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Nonequilibrium steady states of Bose-Einstein condensates with a local particle loss
in double potential barriers
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We investigate the stability of nonequilibrium steady states of Bose-Einstein condensates with a local one-
body loss in the presence of double potential barriers. We construct an exactly solvable mean-field model, in
which the local loss and the potential barriers take the form of a delta function. Using the exact solutions of our
model, we show that there are parameter regions in which two steady-state solutions are dynamically stable, i.e.,
the model exhibits bistability. We also find that unidirectional hysteresis phenomena appear when the local-loss
rate is varied in some parameter region.
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I. INTRODUCTION

Ultracold gases are well known as coherent quantum sys-
tems with high controllability [1]. Ultracold gases are con-
fined in a vacuum chamber by using magnetic fields or laser
beams such that they are well decoupled from environments.
This means that ultracold gases are regarded as isolated
quantum systems [2]. Many interesting phenomena have been
studied in the context of isolated quantum systems, such as
thermalization [2–6] and many-body localization [7–12].

Recent technological advances in ultracold-atom experi-
ments allow us to introduce couplings to the environment,
namely, dissipation, in a well-controlled manner [13–20].
This means that we can switch ultracold gases from isolated
systems to controllable open many-body quantum systems
[21–24]. The dissipation can be regarded as continuous mea-
surements. When the dissipation is strong compared to other
energy scales of the systems, quantum Zeno effects occur
[25], which suppress coherent processes such as tunneling.
These effects have been observed in ultracold-gas experiments
[13–18,20,26]. It is also noteworthy that the controllable
dissipations provide us new possibilities for exploring novel
quantum systems, such as PT symmetric systems [27–31]
and non-Hermitian quantum systems [32–34].

Recently, the experimental group at Technische Universitat
Kaiserslauten observed bistability in a Bose-Einstein con-
densate (BEC) with a local particle loss confined in a one-
dimensional optical lattice [18]. The local particle loss can be
realized by focusing an electron beam on the central site of the
optical lattice. They prepared two different initial conditions.
One is that the central site of the optical lattice is occupied
by the particles and the other is that the central site is almost
empty. Measuring the particle number of the central site by
using scanning electron microscopy techniques, they observed
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two different stable states. In the small (strong) dissipation
regime, the occupied (empty) state is realized regardless of
the initial conditions. On the other hand, at the intermediate
dissipation strength, the two different stable states are realized
depending on the initial states. This means that the system
exhibits bistability.

This experiment can be understood as a problem of stabil-
ity of supercurrents under particle losses. Because the local
particle loss induces a density difference between the central
site and the others, the supercurrent flows from the surround-
ing sites into the central sites. The results observed in the
experiment indicate that particle losses produce nontrivial ef-
fects on superfluidity. In fact, our previous work also showed
that global three-body losses induce supercurrent decay in a
ring trap [35].

In previous theoretical studies [36,37], it has been shown
that in the absence of optical lattice potentials, which are de-
scribed by a real-number external field in the Gross-Pitaevskii
(GP) equation, the system does not exhibit a discontinuous
jump in the density under a local one-body loss associated
with the bistability when the strength of the dissipation is
varied. This is contrary to an experiment [18] in which an
optical lattice potential is present. In this work, we construct
a simple model that is analytically solvable and exhibits the
discontinuous jump associated with bistability. Specifically,
we use a one-dimensional GP equation with a local one-body
loss and double potential barriers, which are, respectively,
described by pure imaginary and real delta function poten-
tials. On the basis of semianalytical solutions of our model,
we indeed show that the inclusion of the double potential
barriers leads to the emergence of bistability accompanied by
the discontinuous jump. In addition, we find unidirectional
hysteresis phenomena in our systems. These phenomena are
called anomalous hysteresis [38–40].

This paper is organized as follows. In Sec. II, we explain
the problem that we consider and its formulation based on a
dissipative GP equation, which describes a BEC with a local
particle loss. In Sec. III A, using the exact solution of the GP
equation, we briefly review important properties of the BEC
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FIG. 1. Schematic of our setup.

in the absence of double potential barriers. In Sec. III B, we
obtain exact solutions of the GP equation in the presence of
double potential barriers in order to discuss the stability of
nonequilibrium steady states of the BEC. In Sec. III C, we
show that our system exhibits anomalous hysteresis phenom-
ena. In Sec. IV, we summarize our results. In the Appendices,
we explain how to perform the stability analysis of stationary
solutions of the GP equation and the details of the derivations
of the exact solution of the GP equation.

II. MODEL

In this paper, we consider a one-dimensional GP equation
with a local one-body loss term and double-potential-barrier
terms,

ih̄
∂

∂t
ψ (x, t ) =

[
− h̄2

2M

∂2

∂x2
+ U (x) + g|ψ (x, t )|2

]
ψ (x, t ),

(1)

U (x) ≡ − ih̄γ0

2
δ(x) + U0[δ(x − L) + δ(x + L)], (2)

where M is the mass of the atom, g > 0 is the two-body
interaction coefficient, and ψ (x, t ) is the order parameter of
the BEC. The dissipation term takes the form of the delta
function localized at x = 0 and γ0 � 0 is the strength of the
dissipation. The two potential barriers located at x = ±L are
added to mimic the density dips near the local loss created by
the optical lattice in the experiment [18]. Their strength is de-
noted U0 � 0. This dissipative GP equation can be derived by
the mean-field approximation of the Lindblad equation with
the local one-body loss term (see details in the Supplemental
Material of Ref. [14]).

In Sec. III, we consider the stability of nonequilibrium
steady states of a BEC in which a stationary supercurrent
flows into the location of the particle loss. Such states are
represented as solutions of the time-independent GP equa-
tion, which is derived by inserting ψ (x, t ) = �(x)e−iμt/h̄ into
Eq. (1),[

− h̄2

2M

d2

dx2
+ U (x) − μ + g|�(x)|2

]
�(x) = 0, (3)

where μ is the chemical potential.
We set the boundary condition at x → ±∞ as (see also

Fig. 1)

�(x)
x→±∞−−−−→ √

n∞e−iMv∞|x|/h̄eiϕ± , (4)

where n∞ � 0 is the mean particle density at |x| → ∞, v � 0
is the magnitude of the flow velocity at |x| → ∞, and ϕ± is the
phase. From this boundary condition, we obtain the chemical
potential:

μ = gn∞ + 1
2 Mv2

∞. (5)

The velocity v∞ is determined by the boundary conditions due
to the delta functions, which are given by

�(±L + 0) = �(±L − 0), �(+0) = �(−0), (6)

h̄2

2M

[
d�(x)

dx

∣∣∣∣
x=±L+0

− d�(x)

dx

∣∣∣∣
x=±L−0

]
= U0�(±L), (7)

h̄2

2M

[
d�(x)

dx

∣∣∣∣
x=+0

− d�(x)

dx

∣∣∣∣
x=−0

]
= − ih̄γ0

2
�(0). (8)

We check the stability of the obtained stationary solutions
by the numerical simulations of the time-dependent GP equa-
tion. For the details see Appendix A.

At the end of this section, we remark on a crucial difference
between our model and the actual experimental setup. In our
setup, the particles are lost at the origin and provided at
|x| → ∞ [see Eq. (4)]. This fact can be easily seen by writing
down the equation of continuity,

∂

∂t
n(x, t ) = − ∂

∂x
J (x, t ) − γ0δ(x)n(x, t ), (9)

n(x, t ) ≡ |ψ (x, t )|2, (10)

J (x, t ) ≡ − ih̄

2M

[
ψ∗(x, t )

∂

∂x
ψ (x, t ) − c.c.

]
, (11)

where n(x, t ) and J (x, t ) are the particle density and the cur-
rent density, respectively. Integrating Eq. (9) over (−∞,+∞)
yields

d

dt
N (t ) = −[J (+∞, t ) − J (−∞, t )] − γ0n(0, t ), (12)

where N (t ) ≡ ∫ +∞
−∞ dx[n(x, t ) − n∞] is the total particle num-

ber difference at time t [41]. The first and second terms on the
right-hand side of Eq. (12) represent the gain of the particles
from the boundaries and the third one represents the loss of the
particles at x = 0. This equation shows that nonequilibrium
steady states can be realized when the loss and gain of the
particles are balanced.

In the experiment, the BEC is confined in the trap potential
with the local particle loss. Because there is no particle source,
in contrast to our theoretical setup, the total particle number
in the trap monotonically decreases. Hence, strictly speaking,
the stationary states cannot exist except in a vacuum state
(no particle in the trap). However, according to the inset in
Fig. 2(a) in Ref. [18], we can see that the particle number at
the central site is almost stationary over the time scale 40–60
ms. In this time scale, the particle loss and the hopping from
the adjacent sites to the central site are balanced. As long as
we focus on the vicinity of the central site, the systems can
be approximated as nonequilibrium steady states. Stationary
states in our model correspond to these nonequilibrium steady
states.
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FIG. 2. Density at the origin as a function of the dissipation
strength. The solid red, dotted red, dashed blue, and dashed-dotted
green lines represent the stable PW solutions, unstable PW solutions,
GS solutions, and DS solutions, respectively.

Another difference is the width of the local dissipation
term. As described above, we assume that the local dissipation
is given by the delta function. This treatment can be justified
when the width of the dissipation is much smaller than the
healing length. However, in the experiment, the width of the
dissipation is about O(0.1 μm) [14]. Because the healing
length of the experiment is O(0.1 μm), the dissipation in the
experiment cannot be regarded as the delta function. We also
remark on the effects of the finite width in Sec. III B.

III. RESULTS

A. In the absence of double potential barriers

For the reader’s convenience we first review exact solutions
in the absence of double potential barriers, which have been
derived in some previous works [36,37], before showing our
results. There are three kinds of exact solutions in the absence
of potential barriers (U0 = 0). One is a plane-wave (PW)
solution:

�PW(x) = √
n∞e−iMv∞|x|/h̄, (13)

v∞ = γ0

2
. (14)

The second is a dark soliton (DS) solution,

�DS(x) = √
n∞ tanh(x/ξ ), (15)

v∞ = 0, (16)

where ξ ≡ h̄/
√

Mgn∞ is the healing length. The last one is a
gray soliton (GS) solution,

�GS(x) = √
n∞e−iMv∞|x|/h̄

[
i
v∞
vs

+ f (x)

]
, (17)

f (x) ≡
√

1 −
(

v∞
vs

)2

tanh

⎡
⎣

√
1 −

(
v∞
vs

)2 |x|
ξ

⎤
⎦, (18)

v∞ = 2v2
s

γ0
, (19)
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FIG. 3. Magnitude of the flow velocity at infinity as a function of
the dissipation strength. The solid red, dotted red, dashed blue, and
dashed-dotted green lines represent the stable PW solutions, unstable
PW solutions, GS solutions, and DS solutions, respectively.

where vs ≡ √
gn∞/M is the sound velocity. We can easily

check that these expressions satisfy the GP equation (3).
We note that the PW and DS solutions exist for arbitrary
parameters and the GS solution exists for γ0 > 2vs.

Here, we define the density at the origin as n0 ≡|�(x=
0)|2, which corresponds to the density at the central site in the
experiment [18]. We plot n0 as a function of γ0 in Fig. 2, which
we call an n0-γ0 diagram. This result shows that the system
exhibits bistability in the whole γ0 region. For γ0 � 2vs the
PW and the DS states are stable, and for γ0 > 2vs the GS and
the DS states are stable. We can see the unstable PW states
for γ0 > 2vs. This can be understood by the velocity shown
in Fig. 3. The velocity of the PW state is given by Eq. (14),
which is proportional to the dissipation strength γ0. When
the velocity exceeds the sound velocity, which is the Landau
critical velocity of uniform superfluids [42,43], the PW state
becomes energetically unstable.

The GS state emerges at γ0 = 2vs (v∞ = vs). The velocity
of the GS state is a monotonically decreasing function of
γ0 [see Eq. (19)]. We can interpret this behavior as follows.
Suppose that we start with the PW state at γ0 = 0. When we
increase the dissipation strength from γ0 = 0, the superflow
velocity becomes high and then reaches the Landau critical
velocity. Finally, the PW states become unstable and bifurcate
into the unstable PW branch and the stable GS branch.

In the DS states, the density at the origin is always 0. This
means that the DS states do not feel the dissipation. In fact,
boundary condition (8) is satisfied in the DS solution (15)
for the whole γ0 region. Therefore, the DS states always exist
regardless of the dissipation strength.

B. In the presence of double potential barriers

Here, we show the results in the presence of double
potential barriers. We assume that a functional form of the
stationary solution is given by an even function or an odd
function. Owing to this assumption, it is sufficient to consider
only the x � 0 region. Because the potentials are only the
delta function type, we can separately solve the GP equation
in an inside region (0 � x � L) and an outside region (x > L).
After obtaining the solutions of each region, we connect them
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by using the boundary conditions (6), (7), and (8). Such
techniques for solving the GP equation with delta-function
potentials have been developed in the context of Josephson
junction systems [44–62]. For convenience, we introduce the
following variables:

�(x) ≡
{

�in(x) ≡ √
nin(x)eiϕin (x) for 0 � x � L,

�out (x) ≡ √
nout (x)eiϕout (x) for x > L.

(20)

First, we consider the even-function case. The solution of
the outside region is given by

nout (x)

n∞
=

(
v∞
vs

)2

+
[

1 −
(

v∞
vs

)2
]

× tanh2

⎡
⎣

√
1 −

(
v∞
vs

)2 x − L + x+
ξ

⎤
⎦, (21)

ϕout (x) = ϕL − Mv∞(x − L)

h̄

− tan−1

[
G(x + x+)

v∞/vs

]
+ tan−1

[
G(L + x+)

v∞/vs

]
,

(22)

x+
ξ

≡ 1√
1 −

(
v∞
vs

)2

× tanh−1

⎡
⎣

√
nL/n∞ − (v∞/vs)2

1 − (v∞/vs)2

⎤
⎦, (23)

G(x) ≡
√

1 −
(

v∞
vs

)2

tanh

⎡
⎣

√
1 −

(
v∞
vs

)2 x − L

ξ

⎤
⎦, (24)

where ϕL ≡ ϕ(x = L) and nL ≡ n(x = L) are determined us-
ing the boundary conditions below. v∞ is given by

v∞ = 1

2

n0

n∞
γ0. (25)

This relation can be derived by using the assumption of an
even function, the expression of the current density, and the
boundary condition (8). The details of the derivation of the
outside solution and Eq. (25) are summarized in Appendix B.

In the inside region, we find four types of inside solutions.
However, only two solutions appear in the parameter regions
of our interest, where 0 � γ0/vs � 4 and 0 � n0/n∞ � 1.
Then we consider two types of solutions:

n(1)
in (x)

n∞
= A −

(
A − n0

n∞

)
nd2(	1/4x/ξ |m1), (26)

ϕ
(1)
in (x) = − 1

2A

n0

n∞

γ0

vs

x

ξ
− 1

2	1/4

γ0

vs

A − n0/n∞
A

× 
[m1A/(n0/n∞); am(	1/4x/ξ |m1)|m1], (27)

m1 ≡ 1 − A − n0/n∞√
	

, (28)

n(2)
in (x)

n∞
= n0

n∞
+

(
B − n0

n∞

)
sn2(	1/4x/ξ |m2), (29)

ϕ
(2)
in (x) = − 1

2	1/4

γ0

vs

× 


[
B − n0/n∞

n0/n∞
; am(	1/4x/ξ |m2)

∣∣∣∣m2

]
, (30)

m2 ≡ B − n0/n∞
A − n0/n∞

, (31)

where we have set the origin of the phase as ϕ
(i)
in (x = 0) = 0

and used the Jacobi elliptic functions sn(x|m) and nd(x|m) ≡
1/dn(x|m), the incomplete elliptic integral of the third kind

(n; φ|m), and the Jacobi amplitude function am(x|m). The
notations for the Jacobi elliptic functions and the elliptic
integrals follow Abramowitz and Stegun [63]. We also used
the following quantities:

A ≡ 1

2

[
2 + 1

4

(
γ0

vs

)2( n0

n∞

)2

− n0

n∞
+

√
	

]
, (32)

B ≡ 1

2

[
2 + 1

4

(
γ0

vs

)2( n0

n∞

)2

− n0

n∞
−

√
	

]
, (33)

	 ≡
[

n0

n∞
− 2 − 1

4

(
γ0

vs

)2( n0

n∞

)2
]2

−
(

γ0

vs

)2 n0

n∞
. (34)

From the above results and boundary condition (6), nL and ϕL

are determined by

nL = n(i)
in (x = L), ϕL = ϕ

(i)
in (x = L). (35)

Next, we consider the odd-function case. From this as-
sumption, we obtain �(x = 0) = 0. This means that the odd-
function solution does not depend on γ0 (see the descriptions
of the DS in Sec. III A). From the equation of continuity, the
current density is independent of x. In this case, J (x) = 0
because �(0) = 0. Therefore, the odd-function solution does
not carry a supercurrent and we can take �(x) as a real
function without loss of generality. The solution is given by

�out (x) = √
n∞ tanh

(
x − L + x0

ξ

)
eiϕ0 , (36)

�in(x) = √
n∞

√
2m0

1 + m0
sn

(√
2

1 + m0

x

ξ

∣∣∣∣∣m0

)
, (37)

where ϕ0 = 0 or π , and x0 and m0 are constants. ϕ0 and x0 are
determined by boundary condition (6):

tanh

(
x0

ξ

)
eiϕ0 =

√
2m0

1 + m0
sn

(√
2

1 + m0

L

ξ

∣∣∣∣∣m0

)
. (38)

Although the functional forms of the exact solution have
been derived, n0 (for the even-function case) and m0 (for
the odd-function case) have not been determined yet. These
variables can be determined by solving boundary condition
(7). Unfortunately, we cannot solve Eq. (7) analytically. We
solve Eq. (7) numerically. The details of the derivations of
these solutions are reported in Appendixes B and C.
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FIG. 4. State phase diagram of U0 vs L. Inset: Magnified view
around the type 4 region.

Here, we remark on the range of L. From Eqs. (26) and
(29), we can find that the inside solutions have periodicity
2K (m1)ξ/	1/4 and 2K (m2)ξ/	1/4 due to the properties of the
Jacobi elliptic functions, where K (·) is the complete elliptic
integral of the first kind. If L is much larger than these periods,
we can expect that there are solutions that oscillate multiple
times in the inside region. To avoid the complexity of the
problem, we restrict the range of L to 0 � L � 3.3, which
means that the number of oscillations in the inside region is
less than 1.

In the presence of double potential barriers, we find five
types of n0-γ0 diagrams. The parameter region for the n0-γ0

diagrams is shown in Fig. 4.
A typical type 1 diagram is shown in Fig. 5. In type 1,

we have two stable branches. One is the even function (upper
branch) and the other is the odd function (lower branch). The
type 1 solution tends to exist in a region where U0 is small.
This means that type 1 can be interpreted as perturbed U0 = 0
states. In fact, the n0-γ0 diagram in Fig. 4 is similar to that in
Fig. 2 except for the existence of the unstable PW branch.

Type 2 emerges in the region adjacent to type 1. A typical
n0-γ0 diagram is shown in Fig. 6. In type 2, we can see the
discontinuous jump between the upper branch and the lower
branch. A similar discontinuous jump has been observed in
experiments [18]. In contrast, there is no discontinuous jump
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FIG. 5. n0-γ0 diagram for U0 = 0.01gn∞ξ and L = 0.5ξ .

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

U0/gn∞ξ=0.7, L/ξ=1.5Type 2

n 0
/n

∞

γ0/vs

FIG. 6. n0-γ0 diagram for U0 = 0.7gn∞ξ and L = 1.5ξ . The
solid red and dotted blue lines represent the stable and unstable
states, respectively.

in the absence of potential barriers (see Fig. 2). This result
means that the discontinuous jump is due to the effects of
potential barriers.

We show a typical n0-γ0 diagram of type 3 in Fig. 7. In type
3, the upper and lower branches are completely separated.
We can see a saddle-node bifurcation in the upper branch,
in which two fixed points collide with each other and are
annihilated [64]. This behavior is similar to that of Josephson
junction systems. Theoretically, these systems have been stud-
ied using the GP equation or the Ginzburg-Landau equation
with a single potential barrier [44–62]. In fact, our system can
be regarded as a connection of two reverse Josephson junction
systems via local loss. The upper branch is reflected by the
properties of the Josephson junction, i.e., superfluidity.

Type 4 emerges in a narrow region surrounded by types 2,
3, and 5 (see inset in Fig. 4). A typical n0-γ0 diagram is shown
in Fig. 8. In type 4, the upper and lower branches are similar
to those of type 2 and one additional branch emerges between
the upper and the lower branches.

A typical n0-γ0 diagram of type 5 is shown in Fig. 9. Type
5 is located between type 1 and type 4. Type 5 is similar to
type 4 except for the upper branch. The upper branch of type
5 is similar to that of type 1.
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FIG. 7. n0-γ0 diagram for U0 = 1gn∞ξ and L = 2ξ . The solid
red and dotted blue lines represent the stable and unstable states,
respectively.
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From the above results, we can see the bistability for the
whole γ0 region in types 1 and 5 and partial regions in types 2,
3, and 4. The difference between the presence and the absence
of potential barriers is the existence of the discontinuous
jump, which can be seen in types 2, 3, and 4.

Comparing our results with the experimental ones, we find
that our results are in part inconsistent with the experiment
[18]. In the small-γ0 region, while only one stable state was
observed in the experiment, there are two stable states in our
model, one of which is the DS state. One possible reason for
this discrepancy is that the local particle loss is modeled as a
delta-function form.

C. Anomalous hysteresis

In addition to the bistability, the present system exhibits
a nontrivial hysteresis phenomenon, which is called anoma-
lous hysteresis [38–40]. A feature of anomalous hysteresis
is unidirectionality. In conventional hysteresis phenomena,
if we observe a discontinuous jump from an initial phase
to another phase upon changing the parameters sufficiently
slowly, another jump going back to the initial phase exists
along the reverse path in the parameter space. However, in
anomalous hysteresis, the discontinuous jump exists only
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FIG. 9. n0-γ0 diagram for U0 = 0.025gn∞ξ and L = 3ξ . The
solid red and dotted blue lines represent the stable and unstable
states, respectively.
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FIG. 10. Anomalous hysteresis process. The parameters are the
same as in Fig. 7.

in one direction. This phenomenon has been predicted in
quantum phase transitions of dipolar or multicomponent Bose
gases in an optical lattice [38,40] and frustrated magnets
[39], and it can be understood within the framework of the
Ginzburg-Landau theory.

Here, we focus on type 3. The processes of anomalous
hysteresis are shown in Fig. 10. First, we prepare the initial
state at point (1) shown in Fig. 10(a). Then we increase γ0

sufficiently slowly. When the dissipation strength reaches the
critical value, the discontinuous jump occurs from the upper
branch to the lower branch. After the discontinuous jump, we
decrease the dissipation strength and, finally, reach point (2)
shown in Fig. 10(a). Next, let us consider the inverse process;
that is, the initial state is point (2) in Fig. 10(b) and the goal
is point (1) in Fig. 10(b). However, this process is impossible
because the lowest branch is stable for the whole γ0 region.
This means that we cannot reach point (1) starting from
point (2) as long as we consider sufficiently slow changes of
the parameters. This is nothing but the anomalous hysteresis
phenomenon mentioned above.

Here, we discuss the time scale of changing parameters.
For example, let us consider the case shown in Fig. 10. The
energy difference between the upper stable branch and the
lower stable branch is given by the energy of the dark soliton,
which is of the order of the chemical potential. In the actual
experiments, the chemical potential is typically of the order
of 1 kHz. The inverse of this energy scale gives us the time
scale of changing parameters. Therefore, we should change
the parameters within a time scale slower than 1 ms. This
condition can be easily satisfied in cold-gas experiments. We
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also remark on the adiabatic condition of the system. The
adiabatic condition of the present system, which corresponds
to the condition where no excitation is present, is given by
the Bogoliubov excitation. We can roughly estimate the time
scale to be 100 ms for the system size O(10ξ ). This means
that Bogoliubov excitations are present in the experiment [18]
because the experimental time scale is shorter than 100 ms.
Nevertheless, the hysteresis loop can be clearly observed.
This indicates that the adiabaticity is not a necessary con-
dition but a sufficient condition for observing the hysteresis
loop.

At the end of this section, we discuss the feasibility of
observing anomalous hysteresis in experiments. Thus far,
anomalous hysteresis has not been observed experimentally
for the following reasons. In the case of dipolar or mul-
ticomponent Bose gases in an optical lattice [38,40], the
temperature in the optical lattice has not been lowered enough
to observe anomalous hysteresis. In the case of frustrated
magnets [39], it is difficult to tune the parameters to the
optimal values for observing anomalous hysteresis.

In contrast to the previous works, there is no difficulty with
our model in achieving sufficiently low temperatures and opti-
mal values of the parameters. However, anomalous hysteresis
has not been observed in experiments [18]. There are a few
possible reasons for this discrepancy. One is the effects of the
harmonic trap. The presence of the trap potential may affect
the hysteresis because it changes the boundary condition of
the system. In our systems, we fix the wave function as the
plane wave at ∞. This means that the particles are provided
from the bath. This situation is different from the experimental
setup, which is isolated from the environment except for
the local loss. We also remark that this boundary condi-
tion produces an additional nonlinearity. The combination of
the boundary conditions at ∞ and at the origin determines
the velocity at ∞ [see Eq. (25)]. The velocity depends on
the density at the origin. This constraint does not exist in the
experimental setup. This difference may affect the existence
of anomalous hysteresis. Another one is the effects of optical
lattices. The optical lattice extends over the entire system. In
contrast to this, in our system, the double delta potentials are
localized near the center of the system. This difference may
affect the hysteresis. In addition to these points, the width of
the local dissipation may affect the stability as discussed in
Sec. III B.

IV. SUMMARY AND FUTURE PROSPECTS

We have investigated the stability of a BEC with a local
one-body loss in double potential barriers by using the mean-
field approximation. We obtained the exact solutions of the
GP equation in the presence of delta-function potentials with
the pure imaginary and real coefficients, which are written by
the Jacobi elliptic functions. We showed that there is a wide
parameter region, in which two nonequilibrium steady states
are dynamically stable, i.e., our model exhibits bistability.
We also found the anomalous hysteresis phenomenon in our
system.

As a future plan, we will investigate the effects of the
width of the local dissipation and the optical lattice potentials.
These effects may change the stability of the present system.

By studying these effects, we may clarify the origin of the
bistability observed in the experiment.

It is interesting to extend our analysis to strongly correlated
regimes. Our model is based on the mean-field theory, which
can be justified only in weakly correlated regimes. Strongly
correlated nonequilibrium states are one of the most difficult
problems in various fields. As a topic related to bistability,
negative differential conductivity is theoretically studied by
using anti–de Sitter space and conformal field theory corre-
spondence [65].

Another extension is to consider the effects of local multi-
body losses, for example, two-body and three-body losses.
Particularly, controllable global two-body losses have been
realized using the photoassociation laser [20]. By developing
this kind of experimental technique, controllable local two-
body losses will be experimentally realized.
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APPENDIX A: STABILITY ANALYSIS

Here, we explain how to perform the stability analysis
of the stationary state. To do this, we investigate real-time
dynamics. However, we do not use Eq. (1) because of some
technical reasons described below.

The original problem is defined by an infinite-sized system.
However, this system is not tractable numerically. Instead
of considering infinite systems, we consider the finite-size
system (−Ls,+Ls ), where we take Ls to be about 100ξ . The
equation considered here is given by

ih̄
∂

∂t
ψ (x, t ) = [1 − i(x)]L(x, t )ψ (x, t ), (A1)

L(x, t ) ≡ − h̄2

2M

∂2

∂x2
+ U (x) − μ(t ) + g|ψ (x, t )|2, (A2)

μ(t ) ≡ gn∞ + 1
2 Mv(t )2, (A3)

v(t ) ≡ 1

2

n(0, t )

n∞
γ0, (A4)

(x) ≡ 2 + tanh

(
x − Ld

W

)
− tanh

(
x + Ld

W

)
, (A5)

where we have introduced the spatially varying dissipation
term (x). The reason we introduce the dissipation term is
to avoid effects of the reflection of the boundary, which does
not exist in the original problem. The functional form of the
dissipation (x) is the same as that used in Ref. [66]. The
parameters are set to Ld = Ls/2 and W = 10ξ . We note that
the choice of these parameters is insensitive to the results as
long as Ld and W � ξ are satisfied. We also introduce the
time dependence of the chemical potential to converge to the
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stationary solution at the long time. The boundary condition
at the edge of the system is given by

∂ψ (x, t )

∂x

∣∣∣∣
x=±Ls

= ∓i
Mv(t )

h̄
ψ (±Ls, t ). (A6)

We numerically solve Eq. (A1) by using the fourth-order
Runge-Kutta method. The centered difference method is used
for the space discretization. We use the number of meshes
Nx = 2001–64001. In this calculation, we approximate the
delta function as the Kronecker δ(x − x j ) 	 (1/	x)δi, j ,
where xi ≡ 	x × i [i = −(Nx − 1)/2, . . . ,+(Nx − 1)/2] and
	x is the mesh size. We write the discretized wave function
at mesh i and time t as ψi(t ). We have checked that the
analytically obtained stationary solutions and the numerically
obtained stationary solutions are in good agreement.

The procedure of the stability analysis is as follows. We
use the initial conditions as the exact solution plus small
random noise. That is, the initial condition is given by
ψ j (0) = ψexact (x j ) + εR

j + iεI
j , where ψexact (x j ) is the exact

solution at mesh j and εR
j and εI

j are real values. We
set −10−4 � εR

j , εI
j � 10−4. Then we numerically calculate

the real-time dynamics. After long-time evolution [typically
1000τ–10 000τ , where τ ≡ h̄/(gn∞)], we compare the final
state with the initial state.

A typical example of the time evolution is shown in
Fig. 11(a). We see the dynamics of n0(t ) for type 3. We can see
that the lowest branch (1) and uppermost branch (4), shown by
red lines, are stable against a small perturbation in the initial
states. On the other hand, branches (2) and (3), shown by blue
lines, are unstable. The instability sets in at t ∼ 6000τ for
branch (2) and t ∼ 20τ for branch (3), respectively. In order
to quantify the instability, we calculate the quantity [67]

λ(t ) ≡
∑

i |ψi(t ) − ψexact (xi )|2∑
i |ψi(0) − ψexact (xi )|2 , (A7)

where ψi(t ) is the wave function at mesh i at time t . When λ(t )
becomes exponentially large, dynamical instability occurs.
Figure 11(b) shows the time evolution of λ(t ) for the same
parameter as in Fig. 11(a). The results show that the values of
λ(t ) for branches (1) and (4) are less than 1 at all times, while
those for branches (2) and (3) are exponentially large after the
instability occurs. From these results, we can conclude that
branches (1) and (4) are stable and branches (2) and (3) are
unstable. In the same manner, we can judge the stability of the
exact solutions with other parameters.

APPENDIX B: DETAILS OF THE DERIVATION OF THE
EXACT SOLUTIONS FOR THE EVEN-FUNCTION CASE

In this Appendix, we describe the details of the derivation
of the exact solutions for the even-function case. As we
described in Sec. III B, it is sufficient to consider only the
region of x > 0.

First, we derive Eq. (25). From boundary condition (4) and
the equation of continuity (9), we obtain the current density in
stationary states as

J (x) = −sgn(x)n∞v∞, (B1)
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FIG. 11. (a) Time evolution of the type 3 n0 for U0 = 1gn∞ξ ,
L = 2ξ , and γ0 = 0.2vs. Red (blue) curves represent stable (unsta-
ble) states. Inset: Correspondence of the results, (1)–(4), with the
type 3 n0-γ0 diagram. (b) Time evolution of λ. The parameters are
the same as in (a).

where sgn(·) is the sign function. The boundary condition due
to the local loss potential (8) can be written as

dn(x)

dx

∣∣∣∣
x=+0

= 0, − h̄2

M

dϕ(x)

dx

∣∣∣∣
x=+0

= h̄γ0

2
, (B2)

where we have used the assumption of an even function. Using
the second Eq. (B2) and the expression of the current density

J (x = +0) = h̄

M
n(0)

dϕ(x)

dx

∣∣∣∣
x=+0

= −n∞v∞, (B3)

we obtain Eq. (25); v∞ = (n0/n∞)γ0/2.
Then we consider solving the GP equation. We define

C(x) ≡ h̄2

2M

∣∣∣∣d�(x)

dx

∣∣∣∣
2

+ μ|�(x)|2 − g

2
|�(x)|4. (B4)

It can be easily shown that C(x) is a constant for 0 � x � L
and x > L. Substituting �(x) = √

n(x)eiϕ(x) and J (x) into
Eq. (B4), we obtain

h̄2

4Mg

[
dn(x)

dx

]2

= n(x)3 − 2μ

g
n(x)2 + 2C(x)

g
n(x) − M

g
J (x)2.

(B5)
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FIG. 12. Schematic of the motion in the potential V (x). The
motion is possible in the region V (x) − E � 0. Arrows indicate the
directions of the motion.

Here, we consider the outside region (x > L). In this
region, we obtain C(x) = (1/2)gn2

∞ + Mv2
∞n∞ from the

boundary condition at x → ∞ (4). Equation (B5) in the
outside region reduces to

ξ 2

4

[
dnout (x)/n∞

dx

]2

=
[

nout (x)

n∞
− 1

]2
[

nout (x)

n∞
−

(
v∞
vs

)2
]
. (B6)

We mention that Eq. (B6) is related to the problem of
classical mechanics. Here, we consider a classical particle
under the potential V (x). In this case, the energy of the system
is given by

1

4

[
dx(t )

dt

]2

+ V (x(t )) = E

⇒ 1

4

[
dx(t )

dt

]2

= E − V (x(t )), (B7)

where x(t ) is the position of the classical particle at time t , we
set the mass of the particle to m = 1/2, and E is the total en-
ergy. When V (x) − E = −(x − 1)2(x − a) (0 < a < 1), this
equation has the same structure as Eq. (B6). We assume that
x(t → ∞) = 1, which corresponds to the boundary condition
of the density nout (x)/n∞ → 1 at x → ∞. From this, we
can obtain the information on the motion under the potential
V (x) in an intuitive way. Figure 12 shows the potential. From
Eq. (B7), the motion is possible only if V (x) − E � 0. Here,
we set the initial condition x(0) = b. When b � 1, we obtain
dx(t )/dt � 0. When b < 1, we have two cases: one is that
x(t ) is monotonically approaching 1, and the other is that x(t )
is bounced at x(t ) = a and goes to 1. The difference comes
from the sign of the initial condition dx(t )/dt |t=0.

From the above discussion, we can expect that there are
three types of solutions in the outside region. From Eq. (B6)
we obtain

±1

2

∫ n(x)/n∞

nL/n∞
dX

1

|1 − X |
√

X − (v∞/vs)2
= x − L

ξ
. (B8)

Here, we consider the case nL/n∞ < 1. In this case, we
can show nL � nout (x) � n∞ from Eq. (B6) and perform the
integral in Eq. (B8); then we obtain Eq. (21),

nout (x)

n∞
=

(
v∞
vs

)2

+
[

1 −
(

v∞
vs

)2
]

× tanh2

⎡
⎣

√
1 −

(
v∞
vs

)2 x − L + x+
ξ

⎤
⎦, (B9)

x+
ξ

= 1√
1 −

(
v∞
vs

)2

× tanh−1

⎡
⎣

√
nL/n∞ − (v∞/vs )2

1 − (v∞/vs )2

⎤
⎦. (B10)

To perform the integral, we used the integral formula∫
dx

1

(px + q)
√

ax + b

= 1√
(bp − aq)p

log

∣∣∣∣∣ p
√

ax + b − √
(bp − aq)p

p
√

ax + b + √
(bp − aq)p

∣∣∣∣∣,
(B11)

where this formula is valid for (bp − aq)p > 0. In the case of
nL/n∞ > 1, we can obtain a different solution, whose func-
tional form is given by replacing tanh with coth in Eq. (21).
However, we cannot find the parameter region where this
solution satisfies the boundary conditions. Therefore, we do
not consider the case nL/n∞ > 1 in the text.

The phase of the outside region can be obtained by inte-
grating Eq. (B3). Its expression is given by

ϕout (x) = ϕL − Mv∞(x − L)

h̄

− tan−1

[
G(x + x+)

v∞/vs

]
+ tan−1

[
G(L + x+)

v∞/vs

]
,

(B12)

G(x) =
√

1 −
(

v∞
vs

)2

tanh

⎡
⎣

√
1 −

(
v∞
vs

)2 x − L

ξ

⎤
⎦. (B13)

To perform the integral, we used the mathematical formulas

d

dx
tan−1[F (x)] =

dF (x)
dx

1 + [F (x)]2
, ei tan−1(x) = 1 + ix√

1 + x2
,

(B14)

where F (x) is a smooth function.
We can obtain the constraint of the velocity v∞ from the

above results. From Eq. (B6), nout (x)/n∞ � (v∞/vs)2 must
hold. Using nout (x)/n∞ � 1, we obtain the relation(

v∞
vs

)2

� 1 ⇒
(

γ0

vs

)2

� 4

(
n∞
n0

)2

. (B15)

This means that the velocity of the stationary solution is al-
ways subsonic. This is consistent with the well-known results
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FIG. 13. Schematic of the motion in the potential V (x). The motion is possible in the region V (x) − E � 0. Arrows indicate the directions
of the motion. In solution 4, there is one solution V (x) − E = 0, hence A and B = A∗ are complex.

for the condition of the existence of a gray soliton in uniform
systems.

Now, we consider the inside region (0 < x < L). Using the
first Eq. (B2), Eq. (25), and Eq. (B5), we can determine Cin ≡
C(x) (for x < L) in the inside region:

Cin

gn2∞
= 1

8

(
γ0

vs

)2 n0

n∞

+
[

1 + 1

8

(
γ0

vs

)2( n0

n∞

)2
]

n0

n∞
− 1

2

(
n0

n∞

)2

. (B16)

From Eq. (B16), we can rewrite (B5) in the inside region as

ξ 2

4

[
dn(x)/n∞

dx

]2

=
[

n(x)

n∞
− n0

n∞

][
n(x)

n∞
− A

][
n(x)

n∞
− B

]
, (B17)

where A and B were defined by Eqs. (32) and (33):

A = 1

2

[
2 + 1

4

(
γ0

vs

)2( n0

n∞

)2

− n0

n∞
+

√
	

]
, (B18)

B = 1

2

[
2 + 1

4

(
γ0

vs

)2( n0

n∞

)2

− n0

n∞
−

√
	

]
, (B19)

	 =
[

n0

n∞
− 2 − 1

4

(
γ0

vs

)2( n0

n∞

)2
]2

−
(

γ0

vs

)2 n0

n∞
. (B20)

We can integrate Eq. (B17) in a similar manner to the case
of the outside region. The corresponding potential of the
classical mechanics is given by

V (x) − E = −(x − x0)(x − A)(x − B). (B21)

In this case, the initial condition is given by x(0) = x0, which
corresponds to n(x = 0) = n0. To perform the integral, we
need to know the relation between A and B. When 	 � 0,
we obtain A � B from Eqs. (32), (33), and (34). Therefore,
we classify the solutions as four types: solution 1, 	 � 0,

B � x0 � A; solution 2, 	 � 0, x0 � B � A; solution 3,
	 � 0, B � A � x0; and solution 4, 	 < 0. The behavior of
the potential is shown in Fig. 13.

Here, we consider solution 1. From the inequalities 	 � 0,
B � n0/n∞ � A, and Eq. (B15), this solution exists in the
region(

γ0

vs

)2

� 8

1 + n0/n∞
and 0 � n0

n∞
� 1. (B22)

We plot the parameter region in Fig. 14. Solution 1 [Eq. (26)]
can be obtained by integration of Eq. (B17),

n(1)
in (x)

n∞
= A −

(
A − n0

n∞

)
nd2(	1/4x/ξ |m1), (B23)
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FIG. 14. Parameter region for each solution.

ϕ
(1)
in (x) = − 1

2A

n0

n∞

γ0

vs

x

ξ

− 1

2	1/4

γ0

vs

A − n0/n∞
A

× 
[m1A/(n0/n∞); am(	1/4x/ξ |m1)|m1],

(B24)

m1 = 1 − A − n0/n∞√
	

, (B25)

where we have used formula 17.4.63 in Ref. [63]. The phase
(B24) is also obtained by integrating Eq. (B3). To perform this
integral, we used the relations


(n; φ|m) =
∫ φ

0
dθ

1

(1 − n sin2 θ )
√

1 − m sin2 θ

=
∫ F (φ|m)

0
dy

1

1 − nsn2(y|m)
, (B26)


[n; am(x|m)|m] =
∫ x

0
dy

1

1 − nsn2(y|m)
, (B27)

where F (φ|m) is the incomplete elliptic integral of the first
kind.

The region where solution 2 exists is derived by 	 � 0,

n0/n∞ � B � A, and Eq. (B15):

8

1 + n0/n∞
<

(
γ0

vs

)2

� 4

n0/n∞
and

n0

n∞
� 1. (B28)

The expression of solution 2 is given by

n(2)
in (x)

n∞
= n0

n∞
+

(
B − n0

n∞

)
sn2(	1/4x/ξ |m2), (B29)

ϕ
(2)
in (x) = − 1

2	1/4

γ0

vs

× 


[
B − n0/n∞

n0/n∞
; am(	1/4x/ξ |m2)

∣∣∣∣m2

]
, (B30)

m2 = B − n0/n∞
A − n0/n∞

. (B31)

To obtain Eqs. (B29) and (B30), we used formula 17.4.62 in
Ref. [63].

The region of solution 3 is derived by 	 � 0, B � A �
n0/n∞, and Eq. (B15):

(
γ0

vs

)2

� 4(2 − n0/n∞)2

(n0/n∞)3
and 1 <

n0

n∞
� 4 (B32)

or

(
γ0

vs

)2

� 4

(n0/n∞)2
and 4 <

n0

n∞
. (B33)

The expression of solution 3 is given by

n(3)
in (x)

n∞
= n0

n∞
+

(
n0

n∞
− A

)
sc2

(
	1/4

√
m3

x

ξ

∣∣∣∣m3

)
, (B34)

ϕ
(3)
in (x) = −

√
m3

2	1/4

n0

n∞

γ0

vs

{
	1/4x

A
√

m3ξ

+ A − n0/n∞
An0/n∞

× 
[A/(n0/n∞); am(	1/4x/(
√

m3ξ )|m3)|m3]

}
,

(B35)

m3 ≡
√

	

A1 + √
	

, A1 ≡ −
(

A − n0

n∞

)
, (B36)

where sc(x|m) ≡ sn(x|m)/cn(x|m) and we have used formula
17.4.64 in Ref. [63].

The region of solution 4 is derived by 	 < 0 and
Eq. (B15):

4

n0/n∞
<

(
γ0

vs

)2

� 4

(n0/n∞)2
and

n0

n∞
� 1 or

(B37)

4(2−n0/n∞)2

(n0/n∞)3
<

(
γ0

vs

)2

� 4

(n0/n∞)2
and 1 <

n0

n∞
� 4.

(B38)

The expression of solution 4 is given by

n(4)
in (x)

n∞
= n0

n∞
+ A2

1 − cn
(

2
√

A2
x
ξ

∣∣∣m4

)
1 + cn

(
2
√

A2
x
ξ

∣∣∣m4

)
= n0

n∞
+ A2sc2(

√
A2x/ξ |m4)dn2(

√
A2x/ξ |m4),

(B39)

ϕ
(4)
in (x) = − 1

2
√

A2

n0

n∞

γ0

vs

1

m4A2(C+ − C−)

× {(C−1
+ − 1)
[C−1

+ ; am(
√

A2x/ξ |m4)|m4]

− (C−1
− − 1)
[C−1

− ; am(
√

A2x/ξ |m4)|m4]},
(B40)

063617-11



MASAYA KUNIMI AND IPPEI DANSHITA PHYSICAL REVIEW A 100, 063617 (2019)

where we have defined

A2 ≡
√√√√2

(
n0

n∞

)2

−
[

2 +
(

v∞
vs

)2
]

n0

n∞
+

(
v∞
vs

)2 n∞
n0

,

(B41)

m4 ≡ 1

2A2

[
A2 − 3n0

2n∞
+ 1 + 1

8

(
γ0

vs

)2( n0

n∞

)2
]
, (B42)

C± ≡ 1

2

(
D ±

√
D2 + 4n0/n∞

m4A2

)
, (B43)

D ≡ A2 − n0/n∞
m4A2

. (B44)

Here, we have used formulas 16.18.4 and 17.4.71 in Ref. [63].
What remains to be done is to determine the parameters nL,

ϕL, and n0 by connecting the inside and the outside solutions
via the boundary conditions. nL and ϕL are determined by the
first expression of Eq. (6), that is, n(i)

L = n(i)
in (x = L) and ϕ

(i)
L =

ϕ
(i)
in (x = L). The explicit expressions for the density are given

by

n(1)
L

n∞
= A −

(
A − n0

n∞

)
nd2(	1/4L/ξ |m1), (B45)

n(2)
L

n∞
= n0

n∞
+

(
B − n0

n∞

)
sn2(	1/4L/ξ |m2), (B46)

n(3)
L

n∞
= n0

n∞
+

(
n0

n∞
− A

)
sc2

(
	1/4

√
m3

L

ξ

∣∣∣∣m3

)
, (B47)

n(4)
L

n∞
= n0

n∞
+ A2sc2(

√
A2L/ξ |m4)dn2(

√
A2L/ξ |m4). (B48)

n0 is determined by boundary condition (8), which reduces to

h̄2

4M

[
dn(x)

dx

∣∣∣∣
x=L+0

− dn(x)

dx

∣∣∣∣
x=L−0

]
= U0n(L), (B49)

dϕ(x)

dx

∣∣∣∣
x=L+0

= dϕ(x)

dx

∣∣∣∣
x=L−0

. (B50)

Equation (B50) is automatically satisfied due to the expression
of the current density (B3). Equation (B49) reduces to

Sout (i)

∣∣∣∣∣n(i)
L

n∞
− 1

∣∣∣∣∣
√

n(i)
L

n∞
− 1

4

(
γ0

vs

)2( n0

n∞

)2

− Sin(i)

√√√√[
n(i)

L

n∞
− n0

n∞

][
n(i)

L

n∞
− A

][
n(i)

L

n∞
− B

]

= 2MξU0

h̄2

n(i)
L

n∞
, (B51)

Sout (i) ≡ sgn

[
dnout (x)

dx

∣∣∣∣
x=L

]
, (B52)

Sin(i) ≡ sgn

[
dn(i)

in (x)

dx

∣∣∣∣∣
x=L

]
. (B53)

Because n(i)
L is a function of n0, Eq. (B51) is a one-variable

equation of n0 for fixed γ0 and U0. Therefore, the problem
of solving the GP equation (nonlinear differential equation)
reduces to solving the one-variable equation (B51). Because
we cannot obtain the analytical solutions of Eq. (B51), we
solve this equation numerically.

As mentioned in the text, we cannot find the parameter re-
gion where solutions 3 and 4 satisfy the boundary conditions.
This means that n0/n∞ moves only 0 � n0/n∞ � 1.

APPENDIX C: DETAILS OF THE DERIVATION OF THE
EXACT SOLUTIONS FOR THE ODD-FUNCTION CASE

In this Appendix, we show the expression of boundary
condition (7) for the odd-function case. Substituting Eqs. (36),
(37), and (38) into Eq. (7), we obtain

eiϕ0

1 + m0

[
1 + m0 − 2m0sn2

(√
2

1 + m0

L

ξ

∣∣∣∣∣m0

)]

− 2
√

m0

1 + m0
cn

(√
2

1 + m0

L

ξ

∣∣∣∣∣m0

)
dn

(√
2

1 + m0

L

ξ

∣∣∣∣∣m0

)

= 2MU0ξ

h̄2

√
2m0

1 + m0
sn

(√
2

1 + m0

L

ξ

∣∣∣∣∣m0

)
, (C1)

where ϕ0 has been determined by Eq. (38).
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