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Positronium Bose-Einstein condensation in liquid 4He bubbles
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A hollow spherical bubble containing thousands of spin-aligned triplet positronium (Ps) atoms in superfluid
liquid 4He would be stable against breakup into smaller bubbles, and the Ps would form a Bose-Einstein
condensate (BEC) with a number density of ∼1020 cm−3 and a BEC critical temperature Tc ≈ 300 K. Estimates
suggest that one could make such bubbles in the laboratory containing 105 Ps atoms using presently known
methods.
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I. INTRODUCTION

Positronium (Ps) is the hydrogenlike bound state of an
electron and its positron antiparticle. The ground state of Ps
is split into (1) a singlet with a mean lifetime for decay into
two 511-keV photons of 125 ps; and (2) a triplet state with a
142-ns mean lifetime for decay into three photons with total
energy of 1022 keV [1,2]. Hollow bubbles in liquid helium
containing single positronium atoms were discovered in 1957
when Ferrell’s bubble model [3] explained the long lifetimes,
nearly the same as the vacuum triplet-Ps lifetime, that had
been observed for positrons annihilating in liquid 4He [4,5].
Analogous bubbles containing single electrons were eluci-
dated in 1961 [6] and single-Ps cavities [7] and electron
cavities [8] were discovered in He vapor at low temperatures.
Bubble states of single alkali-metal and alkaline-earth-metal
atoms in liquid helium have recently been demonstrated theo-
retically [9]. The existence of these different kinds of bubbles
is attributed to the Pauli exclusion principle [10,11], whereby
the filled He 2S electron shell strongly repels both free elec-
trons and electrons bound in Ps or other atoms. At a pressure
of 1 atm, a bubble containing a single electron in liquid
helium has a bubble inner radius of (1.72 ± 0.02) nm and an
effective mass of about 200 4He masses [12,13] that is nearly
the same as the mass of the ∼270 helium atoms comprising
the innermost layer of the bubble. A Ps bubble has a nearly
identical radius measured to be (1.73 ± 0.13) nm [14,15], and
thus will likely have nearly the same effective mass as an
electron bubble. The similar physics of electron and positro-
nium scattering at low energies [16,17] and the similarity
of single-electron and single-Ps atom bubbles suggest the
possibility of forming bubbles in liquid He containing many
Ps atoms. The existence of multielectron bubbles [18–21] in
which the electrons form a two-dimensional gas on the inner
surface of the bubble means that that these structures might be
prepared as needed and filled with Ps [22]. Analogous bubbles
filled with spin-polarized atomic hydrogen (H↓) and with
dimensions on the order of 100 μm and densities of 1019 cm−3

have been produced in liquid He [23,24].
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If formed from partially spin-polarized positrons, the
minority-spin Ps atoms in a many-Ps bubble would decay via
collisions with other Ps atoms via spin exchange [25] followed
by two-photon electron-positron annihilations. The calcula-
tions that follow suggest that this would result in the remain-
ing Ps forming a single-component triplet-Ps Bose-Einstein
condensate (BEC) [26–28] with a critical temperature of about
300 K. Such a route to a Ps BEC would have the unique advan-
tage of self-assembled containment for the BEC, unlike for the
case of the even more exotic proposed muonic hydrogen BEC
[29]. The time for Ps to cool to less than 100 K in liquid He is
likely to be much less than the 125 ps singlet Ps lifetime [14]
and would be orders of magnitude faster than in containers
made of ordinary materials [30–32]. The Ps-wall interactions
[33] would be very well understood and one might produce
BEC’s extended in one dimension that would be suitable for
observing stimulated annihilation [34,35]. Ps BEC bubbles
could also be manipulated in interesting ways using acoustic
cavitation [36]. For example, a bubble of 1-μm radius and
containing 108 Ps atoms could in principle be compressed
in a few ps to a 100-nm radius by an imploding spherical
acoustic wave to produce a neutral pair plasma [37–42] with
an electron density equal to that of metallic sodium.

II. BUBBLE PARAMETERS

The radii of Ps bubbles in liquid 4He can be calculated
following the method of Ferrell [3] who found the radius
of a single-Ps bubble by minimizing the total energy. The
latter was taken to be the sum of the zero-point energy of
the Ps atom confined by the infinite potential walls of a
hollow sphere of radius r, E0 = π2h̄2/4mer2, plus the bubble
surface energy ES = 4πr2σ , where σ is the surface tension,
σ = 0.95 × 10−4 J m−2 at 4.2 K and 3.1 × 10−4 J m−2 at
2.0 K [43,44]. Including the contribution of the hydrostatic
pressure p, the total energy is

Etotal = π2h̄2/4mer2 + 4πr2σ + 4
3πr3 p. (1)

At 1 atm pressure this equation predicts that the equilibrium
single-Ps bubble radii are r = 1.51 nm at 2.0 K and r =
1.73 nm at 4.2 K; with zero pressure, the equilibrium radii
are 1.67 nm at 2.0 K and 2.24 nm at 4.2 K.
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The size of a multi-Ps BEC bubble in liquid 4He may
be calculated in a similar manner except that the zero-point
energy is replaced by E0, the weak scattering approximation
of the ground-state energy of a BEC within a spherical poten-
tial well of infinite height, radius r, and volume V containing
N identical Bose particles of mass mPs characterized by a
positive s-wave scattering length a [45]:

E0 = 2π h̄2aN2

mPsV
= 3h̄2aN2

2mPsr3
. (2)

This expression should be valid provided a/λ and na3 are both
much smaller than 1 [46], where λ =

√
2π h̄2/mPskT is the Ps

thermal de Broglie wavelength at a temperature of 2 K and n is
the Ps number density n < 1021cm−3. Under these conditions
both a/λ and na3 are less than 0.003. The radius for a triplet-
Ps BEC bubble is then found by minimizing the total energy

Etotal = 3h̄2aN2

2mPsr3
+ 4πr2σ + 4

3
πr3(p − pvap), (3)

and the pressure term now includes a correction for the vapor
pressure of the Ps gas [47]:

pvap = kT

λ3
g5/2(1) = (mPs/2π h̄2)3/2(kT )5/2g5/2(1). (4)

Here, g5/2 [Eq. (1)] = 1.341 49 . . . and the vapor pressure will
be <0.13 atm for Ps temperatures less than 100 K.

Using the triplet-Ps–triplet-Ps scattering length a = 3.00
aBohr [48] and the surface tension σ = 3.1 × 10−4 J m−2 at
2.0 K, we calculate in Fig. 1 the bubble radius r and the
number density n of triplet m = 1 Ps atoms as a function of the
total number of Ps atoms N for various hydrostatic pressures,
neglecting the Ps vapor pressure. For slightly negative pres-
sures, the bubbles become unstable at high values of N . For
N > 105 and at a positive hydrostatic pressure of 1 atm the Ps
number density is nearly constant, n = 1.3 × 1020 cm−3,
for which the BEC critical temperature would be Tc ≈ 370 K.
We thus see that even if the Ps does not immediately thermal-
ize to below 100 K, it is still going to Bose-Einstein condense
with the fraction of the atoms in the ground state of the bubble
given by

fcondensed = 1 − (T/Tc)3/2 > 0.8. (5)

Since the bubble energy is positive, one might wonder about
the stability against breakup of a large bubble into smaller
bubbles. If the pressure is zero, Eq. (3) implies that a bubble
containing N Ps atoms has positive energy E (N ) = A(N )4/5

where A = 5.148 × 10−21 J. A bubble with 2N particles has
energy

E (2N ) = A(2N )4/5 = 24/5E (N ) = 1.74E (N ), (6)

A bubble with 2N particles has 13% less energy than the sum
of the energy of two separate bubbles with N particles each,
and therefore a large bubble is stable to break up into two
smaller ones. The concomitant heating of the Ps due to the
merging of two bubbles of 105 Ps each would be about 3 K.
This temperature rise would have little effect on the merged
Ps state since the temperature rise is small compared to the
BEC critical temperature ∼300 K.
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FIG. 1. Calculated bubble radius r and Ps number density n at
2 K as a function of the total number of BEC Ps atoms N for various
pressures neglecting the vapor pressure of the Ps gas. Note that the
plots are on log-log scales.

It is interesting that bubbles containing N Ps atoms as well
as Z electrons on the inner surface can also be stable and might
be useful for manipulating Ps bubbles with electric fields. The
bubble radius may be calculated by including the electrostatic
part of the electronic energy Eelectron = Z2e2/(8πε0κr) [19] in
the expression for Etotal in Eq. (3).

III. SIGNATURE OF A Ps BEC BUBBLE

An experimental signature for distinguishing a state con-
sisting of many single-Ps bubbles versus the same number of
100% spin-polarized Ps atoms in a few large BEC bubbles
is that the lifetime of the first is (91 ± 5) ns [4], while the
lifetime of the BEC state would be within a few percent
of the 142-ns vacuum lifetime of triplet Ps [49]. This is
because the decay rate due to collisions of the Ps with the
He atoms of the bubble wall would be a negligible factor of
N−1/3 ≈ 0.1–0.01 times the wall component of the single-Ps
bubble decay rate ∼4 μs−1.

A superior signature of a Ps bubble BEC would be to
observe the angular correlation of the two-photon annihila-
tions induced by suddenly (∼10 ns) applying a 1-T magnetic
field transverse to the polarization direction. The annihilation
photon pairs from the BEC state Ps would be essentially
perfectly anticollinear compared to the 60-μrad full width at
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half-maximum expected from the two-photon annihilations
of Ps with a thermal distribution of velocities at 2 K. This
signature could be acquired using a multicounter detector for
measuring the angular correlation of annihilation radiation
[50,51]. A third signature of the Ps BEC would be the obser-
vation of a very narrow resonance (∼10 GHz FWHM) using
copropagating two-photon 1S-2S spectroscopy [52].

IV. PRODUCTION OF Ps BEC BUBBLES

We now consider how one might produce a multi-Ps bubble
beginning with the trapping [53] and accumulation [54] of
100-ns pulses of 3 × 107 monoenergetic 5-keV partially spin-
polarized positrons. These pulses would first be focused to a
50-μm spot on a Ni(100) single-crystal positron remoderator
[55–57] in vacuum. The positrons will be about 28% polarized
along their velocity direction [58]. At the exit side of the Ni
crystal, approximately 15% of the positrons are reemitted with
energies of 1.0 eV and an energy spread of ∼40 meV [59].
The 4 × 106 remoderated [55] positrons will be accelerated
to 5 keV, and implanted into a spot of area 0.5 μm2 on a
diamond film of thickness 250 nm, as indicated in Fig. 2. The
median positron stopping depth will be ∼130 nm [60] and
the positrons will stop in a broad distribution about the mean.
From the measured mobility of positrons in natural diamond
at 100 K, μ+ ≈ 240 cm2 V−1 s−1 [61], we find the positron
diffusion coefficient from the Einstein-Smoluchowski rela-
tion D = μkBT/e = 2.1 cm2 s−1. This implies that thermal-
ized stopped positrons diffuse a mean distance corresponding
to halfway across the diamond film in their mean lifetime
(97.5 ± 1.5) ps in isotopically pure diamond [62]. About 20%
of the incoming positrons will be emitted into the liquid He
in the form of Ps at the diamond exit surface with energies
from 0 to 3 eV [63]. About 14% of these (half of the 28%
positron polarization), or 105 pure m = 1 triplet-Ps atoms,
will survive the ensuing spin exchanging collisions. The emit-
ted Ps, indicated by the shaded area in Fig. 2, will immedi-
ately form single-Ps bubbles which then coalesce into ever
larger bubbles [64]. Note that the Ps-He total cross section at
0–1 eV is ∼12πa2

0≈1.0 × 10−15 cm2 [33]. At 1 eV, the Ps
velocity is ∼6 × 107 cm s−1. The liquid He number density is

4x106 incoming
5 keV positrons

250 nm Diamond film

1.5 K 
Superfluid 
liquid 4He 

105 0-3eV triplet 
m=+1 Ps atoms BEC Ps

bubbles

FIG. 2. Geometry of a target for forming BEC positronium bub-
bles in superfluid He. Energetic positrons stop in a thin diamond
film. The positrons thermalize and diffuse to the back surface of the
film, and are emitted into the He as positronium which collects into
bubbles.

nHe = 1.88 × 1022 cm−3, so the Ps mean-free path at 1 eV
is (nHeσ )−1 = ∼0.5 nm and the Ps slowing down time to
0.1 eV or so for say 1000 collisions is ∼1 ps. Assuming the Ps
scatters randomly in the He, it will thus have many chances to
form a single-Ps bubble.

We now have to ask the following: (1) Is a 100-ns timescale
sufficient for the organization of this collection of Ps and He
atoms into one or more multi-Ps bubbles? (2) Is the thermal
conductivity of the superfluid He sufficient to remove the heat
of the positronium injection and thermalization? The answer
to the first question is probably “yes” since the displaced
He atoms in forming a large bubble will only have to move
∼100 nm in 10−7 s, which corresponds to an average velocity
v ≈ (100 nm)/(10−7 s) = 1 m/s, much less than the speed of
sound in liquid He which is 234 m/s at 1.5 K [65].

To answer the second question, we need to determine the
fate of the energy of 4 × 106 5-keV positrons deposited in
the diamond film Ediamond = 3.2 × 10−9 J, and the energy of
105 1-3 eV Ps atoms deposited in the liquid He, ELHe = 2.4 ×
10−14 J. The corresponding heat fluxes for a 100-ns deposition
time and area 0.5 μm2 are Fdiamond = 6.4 × 106 W cm−2and
FLHe = 48 W cm−2. The thermal diffusion coefficient in iso-
topically pure diamond [66] is 104 cm−2 s−1 below 100 K
so the implantation energy will be spread out to a radius of
300 μm in 10−7 s and the heat flux into the liquid He will be
reduced to 30 W cm−2. In superfluid 4He the maximum heat
flux that can be tolerated between two points that are separated
by a distance L at 1.8 and 2.17 K is [67,68]

q̇λ = 5.5 W cm−2 × [(1 cm)/L]0.294. (7)

For L = 250 nm, q̇λ = 124 W cm−2, which should be suf-
ficient to carry away the energy of both the Ps atoms and the
stopping positrons.

The diffusion coefficient for single-Ps atom bubbles in
liquid He may be found from the fluctuation-dissipation rela-
tion. In particular, the Stokes-Einstein relation for diffusion of
spherical particles through a liquid with low Reynolds number
says the diffusion coefficient D is related to the viscosity η by

D = kBT

6πηr
. (8)

For a Ps bubble of radius 2 nm in liquid He-II at 1.6 K where
the viscosity is η = 1.3 × 10−6 Pa s [69,70], the diffusion
coefficient is

D = 4.5 × 10−5 cm2 s−1. (9)

From this we determine that the single-Ps bubble diffusion
length in pure liquid He is λ = √

Dt = 7 nm for t = 10 ns
and 20 nm for t = 100 ns. The mean-free path for single-
Ps bubble-bubble collisions is thus such as to lead to the
conclusion that bubble coalescence will be rapid. On the
contrary, a 100-nm radius bubble moves only 2 pm in 100 ns in
response to the buoyancy force of the liquid He. This implies
that there should be ample time for the coalescence of many
single-Ps bubbles into one or a few many Ps bubbles.

V. UTILITY OF Ps BEC BUBBLES

It is interesting to ask if one might scale up the Ps bubble
BEC concept to obtain evidence for stimulated annihilation.
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First, we need a means for flipping a triplet-Ps BEC into
the singlet state in a time shorter than the 125-ps singlet-Ps
lifetime so that the entire collection of Ps atoms may decay
into two photons at about the same time. In principle, one
could accomplish this by adiabatic rapid passage [71] using a
swept frequency pulse of RF that passes through the 203-GHz
Ps 1 3S1 → 1 1S0 resonance [72].

The exactly on-resonance cross section for the single-
photon stimulated two-photon annihilation of an individual Ps
atom [73] is σ = 10−20 cm2. However, when the nominal
stimulated gain is less than one,

Gnominal ≡ l〈n〉σ < 1, (10)

the effective gain for a photon traveling a distance l through a
BEC of average 1S0 Ps density 〈n〉 will be [34,35]

Gbelow threshold =
√

l〈n〉σ . (11)

This amazing prediction of larger than expected gain in the
below threshold limit would imply that experimental evidence
for stimulated annihilation might not be so difficult to attain,
requiring as few as 109 BEC singlet-Ps atoms in a suitable
geometry.

VI. CONCLUSIONS

The number density of a gas of spin-polarized Ps contained
within a hollow spherical bubble in liquid helium has been
calculated as a function of the number of Ps atoms N and
applied pressure. The contained Ps gas should be a Bose-

Einstein condensate with its temperature not far from that of
the liquid He and with a BEC critical temperature greater than
300 K. It appears that bubbles with N ≈ 105 could be created
and the Ps momentum distribution measured using current
technology. Further developments could lead to experiments
demonstrating stimulated annihilation. The many-Ps bubbles
should make possible the reproducible production not only of
a BEC, but also of various states of the neutral e+-e− plasma
[74] that might appear upon sudden compression to higher
densities.

The above discussion has introduced a well-defined set of
many-positronium systems, the N th member of which con-
sists of N spin-polarized Ps atoms confined within a hollow
spherical bubble of radius r(N ) (see Fig. 1) in liquid He
at a standard temperature and pressure. Born from Ferrell’s
original concept of the single-Ps bubble in liquid He [3], the
members of this endless set may be thought of as cousins of
Wheeler’s polyelectron series, Ps, Ps−, Ps+, …[75] which
terminates at Ps2 [76]; the spherical He bubble walls make
up for the lack of chemical binding that brings the original
polyelectron series to an end [77].
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