dimp

× Dx
SDK[inkη]Dy[d]Rπ/2|ψ0〉. (13)

Note that the imperfections δ↑ and δ↓ will, in general, be in
both spatial axes. Again, an expression for the internal state
distribution can be extracted that allows for calculation of the
associated phase and visibility.

The procedure outlined above assumes a particle that is
initially in a pure coherent state. Extension to a (mixed)
thermal state is provided by describing the initial state by
the Glauber-Sudarshan P representation. The density matrix
of the initial state of the system is given by

ρ =
∫

P(αx )P(αy)|αx, αy,↑〉〈αx, αy,↑|d2αxd2αy, (14)

P(α) = 1

π n̄
e−|α|2/n̄, (15)
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FIG. 2. Summary of the various systematic effects considered. The trajectories in real space are shown to aid intuition. Green arrows
represent the directions of the imparted momenta. Yellow circles indicate points of recombination. All effects are exaggerated for clarity. The
affected interferometer properties (see Sec. II B for description) are listed. (a) Ideal case; no imperfections. (b) Common misalignment of
imparted momenta. (c) Relative misalignment of imparted momenta. (d) Misalignment of initial displacement. (e) Common velocity of both
wave packets. (f) Mismatch in trap frequencies. (g) Anharmonicity. (h) Coupling of principal axes.

where n̄ is the mean occupation number. The internal state
distribution after the interferometry sequence can thus be
extracted as

Ptherm
↑ = Tr〈↑|ρ|↑〉. (16)

2. Semiclassical treatment

While the foregoing description provides a rigorous quan-
tum mechanical treatment of the interferometer sequence,
considerations of some systematic effects, such as anhar-
monicity of the confining potential, are more easily incor-
porated by adopting a semiclassical treatment to compute
the wave-packet trajectories and the associated phases. This
treatment is valid provided any anharmonicities are suffi-
ciently small so as to not produce significant distortion of
the wave packets. A thorough analytic treatment of this range
of validity is outside the scope of this work, but explicit
numerical simulations have been performed which strongly
support the validity of the approximation for the parameter
range discussed here. In particular, calculations indicate that
significant wave-packet distortion is observed after one trap
period of evolution when the anharmonic energy shift is
the same order of magnitude as the harmonic potential. For
a ∼1% anharmonic shift, the overlap between the exactly
calculated wave packet and the coherent-state approximation
deviates at the level of ∼10−5. Given the ∼10−4 anharmonic
contribution considered here, any wave-packet distortion will
be entirely negligible. Thus the coherent-state formalism de-
scribed above can be applied to compute the corresponding
visibility (Sec. II B 2) given trajectories that are computed
semiclassically.

The wave-packet trajectories are calculated by considering
a particle moving classically under the influence of a general
potential of the form

V (x, y) = c1x̃2 + c2ỹ2 + c3x̃ỹ + c4x̃4 + c5ỹ4

+ c6x̃2ỹ2 + c7x̃ỹ3 + c8x̃3ỹ, (17)

where I have defined x̃ = x/R, ỹ = y/R, with R the character-
istic size of the system under consideration (I take this to be
the magnitude of the initial real-space displacement from the
trap center, d). Other terms of the order of �4 (e.g., x3, xy3,
etc.) have been omitted from the present analysis as they are
unlikely to arise in common experimental configurations due
to symmetry considerations. For example, patch potentials
or electrode construction imperfections in linear Paul traps
are unlikely to produce such terms—similar arguments apply
to optical or magnetic traps for neutral atoms. The effects
of these omitted terms were also studied and found to be
very similar to that of other anharmonicities, but they are not
presented here. The size of the anharmonic terms considered
is discussed later.

The acceleration is calculated as �a(t )=−�∇V [x(t ), y(t )]/m
and the equations of motion are numerically integrated. In
the ideal case, c1 = c2 are the only nonzero coefficients and
the wave-packet trajectories can be expressed analytically.
Equations (18)–(24) describe the trajectories while incorpo-
rating the following imperfections (cf. Fig. 2): θcom, a common
misalignment of the momentum kicks from the nominal axis
defining the kick directions, while keeping the kicks opposite
to each other; θrel, a relative misalignment of the momentum
kicks with respect to each other; θdisp, a misalignment of
the initial displacement; vcom, a velocity component common
to both wave packets; and ωx 
= ωy, a mismatch of the trap
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frequencies,

x±(t ) = x±
0 sin(±ωxt + γ ±), (18)

y±(t ) = y±
0 cos(ξ±ωyt − ψ±), (19)

γ ± = sin−1

[
d sin(θdisp)

x±
0

]
, (20)

ψ± = cos−1

[
d cos(θdisp)

y±
0

]
, (21)

x±
0 =

√
[vx,com ± vSDK cos(θcom ∓ θrel )]2

ω2
x

+ [d sin(θdisp)]2,

(22)

y±
0 =

√
[vy,com ± vSDK sin(θcom ∓ θrel )]2

ω2
y

+ [d cos(θdisp)]2,

(23)

ξ± = sgn[v±
y (0)]. (24)

The ± superscripts label wave packets that are initially
moving in ±x. vSDK denotes the magnitude of the velocity
imparted by the SDKs that split the wave packets, i.e.,

vSDK =
√

2h̄ω

m
nkη. (25)

Note that the expression for the initial velocity v±
y (0) is not

explicitly written, but can be readily calculated given the
imperfections that are present.

At each point in the trajectory, a corresponding coherent
state can be calculated as [cf. Eqs. (2) and (3)]

αx(t ) =
√

mω

2h̄
x(t ) + i

√
1

2mωh̄
px(t ). (26)

The direct analogy between the classical trajectory and the
associated coherent state facilitates quick calculation of the
effects of experimental imperfections.

With the wave-packet trajectories in hand, one can use the
path-integral formulation [34,35] to calculate the associated
accumulated phase, which is given by integrating the classical
action and dividing by Planck’s constant:

φ(t ) − φ(0) = 1

h̄

∫ t

0
L(t ′)dt ′. (27)

Oscillation in a harmonic potential for an integer number of
trap periods produces no net phase,

φ(n2π/ω) = m

2h̄

∫ n2π/ω

0
ẋ(t )2 − ω2x(t )2dt = 0. (28)

Anharmonicities produce phases which can, in some cases, be
found analytically [26] or computed by direct integration of
Eq. (27).

B. Interferometer performance

In this section, I discuss the properties that quantify the
performance of a TMI. The ways that these properties depend

on experimental imperfections comprise the systematic effects
studied here.

1. Phase

The phase difference between two wave packets, δφ, is
the critical quantity of interest in any interferometer; the
interferometric study of a particular interaction Hamiltonian
is typically achieved by measuring the phase difference that it
produces. Any additional phase difference arising from other
Hamiltonian terms should be considered as a systematic effect
and is the first metric that I use to quantify interferometer
performance. In particular, it is less important that the phase
difference be exactly zero, but rather that it is insensitive to
experimental parameters that are not of interest. One such
parameter of obvious importance is time—if the phase differ-
ence changes rapidly in time, the interferometer phase will be
sensitive to both the precision of the experimental timing and
the stability of the oscillation period of the confining potential.
As such, I define the following as a metric of interferometer
stability:

ξ ≡ ∂δφ(t )

∂t
. (29)

Here, ξ is evaluated at the point of recombination of the wave
packets, where the visibility is highest. This brings us to a
second important measure of interferometer performance.

2. Visibility

Interferometer visibility is a measure of the change in
signal (for a TMI, the change in P↑) as a function of δφ and
the measurement sensitivity is proportional to the visibility.
Optimal visibility is achieved when the wave packets are
perfectly overlapped in phase space at recombination. An
expression for the visibility in the case of a 1D interferometer
described above can be derived by evaluating Eq. (10). For
clarity, I will insert the wave-packet-dependent interferometer
phase, ±φ/2 [36]. This is in addition to the phases φ↑,↓
arising from the displacements intrinsic to the interferometer
sequence,

|ψ f 〉 = 1
2 [eiφ/2eiφ↓ |α + δ↓〉 ⊗ (|↑〉 − |↓〉) (30)

+ e−iφ/2eiφ↑ |α + δ↑〉 ⊗ (|↑〉 + |↓〉)]. (31)

The interferometer signal is found by making a projective
measurement onto |↑〉 and averaging over a thermal distribu-
tion. Doing so gives the following expression:

P↑(n̄) =
∫

e−|α|2/n̄

π n̄
|〈↑|ψ f 〉|2d2α (32)

= 1

2
+ 1

2
e−| δ

2 |2
(n̄+2) cos(� + θ ), (33)

where I have defined δ ≡ δ↓ − δ↑, and θ is an additional phase
prescribed by δ. The visibility can be quickly identified as

V = e−| δ
2 |2

(n̄+2). (34)

This treatment can be easily extended to the 2D case, where
each axis has an associated n̄ and δ which, in general, differ
between axes. The two axes can be treated independently and
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the associated visibilities multiplied together (which is equiv-
alent to adding δx and δy in quadrature to give the separation
of the wave packets in the 4D phase space associated with the
two axes).

Aside from the maximum visibility of the interferometer,
it is again interesting to note sensitivity to experimental pa-
rameters such as the trap frequency. At recombination, the
visibility varies in time with a Gaussian temporal profile. I will
use the corresponding standard deviation σV , in units of the
trap period, as a measure of sensitivity to the trap frequency.

3. Enclosed area

One final metric that I shall consider is specific to the
case of a Sagnac interferometer. Rotation of the interferometer
produces a phase on each wave packet,

� = 2m

h̄
�A · ��, (35)

where m is the particle mass, �A is the enclosed area, and �� is
the rotation rate. I will assume that �A is aligned with ��. The
interferometer phase is proportional to the vector difference of
the enclosed areas, δ �A. I assume that the areas enclosed by the
wave packets are opposite, so δ �A is equivalent to the scalar
sum of the areas. Thus the enclosed area (often expressed,
together with particle energy, as a “scale factor”) characterizes
the sensitivity of a Sagnac interferometer and any systematic
that changes δ �A is important to consider as it could jeopardize
precision and accuracy.

The enclosed area for each wave packet is readily calcu-
lated from the trajectories according to Green’s theorem,

�A = 1

2

∫ t

0
�r(t ′) × �v(t ′)dt ′ = 1

2m

∫ t

0

�L(t ′)dt ′, (36)

where �L is the wave-packet angular momentum. In general,
this is calculated numerically, but for central potentials, we
can write the difference in enclosed areas as (cf. Fig. 1)

δ �A = �A1 − �A2 = t

2m
δ �L, (37)

where t is the oscillation period and δ �L is the difference in
angular momentum of the wave packets.

III. SYSTEMATIC EFFECTS

From here on, I will use x0 and y0 to refer to the amplitudes
of motion. In the absence of imperfections, these equate to
px/mωx and d , respectively. Throughout this section, I shall
consider two specific scenarios:

(A) 138+Ba ion trapped in an ω = 2π × 100 kHz potential
with x0 = 1 μm and y0 = 100 μm. n̄ = 0 or n̄ = 125, corre-
sponding to a temperature of 0.6 mK.

(B) 87Rb atom trapped in an ω = 2π × 10 Hz potential
with x0 = y0 = 200 μm. n̄ = 416, corresponding to a temper-
ature of 200 nK.

A. Individual imperfections

Here I will examine the effect of a single experimental im-
perfection on the metrics previously listed as quantifying the

interferometer performance. A summary of the imperfections
considered and the metrics affected is provided in Fig. 2. Also
shown are real-space trajectories of the wave packets in the
presence of such (greatly exaggerated) imperfections, in order
to aid intuition.

1. Ideal case

In the ideal case, it is straightforward to calculate all the
performance metrics. The phase difference δφ is zero at all
times by symmetry. The visibility V is 1 at recombination.
The value of δ �A is provided by Eq. (37) and the sensitivity to
experimental imperfections is clear.

Close to recombination, the wave packets are separated in
real space along one axis [37]. It is then straightforward to
write the time evolution of the visibility. Using Eq. (26), the
wave-packet trajectories and the small-angle approximation
give the coherent state at a time t away from recombination,

α(t ) = ±
√

mω

2h̄
x0ωt, (38)

where “±” refers to the two wave packets. The separation in
phase space, δ, is given by twice this amount. We can use
Eq. (34) to write

V = exp
[−mω3x2

0t2(n̄ + 2)/2h̄
]
. (39)

The temporal width of the visibility peak is then

σV =
√

h̄

mω3x2
0 (n̄ + 2)

. (40)

A change in the oscillation frequency, dω, will cause
inaccurate recombination and a reduction in visibility,

dV = 1 − exp

[
−2π2mωx2

0 (n̄ + 2)

h̄

(
dω

ω

)2
]
. (41)

As an example, in both scenarios (A) and (B), dω/ω = 10−5

produces dV ∼ 10−5 (∼10−3) for n̄ = 0 (n̄ = 124). To reduce
the visibility to 10%, dω/ω ∼ 10−3 (∼10−4) is required for
n̄ = 0 (n̄ = 124).

Note that the above analysis is for a single orbit; for
multiple orbits, dω is multiplied by the number of orbits.

2. Misalignments θcom, θrel, and θdisp

These imperfections are illustrated in Figs. 2(b)–2(d). They
incorporate misalignment of the directions of the momentum
kicks imparted to split the wave packet and of the initial
real-space displacement of the wave packet [38]. With these
imperfections, the trajectories are ellipses which are described
by Eqs. (18)–(24).

With any of these imperfections, δφ, C, and σC are unaf-
fected, but the enclosed areas are modified to give [cf. (37)]

δ �A = 2πd px

mω
cos θcom cos θrel cos θdisp. (42)

Either θcom or θdisp breaks the symmetry of the wave-packet
trajectories, which produces a phase difference during the
oscillations; however it takes the form δφ(t ) ∼ sin2(ωt ) such
that ξ = 0 at recombination and δφ is insensitive to changes
in the trapping frequency to first order.
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3. Common velocity vcom

This imperfection is illustrated in Fig. 2(e). As with the
previous systematic effects, the visibility and accumulated
phase are unaffected. The area enclosed by each wave packet
is modified according to Eq. (37), but δ �A remains unchanged.

This experimental imperfection is not completely benign,
however; a common initial velocity along ±x̂ makes the phase
difference at recombination, while equal to zero, sensitive to
the trap frequency. Using Eqs. (27) and (18)–(24), the phase
difference is given by

δφ(t ) = 2vx,com pSDK

h̄ω
sin(ωt ) cos(ωt ), (43)

where pSDK = mvSDK. The time derivative at t = 2π/ω

(equivalently, at t = 0) can be computed directly from this
formula and is nonzero. Alternatively, one can note that

ξ ≡ ∂δφ(t )

∂t

∣∣∣∣
t=0

= 1

h̄
[L1(0) − L2(0)] (44)

= 1

h̄
[T1(0) − T2(0)] (45)

= 2vx,com pSDK

h̄
. (46)

For a change in trap frequency of dω, the change in the phase
difference is

dδφ(t = 2π/ω) = 4πvx,com pSDK

h̄ω

dω

ω
. (47)

It should be noted that this error is smaller for higher trap
frequencies and increases with pSDK (which is desired for
greater interferometric sensitivity). Assuming vx,com equal to
vrms for scenarios (A) and (B), and dω/ω = 10−5, produces a
phase difference of δφ ∼ π/10. Again, this treatment assumes
a single orbit; the accumulated phase difference is multiplied
by the number of orbits.

In practice, vx,com, and hence ξ , will likely have a range
of values that is symmetrically distributed around zero. In
this case, the presence of dω will not affect the mean value
of δφ, but will, upon taking an ensemble average, reduce
the visibility and hence the precision with which δφ can be
measured.

4. Trap frequency mismatch ωx �= ωy

This imperfection is illustrated in Fig. 2(f). Note that I am
assuming that the principal axes of the trap are aligned with
the Cartesian axes. Rotation of these axes relative to each
other changes the effects of some imperfections. In particular,
a trap frequency mismatch takes on the character of other
imperfections, most intuitively a coupling between the axes
(Sec. III A 6).

Again, by symmetry, neither δφ nor C are affected by a trap
frequency mismatch. However, δ �A is affected as the confining
potential is no longer central. Let ωy change by an amount dω.
Using Eq. (36), the enclosed area is, to first order in dω,

A = x0y0(2ωx + dω)

4dω
sin(2πdω/ωx ) (48)

≈ πx0y0(1 + dω/ωx ). (49)

It should also be noted that the trajectories are no longer
closed. In particular, for a single orbit, a displacement of

dy

y0
= 1 − cos(2πωy/ωx ) ≈ 2π2

(
dω

ω

)2

(50)

relative to the initial position is produced. Such a shift is
unlikely to be problematic; e.g., in scenario (A), a 10−5

mismatch between frequencies produces a negligible 0.1 pm
of displacement per orbit. Of course, significantly larger trap
instabilities should be avoided.

5. Anharmonicity V ∼ x4, y4, x2y2

This imperfection is illustrated in Fig. 2(g) and consists
of modifying the trapping potential [Eq. (17)] to contain
terms proportional to x4, y4, and x2y2. I ignore terms such
as V ∼ xy3, x3y as these are generally negligible due to the
symmetry of the apparatus used to generate the trapping
potential. The only metric impacted is the enclosed area.
The resulting trajectories are most similar to the case with
ωx 
= ωy (Sec. III A 4) and suffer from the same problem that
the recombination is offset from the initial position.

6. Axis coupling V ∼ xy

This imperfection is illustrated in Fig. 2(h). It is a modifi-
cation of the trapping potential to include coupling between
the two spatial axes. This is by far the most detrimental
imperfection considered here and the only one that causes the
orbits not to close. As such, multiple metrics of the interfer-
ometer are affected. Unlike the other systematics considered,
the symmetry of the trajectories is broken in both x and y,
meaning that the recombination is affected.

B. Multiple imperfections

I will now assess how detrimental multiple imperfections
might be in an actual experiment, with explicit quantitative
analysis in the context of scenarios (A) and (B).

Combinations of multiple imperfections have the potential
to cause significant deterioration in performance. As an ex-
ample, in the previous section it was shown that a potential
term of the form V ∼ xy could reduce the visibility. Such
a potential is in fact identical to one with mismatched trap
frequencies, rotated by π/4. Indeed, the trajectories produced
by V ∼ xy can be mimicked by setting θdisp = −θcom = π/4
and ωx 
= ωy. In fact, a combination of ωx 
= ωy and θcom can
produce a significant reduction in performance.

Similar effects are also seen in the presence of anharmonic-
ity (V ∼ x4, y4). This was shown in previous work for a 1D
interferometer [26] where an anharmonic potential together
with vx,com affected the interferometer phase. This persists
to the 2D case. The presence of vx,com breaks the symmetry
of the wave-packet trajectories, which, if the potential is not
harmonic, causes the two wave packets to accumulate differ-
ent phases. A similar effect is observed for an anharmonic
potential together with θcom.

It is clear from the foregoing discussion that precise control
of the trapping potential is perhaps the most critical factor in
ensuring optimal performance of TMIs. To this end, ion traps
are particularly well suited—the characteristic length scale of
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TABLE I. From left: Imperfection; Representative “typical” value; Change in phase difference with change in this parameter, normalized
to the typical value; Value of parameter for which the interferometer visibility drops to 10% with all other parameters kept constant; Value of
parameter for which the area difference changes by 10% with all other parameters kept constant. Blank space indicates that no such value was
found. See main text for further details.

10% visibility

Imperfection, X Value X ∂δφ

∂X (rad) n̄ = 0 n̄ = 124 10% δ �A change

θcom 20 mrad 0.05 420 mrad
θrel 20 mrad 0.01 440 mrad
θdisp 20 mrad 6 × 10−4 420 mrad
vcom 0.5 m/s 1.8
ωy/ωx − 1 10−5 3 × 10−4 0.04 0.16
c4/c1 = c5/c1 = c6/c1 10−4 0.004 0.05 0.21
c3/c1 10−4 0.3 0.013 3 × 10−3 0.27

ion trap electrodes can easily be many orders of magnitude
larger than the oscillation size, which helps guarantee that
anharmonicities (V ∼ x4, y4) are extremely small. Finite ele-
ment simulation of potentials generated by macroscopic (∼1–
10 mm) traps indicates that values of c4,5,6 that are a factor of
∼104 smaller than c1,2 can easily be achieved over a 100 μm
region. Theoretical treatment of trap anharmonicity suggests
that for macroscopic traps this is a conservative estimate [39].
Symmetry dictates that c3/c1,2 should be zero, but a value
of 10−4 is assumed for the present analysis. As previously
mentioned, stabilization [40] and matching of the trap fre-
quencies will also dramatically reduce any potential system-
atic effects. Additionally, ensuring that the axes defining the
real- and momentum-space displacements are aligned with the
principal axes of the trap helps mitigate deleterious effects due
to trap frequency mismatch. Regardless of the experimental
realization, it is clear that accurate interferometry will depend
on precise characterization of the trapping potential and will
be the subject of future investigation.

I now quantitatively examine interferometer performance
in a situation where all imperfections are present. I consider
scenario (A). In addition to the previously stated parameters,
the assumed imperfections are shown in Table I, and the
resulting interferometer metrics for n̄ = 0 (n̄ = 124) are as
follows:

(a) V = 1.000 (0.997)
(b) δ �A/δ �Aideal = 0.999 (0.999)
(c) ξ = 1.3 rad/ns (1.3 rad/ns)
(d) σV = 2 × 10−3 (4 × 10−4).
The quoted values are very promising. Excellent visibility

is achieved and there is negligible change in the enclosed
area. The value of ξ characterizes the sensitivity to changes
in the trap frequency, indicating that a 10−5 fractional change
would result in a 9 mrad change in the phase difference.
For comparison, with the same parameters a measurement
of the Earth’s rotation rate would produce a phase difference
of around 80 mrad. The deterioration of the visibility from
such a change in trap frequency, encoded in σC , is seen to be
much less significant. It should also be noted that absolute
accuracy in, e.g., δ �A may not be required as the interferometer
sensitivity can, in some cases, be calibrated to compensate
for such an effect. Drifts in such parameters, however, are
intrinsically more problematic.

Performing a similar analysis for scenario (B) is also
promising—the metrics are very comparable, with one no-
table difference: the estimated visibility is around 75% due
to the higher value of n̄; however, this does not present a
significant deterioration in performance and could be miti-
gated by operating at a lower temperature. The disparity in
trap frequency also means that the value for ξ is comparable
only when scaled according to the trap period; scenario (B)
has comparable requirements on the fractional stability of ω,
but, of course, less stringent timing requirements.

While it seems that interferometer performance is not jeop-
ardized by the stated imperfections, it is also useful to consider
more generally how resilient the interferometer performance
is. Some aspects of this analysis are shown in Table I.

Perhaps the most obvious consideration is how the interfer-
ometer phase depends on the stated imperfections. The third
column of Table I shows the gradient of δφ with respect
to the stated imperfection, normalized to the size of that
imperfection. This means, for example, that doubling θcom

from 20 to 40 mrad changes δφ by 0.05 rad. θcom, vcom, and
cxy/cx2 show notable effects on the phase difference. vcom is
unlikely to have a nonzero mean value so averaging will likely
remove any effect, at the expense of visibility. Reducing noise
in δφ associated with θcom and cxy/cx2 to around 1 mrad would
require stabilization of these parameters to around 0.4 mrad
and 3 × 10−7, respectively.

The fourth column of Table I lists the size of the imperfec-
tion that reduces the visibility of the interferometer to 10%.
Again, it is seen that the fidelity of the trapping potential is
the most important aspect to control, particularly for the case
of thermal states where sensitivity of the visibility is much
higher.

The last column of Table I lists the size of imperfection
that changes δ �A by 10%. This parameter is again very robust,
being largely unaffected by any of the parameters considered.

It should of course be noted that the presented param-
eter space is large and the parameters are interrelated so
the dependence on such imperfections can be significantly
more complex than the examples given here for illustration.
Additionally, reductions of visibility due to the distribution
of values of vcom given by the finite wave-packet temperature
are not shown here, but may be important to consider when
examining a specific interferometer.
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IV. CONCLUSIONS

In this paper, I have analyzed a number of experimental
imperfections which could mitigate the performance of
a trapped matter-wave interferometer. In particular, 2D
interferometry increases the number of possible experimental
imperfections and introduces ways that these may couple to
each other. It is seen that systematic effects arise in particular
when the symmetry between the two wave packets is broken,
for example, by the presence of a contribution to the trapping
potential of the form ∼xy, or by a mismatch in trapping
frequencies together with a misalignment of the beam-splitter
operation. However, my analysis indicates that with good
control of the trapping potential, it is possible to realize

precise and robust interferometer operation. This conclusion
applies to apparatuses based on either ultracold atoms or
ions, despite considerable disparity between the associated
experimental parameters.

ACKNOWLEDGMENTS

I would like to thank Paul Hamilton and Wes Campbell for
useful discussions and careful reading of the manuscript. This
work was supported by the Office of Naval Research (Award
No. N000141712256) and the Defense Advanced Research
Projects Agency (Award No. D18AP00067).

[1] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Rev. Mod.
Phys. 81, 1051 (2009).

[2] S. Fray, C. A. Diez, T. W. Hänsch, and M. Weitz, Phys. Rev.
Lett. 93, 240404 (2004).

[3] G. Rosi, G. D’Amico, L. Cacciapuoti, F. Sorrentino, M.
Prevedelli, M. Zych, C. Brukner, and G. M. Tino, Nat.
Commun. 8, 15529 (2017).

[4] C. Overstreet, P. Asenbaum, T. Kovachy, R. Notermans, J. M.
Hogan, and M. A. Kasevich, Phys. Rev. Lett. 120, 183604
(2018).

[5] G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M.
Tino, Nature (London) 510, 518 (2014).

[6] F. Riehle, T. Kisters, A. Witte, J. Helmcke, and C. J. Bordé,
Phys. Rev. Lett. 67, 177 (1991).

[7] T. L. Gustavson, A. Landragin, and M. A. Kasevich, Classic.
Quantum Grav. 17, 2385 (2000).

[8] B. Barrett, R. Geiger, I. Dutta, M. Meunier, B. Canuel, A.
Gauguet, P. Bouyer, and A. Landragin, C. R. Phys. 15, 875
(2014).

[9] I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R.
Geiger, and A. Landragin, Phys. Rev. Lett. 116, 183003 (2016).

[10] W. F. Holmgren, M. C. Revelle, V. P. A. Lonij, and A. D. Cronin,
Phys. Rev. A 81, 053607 (2010).

[11] R. H. Leonard, A. J. Fallon, C. A. Sackett, and M. S. Safronova,
Phys. Rev. A 92, 052501 (2015).

[12] R. Trubko, M. D. Gregoire, W. F. Holmgren, and A. D. Cronin,
Phys. Rev. A 95, 052507 (2017).

[13] M. Jaffe, P. Haslinger, V. Xu, P. Hamilton, A. Upadhye, B.
Elder, J. Khoury, and H. Müller, Nat. Phys. 13, 938 (2017).

[14] R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. Müller, Science
360, 191 (2018).

[15] N. F. Ramsey, Phys. Rev. 78, 695 (1950).
[16] M. Jacquey, A. Miffre, M. Büchner, G. Trénec, and J. Vigué,

Europhys. Lett. 75, 688 (2006).
[17] F. Sorrentino, Q. Bodart, L. Cacciapuoti, Y.-H. Lien, M.

Prevedelli, G. Rosi, L. Salvi, and G. M. Tino, Phys. Rev. A 89,
023607 (2014).

[18] A. S. Arnold, C. S. Garvie, and E. Riis, Phys. Rev. A 73,
041606(R) (2006).

[19] B. E. Sherlock, M. Gildemeister, E. Owen, E. Nugent, and C. J.
Foot, Phys. Rev. A 83, 043408 (2011).

[20] P. Navez, S. Pandey, H. Mas, K. Poulios, T. Fernholz, and W.
von Klitzing, New J. Phys. 18, 075014 (2016).

[21] Y. Zhou, I. Lesanovsky, T. Fernholz, and W. Li,
arXiv:1811.11107.

[22] J. H. T. Burke and C. A. Sackett, Phys. Rev. A 80, 061603(R)
(2009).

[23] R. Cheng, T. He, W. Li, and A. Smerzi, J. Mod. Phys. 07, 2043
(2016).

[24] W. C. Campbell and P. Hamilton, J. Phys. B 50, 064002
(2017).

[25] C. A. Sackett, E. Moan, and Z. Luo, in Optical, Opto-Atomic,
and Entanglement-Enhanced Precision Metrology, edited by
S. M. Shahriar and J. Scheuer (SPIE, Bellingham, WA, 2019).

[26] R. H. Leonard and C. A. Sackett, Phys. Rev. A 86, 043613
(2012).

[27] G. Sagnac, C. R. Acad. Sci. 157, 708 (1913).
[28] R. Stevenson, M. R. Hush, T. Bishop, I. Lesanovsky, and T.

Fernholz, Phys. Rev. Lett. 115, 163001 (2015).
[29] Y. Che, F. Yao, H. Liang, G. Li, and X. Wang, Phys. Rev. A 98,

053609 (2018).
[30] E. R. Moan, R. A. Horne, T. Arpornthip, Z. Luo, A. J. Fallon,

S. J. Berl, and C. A. Sackett, arXiv:1907.05466.
[31] D. S. Durfee, Y. K. Shaham, and M. A. Kasevich, Phys. Rev.

Lett. 97, 240801 (2006).
[32] D. Savoie, M. Altorio, B. Fang, L. A. Sidorenkov, R. Geiger,

and A. Landragin, Sci. Adv. 4, eaau7948 (2018).
[33] G. Tackmann, P. Berg, C. Schubert, S. Abend, M. Gilowski, W.

Ertmer, and E. M. Rasel, New J. Phys. 14, 015002 (2012).
[34] J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics,

2nd ed. (Cambridge University Press, Cambridge, 2017).
[35] Pippa Storey and Claude Cohen-Tannoudji, J. Phys. II (France)

4, 1999 (1994).
[36] The origin of this phase is unspecified and depends on the exact

details of the interferometer. It may derive from a Hamiltonian
term involving the internal states, which I do not consider here.

[37] Recall that a second SDK removes the initial momentum so that
the wave packets are not significantly separated along either
axis in velocity space.

[38] I note that in many experimental schemes, θrel is unlikely to
occur, but I include it for the sake of generality.

[39] X. Luo, X. Zhu, K. Gao, J. Li, M. Yan, L. Shi, and J. Xu,
Appl. Phys. B 62, 421 (1996).

[40] K. G. Johnson, J. D. Wong-Campos, A. Restelli, K. A.
Landsman, B. Neyenhuis, J. Mizrahi, and C. Monroe, Rev. Sci.
Instrum. 87, 053110 (2016).

063622-8

https://doi.org/10.1103/RevModPhys.81.1051
https://doi.org/10.1103/RevModPhys.81.1051
https://doi.org/10.1103/RevModPhys.81.1051
https://doi.org/10.1103/RevModPhys.81.1051
https://doi.org/10.1103/PhysRevLett.93.240404
https://doi.org/10.1103/PhysRevLett.93.240404
https://doi.org/10.1103/PhysRevLett.93.240404
https://doi.org/10.1103/PhysRevLett.93.240404
https://doi.org/10.1038/ncomms15529
https://doi.org/10.1038/ncomms15529
https://doi.org/10.1038/ncomms15529
https://doi.org/10.1038/ncomms15529
https://doi.org/10.1103/PhysRevLett.120.183604
https://doi.org/10.1103/PhysRevLett.120.183604
https://doi.org/10.1103/PhysRevLett.120.183604
https://doi.org/10.1103/PhysRevLett.120.183604
https://doi.org/10.1038/nature13433
https://doi.org/10.1038/nature13433
https://doi.org/10.1038/nature13433
https://doi.org/10.1038/nature13433
https://doi.org/10.1103/PhysRevLett.67.177
https://doi.org/10.1103/PhysRevLett.67.177
https://doi.org/10.1103/PhysRevLett.67.177
https://doi.org/10.1103/PhysRevLett.67.177
https://doi.org/10.1088/0264-9381/17/12/311
https://doi.org/10.1088/0264-9381/17/12/311
https://doi.org/10.1088/0264-9381/17/12/311
https://doi.org/10.1088/0264-9381/17/12/311
https://doi.org/10.1016/j.crhy.2014.10.009
https://doi.org/10.1016/j.crhy.2014.10.009
https://doi.org/10.1016/j.crhy.2014.10.009
https://doi.org/10.1016/j.crhy.2014.10.009
https://doi.org/10.1103/PhysRevLett.116.183003
https://doi.org/10.1103/PhysRevLett.116.183003
https://doi.org/10.1103/PhysRevLett.116.183003
https://doi.org/10.1103/PhysRevLett.116.183003
https://doi.org/10.1103/PhysRevA.81.053607
https://doi.org/10.1103/PhysRevA.81.053607
https://doi.org/10.1103/PhysRevA.81.053607
https://doi.org/10.1103/PhysRevA.81.053607
https://doi.org/10.1103/PhysRevA.92.052501
https://doi.org/10.1103/PhysRevA.92.052501
https://doi.org/10.1103/PhysRevA.92.052501
https://doi.org/10.1103/PhysRevA.92.052501
https://doi.org/10.1103/PhysRevA.95.052507
https://doi.org/10.1103/PhysRevA.95.052507
https://doi.org/10.1103/PhysRevA.95.052507
https://doi.org/10.1103/PhysRevA.95.052507
https://doi.org/10.1038/nphys4189
https://doi.org/10.1038/nphys4189
https://doi.org/10.1038/nphys4189
https://doi.org/10.1038/nphys4189
https://doi.org/10.1126/science.aap7706
https://doi.org/10.1126/science.aap7706
https://doi.org/10.1126/science.aap7706
https://doi.org/10.1126/science.aap7706
https://doi.org/10.1103/PhysRev.78.695
https://doi.org/10.1103/PhysRev.78.695
https://doi.org/10.1103/PhysRev.78.695
https://doi.org/10.1103/PhysRev.78.695
https://doi.org/10.1209/epl/i2006-10177-6
https://doi.org/10.1209/epl/i2006-10177-6
https://doi.org/10.1209/epl/i2006-10177-6
https://doi.org/10.1209/epl/i2006-10177-6
https://doi.org/10.1103/PhysRevA.89.023607
https://doi.org/10.1103/PhysRevA.89.023607
https://doi.org/10.1103/PhysRevA.89.023607
https://doi.org/10.1103/PhysRevA.89.023607
https://doi.org/10.1103/PhysRevA.73.041606
https://doi.org/10.1103/PhysRevA.73.041606
https://doi.org/10.1103/PhysRevA.73.041606
https://doi.org/10.1103/PhysRevA.73.041606
https://doi.org/10.1103/PhysRevA.83.043408
https://doi.org/10.1103/PhysRevA.83.043408
https://doi.org/10.1103/PhysRevA.83.043408
https://doi.org/10.1103/PhysRevA.83.043408
https://doi.org/10.1088/1367-2630/18/7/075014
https://doi.org/10.1088/1367-2630/18/7/075014
https://doi.org/10.1088/1367-2630/18/7/075014
https://doi.org/10.1088/1367-2630/18/7/075014
http://arxiv.org/abs/arXiv:1811.11107
https://doi.org/10.1103/PhysRevA.80.061603
https://doi.org/10.1103/PhysRevA.80.061603
https://doi.org/10.1103/PhysRevA.80.061603
https://doi.org/10.1103/PhysRevA.80.061603
https://doi.org/10.4236/jmp.2016.715180
https://doi.org/10.4236/jmp.2016.715180
https://doi.org/10.4236/jmp.2016.715180
https://doi.org/10.4236/jmp.2016.715180
https://doi.org/10.1088/1361-6455/aa5a8f
https://doi.org/10.1088/1361-6455/aa5a8f
https://doi.org/10.1088/1361-6455/aa5a8f
https://doi.org/10.1088/1361-6455/aa5a8f
https://doi.org/10.1103/PhysRevA.86.043613
https://doi.org/10.1103/PhysRevA.86.043613
https://doi.org/10.1103/PhysRevA.86.043613
https://doi.org/10.1103/PhysRevA.86.043613
https://doi.org/10.1103/PhysRevLett.115.163001
https://doi.org/10.1103/PhysRevLett.115.163001
https://doi.org/10.1103/PhysRevLett.115.163001
https://doi.org/10.1103/PhysRevLett.115.163001
https://doi.org/10.1103/PhysRevA.98.053609
https://doi.org/10.1103/PhysRevA.98.053609
https://doi.org/10.1103/PhysRevA.98.053609
https://doi.org/10.1103/PhysRevA.98.053609
http://arxiv.org/abs/arXiv:1907.05466
https://doi.org/10.1103/PhysRevLett.97.240801
https://doi.org/10.1103/PhysRevLett.97.240801
https://doi.org/10.1103/PhysRevLett.97.240801
https://doi.org/10.1103/PhysRevLett.97.240801
https://doi.org/10.1126/sciadv.aau7948
https://doi.org/10.1126/sciadv.aau7948
https://doi.org/10.1126/sciadv.aau7948
https://doi.org/10.1126/sciadv.aau7948
https://doi.org/10.1088/1367-2630/14/1/015002
https://doi.org/10.1088/1367-2630/14/1/015002
https://doi.org/10.1088/1367-2630/14/1/015002
https://doi.org/10.1088/1367-2630/14/1/015002
https://doi.org/10.1051/jp2:1994103
https://doi.org/10.1051/jp2:1994103
https://doi.org/10.1051/jp2:1994103
https://doi.org/10.1051/jp2:1994103
https://doi.org/10.1007/BF01081205
https://doi.org/10.1007/BF01081205
https://doi.org/10.1007/BF01081205
https://doi.org/10.1007/BF01081205
https://doi.org/10.1063/1.4948734
https://doi.org/10.1063/1.4948734
https://doi.org/10.1063/1.4948734
https://doi.org/10.1063/1.4948734

