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Perfect transmission of Higgs modes via antibound states
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We study tunneling properties of Higgs modes in superfluid Bose gases in optical lattices in the presence of
a potential barrier introduced by local modulation of hopping amplitude. Solving the time-dependent Ginzburg-
Landau equation, Higgs modes are found to exhibit perfect transmission through a potential barrier if the barrier
strength is weak. There exists, on the other hand, localized Higgs bound states in the presence of a strong
potential barrier. We find that the perfect transmission disappears at the critical barrier strength above which one
of the odd antibound states turns into a true bound state. We demonstrate that the perfect transmission of Higgs
modes is mediated by resonance with the antibound states of Higgs modes.
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I. INTRODUCTION

Spontaneous symmetry breaking is a central concept in
condensed-matter physics. Two types of collective mode
emerge in association with spontaneous breaking of contin-
uous symmetries. One is the Nambu-Goldstone (NG) mode
[1,2] and the other is the Higgs mode [3,4]. The NG mode
is a gapless excitation that arises from phase fluctuation
of the order parameter. Nambu-Goldstone modes dominate
low-energy properties of the system and have been studied
in various condensed-matter systems. On the other hand,
the Higgs mode is a gapped mode that involves amplitude
fluctuation of the order parameter. Since it is difficult to excite
and probe Higgs modes selectively, it is only recently that
experimental progress has enabled systematic investigation of
Higgs modes in condensed-matter systems [5].1 In particular,
Bose superfluids in optical lattices offer an ideal playground
for investigating various aspects of Higgs modes due to the
high controllability of the system [6,7].

The tunnel effect is a pure quantum-mechanical phe-
nomenon and has attracted much interest. Collective modes
exhibit interesting tunneling properties that are very different
from those of single particles. For example, NG modes in
Bose-Einstein condensates (BECs) have been predicted to
perfectly transmit a potential barrier in the low-energy limit,
which is referred to as anomalous tunneling [8–12]. It has
been found that NG modes in Bose superfluids in optical
lattices cause Fano resonance mediated by Higgs bound states
when they tunnel through potential barriers [13]. However,
little is known about tunneling properties of Higgs modes.

In the present paper, extending our recent work [13],
we study tunneling of Higgs modes in Bose superfluids in
optical lattices. Solving the time-dependent Ginzburg-Landau
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1For recent progress in the study of Higgs modes in condensed-

matter systems, see, for example, Ref. [5].

(TDGL) equation that describes the superfluid dynamics in the
vicinity of the phase boundary to the Mott insulating state, we
show that Higgs modes perfectly transmit a potential barrier
introduced by local modulation of the hopping amplitude
when the barrier potential is weak. The perfect transmission
does not occur for a strong potential barrier when the odd
bound state of Higgs modes exists. We investigate the origin
of the perfect transmission and find that it is mediated by the
antibound states of Higgs modes.

This paper is organized as follows. In Sec. II we intro-
duce the Bose-Hubbard (BH) model and the TDGL equation
including the effects of external potentials. In Sec. III we
study the tunneling problem of Higgs modes solving the
TDGL equation in the presence of a δ-function potential and
a rectangular potential. We show that perfect transmission of
Higgs modes occurs and discuss the origin of it relating it to
the antibound states. In Sec. IV the results are summarized.

II. MODEL

We consider bosons trapped in a cubic optical lattice. They
are well described by the tight-binding BH model [14,15]

H = −
∑
i, j

Ji, jb
†
i b j −

∑
i

μib
†
i bi + U

2

∑
i

b†
i b†

i bibi. (1)

The vector i ≡ ∑d
α=1 iαeα denotes the lattice site, where iα is

an integer, d is the spatial dimension, and eα is a unit vector in
the direction α. In addition, b†

i (bi) is a creation (annihilation)
operator of bosons at site i and U > 0 is the on-site repulsive
interaction. The chemical potential μi ≡ μ0 − Vi includes the
homogeneous contribution μ0 and the external potential Vi.
Further, Ji, j = ∑

α (J (α)
j δi, j+eα

+ J (α)
j−eα

δi, j−eα
) is the hopping

matrix element between adjacent sites, where J (α)
j denotes the

hopping amplitude between sites j and j + eα . We neglect the
harmonic trapping potential for simplicity. We set h̄ = 1 and
assume zero temperature throughout the paper.

In previous work [13] we proposed to study tunneling
effects of the NG mode in the superfluid phase by introducing
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the local shift of the chemical potential Vi and hopping am-
plitude J (α)

i independently. The former can be introduced by
imposing an optical dipole potential, while the latter can be
introduced by imposing an additional lattice potential in the
Gaussian profile with the same lattice spacing as that of the
overall potential (see Fig. 3 in Ref. [13]). A local potential
barrier that modulates the hopping amplitude locally can be
created also by using a digital micromirror device [16]. In this
paper we focus on the latter for simplicity and set Vi = 0. We
further assume the inhomogeneity of the hopping only in the
x direction: J (α)

i = J + J ′
i1δα,1. The system is assumed to be

homogeneous in the y and z directions.
The TDGL equation that governs the dynamics of the

superfluid order parameter ψ (x, t ) can be derived in the vicin-
ity of the superfluid–Mott-insulator (SF-MI) transition point
by taking the low-energy and continuum limit [14,17]. The
TDGL equation including the effects of the inhomogeneous
hopping reads [13]

iK0
∂ψ

∂t
− W0

∂2ψ

∂t2
=

(
− ∇2

2m∗ + r0 + vr + u0|ψ |2
)

ψ, (2)

where K0, W0, r0(<0), m∗, and u0 are functions of the original
parameters in the BH model (J, μ0,U ) (their expressions are
given in Appendix A in Ref. [13]). Here vr (x) ≡ −2J ′(x)
represents the potential due to the inhomogeneous hopping in
the continuum limit J ′

i → J ′(x).
We assume a commensurate filling, which results in the

approximate particle-hole symmetry in the vicinity of the
SF-MI transition point [18–20]. Since the TDGL equation
should be invariant under the charge-conjugation transforma-
tion ψ ↔ ψ∗ in the presence of the particle-hole symmetry,
the first-order time-derivative term should vanish K0 = 0.
Thus, Eq. (2) reduces to the nonlinear Klein-Gordon equation
in the relativistic field theory [3] that exhibits the emergent
Lorentz invariance.

We employ the TDGL equation in the dimensionless form

−∂2ψ̃

∂ t̃2
=

(
−∇̃2

2
− 1 + |ψ̃ |2 + ṽr

)
ψ̃, (3)

where the variables are normalized as

ψ̃ = ψ/(|r0|/u0)1/2, t̃ = t (|r0|/W0)1/2,

x̃ = x/ξ, ṽr = vr/|r0|,
(4)

with ξ ≡ (m∗|r0|)−1/2 the healing length. Hereafter, we omit
the tilde.

We consider fluctuations of the order parameter ψ (x, t )
around its static solution ψ0(x),

ψ (x, t ) = ψ0(x) + U (x)e−iωt + V (x)∗eiωt . (5)

Here S(x) ≡ U (x) − V (x) ∝ δθ (x) and T (x) ≡ U (x) +
V (x) ∝ δn(x) represent phase and amplitude fluctuations of
the order parameter, respectively. In addition, ψ0(x) satisfies
the static Gross-Pitaevskii (GP) equation [21](

−∇2

2
− 1 + |ψ0(x)|2 + vr (x)

)
ψ0(x) = 0. (6)

The equations for phase and amplitude fluctuations read,
respectively,(

−∇2

2
− 1 + |ψ0(x)|2 + vr (x)

)
S(x) = ω2S(x), (7)(

−∇2

2
− 1 + 3|ψ0(x)|2 + vr (x)

)
T (x) = ω2T (x). (8)

Equations (7) and (8) demonstrate that phase and amplitude
fluctuations are uncoupled due to the particle-hole symmetry
[22].

Without the potential barrier (vr = 0), assuming plane-
wave solutions (S(x), T (x)) = (Sk, Tk)eik·x, we obtain the dis-
persion relations for the NG and Higgs modes as, respectively,

ω2 = k2

2
,

ω2 = k2

2
+ 	2. (9)

The NG mode indeed has a gapless dispersion, while the
Higgs mode has the energy gap 	 = √

2. Since phase and
amplitude are uncoupled, the NG and Higgs modes involve
pure phase and amplitude oscillations, respectively.

III. TUNNELING PROBLEM OF HIGGS MODES

We study tunneling problem of Higgs modes through a
potential barrier vr (x). Since the static order parameter ψ0(x)
is assumed to be homogeneous in the y and z directions, the
GP equation reduces to[

−1

2

d2

dx2
− 1 + |ψ0(x)|2 + vr (x)

]
ψ0(x) = 0. (10)

We assume the plane wave forms in the y and z directions as

S(x) = S1D(x)eik‖·x‖ , (11)

T (x) = T1D(x)eik‖·x‖ , (12)

where k‖ = (ky, kz ) and x‖ = (y, z). In the following analysis,
we assume that the NG and Higgs modes propagate only in
the x direction, i.e., k‖ = 0. Thus, Eqs. (7) and (8) reduce to[

−1

2

d2

dx2
− 1 + |ψ0(x)|2 + vr (x)

]
S1D(x) = ω2S1D(x), (13)

[
−1

2

d2

dx2
− 1 + 3|ψ0(x)|2 + vr (x)

]
T1D(x) = ω2T1D(x). (14)

We henceforth denote S1D(x) and T1D(x) by S(x) and T (x) for
brevity.

A. The δ-function potential barrier

We first study tunneling of Higgs modes across a δ-
function potential barrier vr (x) = Vrδ(x) (Vr > 0). Note that
any potential barrier that spatially varies in the order of the
lattice spacing can be approximated as a δ-function potential
in the vicinity of the phase boundary with the MI phase,
where the healing length ξ gets much larger than the lattice
spacing. The analytic solution of Eq. (10) under the δ-function
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potential [23] is given by

ψ0(x) = tanh(|x| + x0), (15)

where x0 is determined by the boundary conditions at x = 0,

ψ0(−0) = ψ0(+0), (16)

dψ0

dx

∣∣∣∣
+0

− dψ0

dx

∣∣∣∣
−0

= 2Vrψ0(0). (17)

We thus obtain

tanh(x0) = −Vr

2
+

√
V 2

r

4
+ 1 ≡ η. (18)

Note that η = ψ0(0), which is the amplitude of the order
parameter under the barrier, satisfies 0 � η � 1. Here η de-
creases from η(Vr = 0) = 1 with increasing Vr and has the
asymptotic form η ∼ 1/Vr as Vr � 1.

We consider tunneling of Higgs modes through the δ-
function potential barrier. We assume that Higgs modes with
energy E � 	 and wave vector k = √

2
√

E2 − 	2 are in-
jected from x → −∞. The solution of Eq. (14) can be written
in a linear combination of the plane waves on a static kink
condensate [13,24] as

T (x) =
⎧⎨
⎩

3ψ2
0 +3ikψ0−k2−1

2+3ik−k2 eikx + rh
3ψ2

0 −3ikψ0−k2−1
2−3ik−k2 e−ikx (x < 0)

th
3ψ2

0 −3ikψ0−k2−1
2−3ik−k2 eikx (x > 0).

(19)

Here th and rh denote the transmission and reflection ampli-
tudes, respectively. The asymptotic form of Eq. (19) far away
from the potential barrier is given by

T (x) →
{

eikx + rhe−ikx (x → −∞)
theikx (x → ∞).

(20)

The reflection and transmission probabilities of Higgs modes
are given by R ≡ |rh|2 and T ≡ |th|2, respectively. They
satisfy the conservation law R + T = 1.

The coefficients rh and th are determined so as to satisfy
the boundary conditions

T (−0) = T (+0), (21)

dT

dx

∣∣∣∣
+0

− dT

dx

∣∣∣∣
−0

= 2VrT (0). (22)

From the above conditions, the transmission amplitude of
Higgs modes can be calculated as

th = eiδ ik(k2 + 1)(k2 + 4)

(c1 + Vrc2)c2
, (23)

where

eiδ = (2 − 3ik − k2)/(2 + 3ik − k2), (24)

c1 = ik3 − 3ηk2 − ik(6η2 − 4) + 6η(η2 − 1), (25)

c2 = −k2 − 3iηk + 3η2 − 1. (26)

FIG. 1. Transmission probability of Higgs modes T through a δ-
function potential Vrδ(x) = Vrδ(x) (Vr > 0) as a function of the wave
vector of the injected Higgs mode k for various values of the barrier
strength Vr . The horizontal axis is in units of ξ−1.

We thus obtain the transmission probability T (k) = |th|2 as

T −1
h = 1 + V 2

r

(k2 + 1 − 3η2)2(k2 + 1 + 3η2)2

k2(1 + k2)2(4 + k2)2
. (27)

Equation (27) shows that a perfect transmission (T = 1)
occurs at kc =

√
3η2 − 1 if the strength of the potential bar-

rier is smaller than the critical value Vr � 2/
√

3 ≡ V c
r (η �

1/
√

3). Figure 1 shows the transmission probability (27) as a
function of k for various values of Vr . It exhibits the perfect
transmission at kc for weak potential barriers (0 < Vr � V c

r ).
It is remarkable that the perfect transmission occurs in the
long-wavelength limit k → 0 at the critical barrier strength
V c

r . For strong potential barrier Vr > V c
r , perfect transmission

no longer takes place.
The origin of the perfect transmission is the main focus of

our paper. One may naively think that the diminishing order
parameter combined with the repulsive barrier constitutes
an effective double-well potential for Higgs modes, so the
perfect transmission is due to the resonant tunneling that is
induced when the wavelength of Higgs modes matches the
characteristic length of the double-well potential. However,
this possibility is denied because the perfect transmission
occurs even in the long-wavelength limit k → 0. The perfect
transmission of Higgs modes reminds us of the anomalous
tunneling of NG modes in BECs [8–12], where NG modes
in BECs with momentum k perfectly transmit a potential
barrier in the limit k → 0. The anomalous tunneling occurs
because the wave function of the NG mode coincides with
the condensate wave function at k = 0. However, the wave
function of Higgs modes T (x) is not identical to the order
parameter ψ0(x) at kc. Moreover, the perfect transmission
does not occur for a sufficiently strong potential barrier
(Vr > V c

r ).

B. Perfect transmission and antibound states

We discuss the mechanism of the perfect transmission in
more detail. In order to investigate the origin of the per-
fect transmission of Higgs modes, we study the solution of
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Eq. (14) in the following form [25]:

T (x) =

⎧⎪⎪⎨
⎪⎪⎩

A
3ψ2

0 − 3ikψ0 − k2 − 1

2 − 3ik − k2
e−ikx (x < 0)

B
3ψ2

0 − 3ikψ0 − k2 − 1

2 − 3ik − k2
eikx (x > 0).

(28)

The above form, which only involves the outgoing waves,
is referred to as the Siegert condition [25,26]. Under the

boundary condition (21) and (22), we find that the solution
satisfies one of the conditions

c1 + Vrc2 = 0, (29)

c2 = 0, (30)

where c1 and c2 are given in Eqs. (25) and (26).
One obtains from Eq. (29) an even-parity solution A = B

with the wave vector k = iκe (κe > 0), where

6κe = −2(Vr + 3η) + 24/3
(
V 2

r + 6Vrη + 3
)

[ − 2V 3
r + 45Vrη2 +

√
−4

(
V 2

r + 6Vrη + 3
)3 + (

2V 3
r − 45Vrη2

)2]1/3

+ 22/3[ − 2V 3
r + 45Vrη

2 +
√

−4
(
V 2

r + 6Vrη + 3
)3 + (

2V 3
r − 45Vrη2

)2]1/3
. (31)

The excitation energy Ee =
√

2 − κe
2/2 <

√
2 is below the

gap of the Higgs mode 	 = √
2. It is a true bound state

involving an exponentially decaying wave function at |x| →
∞. This solution is the even-parity Higgs bound state reported
in Ref. [13] which exists for any barrier strength Vr > 0.

On the other hand, solving Eq. (30), one obtains the odd-
parity solutions with the wave vectors

k±
o = i

2
(±

√
4 − 3η2 − 3η) ≡ iκ±

o . (32)

Note that, since 4 − 3η2 > 0, k±
o is pure imaginary. The

solution involving an exponentially decaying wave function
k+

o = iκ+
o (κ+

o > 0) is a true bound state that exists when Vr >

V c
r . Its binding energy is given by Eo =

√
2 − κ+

o
2/2 < 	.

This solution is the odd-parity Higgs bound state also reported
in Ref. [13]. The other solution k−

o = iκ−
o (κ−

o < 0) has an
exponentially growing wave function at |x| → ∞. Such a
state, referred to as an antibound state [27,28], is not a true
bound state. However, as we discuss below, it plays a crucial
role in the perfect transmission of Higgs modes. We note that,
since Eq. (29) is a cubic equation of k, there are two other
even-parity solutions with complex k. These solutions are
referred to as a resonant state if Re(k) > 0 and an antiresonant
state if Re(k) < 0 [27,28]. However, it turns out that they are
not related to the perfect transmission of Higgs modes.

The odd-parity Higgs bound state becomes an antibound
state with κ+

o < 0 for Vr < V c
r . Meanwhile, the transmission

probability Th exhibits the perfect transmission when Vr < V c
r .

Therefore, it is natural to suppose that the emergence of the
perfect transmission may be related to the fact that the odd-
parity Higgs bound state changes into an antibound state. We
show that they are indeed closely related.

All the poles of the transmission amplitude (23) are given
by the solutions of Eqs. (29) and (30). Figures 2(a) and 2(b)
show the distribution of the poles on the complex k plane.
If Vr > V c

r [see Fig. 2(a)], the poles of the even and odd
bound states k = iκe and k = iκ+

o are located on the upper
plane on the imaginary axis, while the pole of the antibound
state k = iκ−

o is on the lower plane on the imaginary axis.
The pole of the odd bound state k = iκ+

o moves downward
as Vr decreases. It enters the lower plane when Vr < V c

r and

becomes an antibound state, while other poles do not cross
the real axis, as shown in Fig. 2(b).

We can understand the origin of the perfect transmission of
Higgs modes by examining the poles of the odd (anti)bound
states. The perfect transmission of Higgs modes cannot be
interpreted in the usual resonance tunneling picture where
the transmission probability has the Breit-Wigner form T =
(�/2)2/{(E − ε)2 + (�/2)2}. Here ε is given by the real part
of the pole and � is the twice the imaginary part of the pole.
In fact, the transmission probability near the peak cannot be
approximated in this form. Instead, Eq. (27) around k � kc

can be approximated as

T � k2(κ+
o + κ−

o )2

(k2 − κ+
o κ−

o )2 + k2(κ+
o + κ−

o )2
, (33)

where κ+
o + κ−

o = −3η and κ+
o κ−

o = 3η2 − 1. It is remark-
able that the above equation coincides with the asymptotic
form of the transmission probability for the double-barrier
potential in the presence of two antibound poles [see Eq. (3)
in Ref. [27]]. Equation (33) shows that the position of the
peak for the perfect transmission is determined by the product
of κ+

o and κ−
o . If Vr � V c

r , the presence of the two odd
antibound states with κ±

o < 0 leads to the perfect transmission
at kc = √

κ+
o κ−

o in Eq. (33). The perfect transmission can

FIG. 2. Distribution of the poles of the transmission amplitude
(23) on the complex k plane when (a) Vr > V c

r and (b) Vr < V c
r . The

poles of the bound states and antibound states are located in the upper
and lower half planes on the imaginary axis, respectively. The com-
plex poles in the lower half plane correspond to the (anti)resonant
states.
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FIG. 3. Transmission probability of Higgs modes T as a function
of k for a rectangular potential barrier with various strength Vr . We
set, in dimensionless units, a = 1, −200 � x � 200, and N = 8000.
The horizontal axis is in units of ξ−1.

thus be understood as being mediated by the antibound states.
On the other hand, if Vr > V c

r , since one of the antibound
states transforms into a true bound state, κ+

o κ−
o becomes

negative and thus perfect transmission no longer occurs. At
the critical barrier strength Vr = V c

r , the perfect transmission
occurs precisely at kc = 0.

C. Rectangular potential barrier

We demonstrate that the perfect transmission of Higgs
modes is not due to the special feature of the δ-function po-
tential. For this purpose, we show that the perfect transmission
also occurs in the presence of a rectangular potential barrier.
We assume that Higgs modes are incident to a rectangular
potential with finite width a,

vr (x) = Vrθ
(((
−

(
|x| − a

2

))))
, (34)

where θ (x) is the step function. The analytic solution of
Eq. (10) is obtained as

ψ0(x) =
⎧⎨
⎩

tanh
(∣∣x − a

2

∣∣ + tanh−1 γ
) (|x| > a

2

)
β/cn

(√
K2 + β2x, K√

K2+β2

) (|x| � a
2

) (35)

if β2 + 2(Vr − 1) ≡ K2 > 0 and

ψ0(x) =
{

tanh
(∣∣x − a

2

∣∣ + tanh−1 γ
) (|x| > a

2

)
ψ0 = β/cd

(
βx, κ

β

) (|x| � a
2

) (36)

if β2 + 2(Vr − 1) ≡ −κ2 < 0. Here cn(x) and cd(x) denote
the Jacobi elliptic functions; β ≡ ψ0(0) and γ ≡ ψ0(a/2)
are determined numerically. We employ the finite-element
method [29] to numerically solve Eq. (14). Details of the
finite-element method are given in the Appendix.

Figure 3 shows the transmission probability of Higgs
modes as a function of k for a = 1. It exhibits qualitatively
the same feature as Fig. 1: The perfect transmission occurs at
kc when the strength of the potential is smaller than the critical
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FIG. 4. (a) Wave functions for the lowest even bound state and
the second lowest odd (anti)bound state. The solid lines represent
the true bound states and the dashed line represents the antibound
state. The odd bound state in the upper panel for Vr = 1.5 > V c

r

becomes an antibound state in the lower panel for Vr = 0.8 < V c
r . We

set, in dimensionless units, a = 1, −30a � x � 30a, and N = 1200.
The vertical and horizontal axes are in units of

√|r0|/u0 and ξ ,
respectively. (b) Excitation energy of the lowest even bound state (Ee)
and second lowest odd bound state (Eo) as a function of the potential
strength Vr . We set, in dimensionless units, a = 1, −200a � x �
200a, and N = 8000. The vertical and horizontal axes are in units
of

√|r0|/W0 and |r0|ξ , respectively.

value Vr � V c
r = 0.950; kc decreases as Vr increases and the

perfect transmission no longer occurs when Vr > V c
r .

In order to study the (anti)bound states, we numerically
diagonalize Eq. (14) by the central difference method [30].
Figure 4(a) shows the wave functions of the (anti)bound
states. The excitation energies of the true bound states are
plotted as functions of Vr in Fig. 4(b). The lowest odd bound
state turns into an antibound state when Vr � V c

r , as expected.
The wave function of the antibound state is delocalized over
the system, as shown in the lower panel of Fig. 4(a). Thus,
the perfect transmission in Fig. 3 is considered to occur in the
same mechanism as the one for a δ-function potential.
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FIG. 5. Critical strength of the square potential V c
r as a function

of the inverse of the barrier width 1/a. The vertical and horizontal
axes are in units of ξ−1 and

√|r0|/u0, respectively.

We note that the critical strength of the square potential
V c

r depends on the potential width a. We calculate V c
r as a

function of a and find that V c
r monotonically increases with

1/a increasing (the potential narrowing) as shown in Fig. 5.
This implies that a narrow potential barrier is favorable for
experimental observation of the perfect transmission of the
Higgs mode as well as the transition between the reflectionless
and the reflection regime. Figure 5 shows that V c

r quadratically
increases with 1/a increasing for a wide potential barrier
(a � 2ξ ), while V c

r linearly increases with 1/a increasing for
a narrow potential barrier (a � 2ξ ).

IV. CONCLUSION

We have studied tunneling properties of Higgs modes
in Bose gases in optical lattices through a potential barrier
introduced by local modulation of hopping amplitude. Higgs
modes have been found to perfectly transmit through a po-
tential barrier if the barrier strength is weak. We have found
that the perfect transmission disappears at the critical barrier
strength above which one of the odd antibound state turns
into a true bound state. We demonstrated that the perfect
transmission involves resonance with the antibound states.

We proposed detection of the perfect transmission of the
Higgs mode by Bragg scattering [6]: Exciting the Higgs mode
by Bragg laser beams in the presence of a potential barrier
introduced by an additional lattice potential in the Gaussian
profile or a digital micromirror device, one can measure
the amplitude of the transmitted wave of the Higgs mode
through the potential, from which the transmission probability
can be estimated. Observing the perfect transmission of the
Higgs mode provides strong evidence for the existence of the
antibound states of the Higgs mode.

We finally note that another approach for studying trans-
mission properties of the Higgs mode is the Gutzwiller ap-
proximation, which allows us to explore a broader parameter
region than the TDGL theory [31]. The TDGL theory and
the Gutzwiller approximation, however, agree quantitatively
in the vicinity of the SF-MI transition. Danshita and Tsuchiya

compared the two methods regarding the Higgs bound states
in Ref. [32] and it has been shown in fact that the results of the
two methods agree well if the system is close enough to the
critical point (see, for example, Figs. 8 and 9 in Ref. [32]).
This demonstrates that these two approximations take into
account fluctuations to the same extent in the vicinity of the
SF-MI transition point. Thus, the transmission property of the
Higgs mode does not change qualitatively upon approaching
the SF-MI transition within the TDGL theory as well as the
Gutzwiller approach. The only quantitative changes appear
through the scaling of the parameters in Eq. (4).

It would be interesting to study the transmission of the
Higgs mode in the region where the system is so close to
the transition point that the fluctuation of the order parameter
gets larger than the order parameter itself. In this regime, the
TDGL theory and the Gutzwiller approximation fail to de-
scribe the system and one needs an alternative approach based
on, for instance, a renormalization-group study. However, that
study is beyond the scope of the present paper.
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APPENDIX: FINITE-ELEMENT METHOD

Equation (14) with ω = E can be obtained from the varia-
tional principle δL = 0, where the Lagrangian L is given by

L =
∫

dx

[
1

2

dT ∗

dx

dT

dx
+ T ∗(U (x) − E2)T ∗

]
, (A1)

and U (x) ≡ 3ψ2
0 (x) − 1 + vr (x). We discretize x into N sites,

xi (i = 1, 2, . . . , N), which are referred to as nodes in the
literature of the finite-element method [29]. We then assign
the interpolation function Ni(x) at each xi, which equals unity
at x = xi and linearly decreases to zero at the adjacent nodes
xi−1 and xi+1. Namely, the interpolation function is given by

Ni(x) ≡

⎧⎪⎨
⎪⎩

x−xi−1

xi−xi−1
(xi−1 � x � xi )

− x−xi+1

xi+1−xi
(xi � x � xi+1)

0 (otherwise).

(A2)

The function T (x) can be approximated using Ni(x) as

T (x) =
∑

i

TiNi(x). (A3)

Substituting Eq. (A3) into Eq. (A1), we obtain

L = T †( 1
2 K + M

)
T , (A4)

where (T )i ≡ Ti and the matrix elements Ki j ≡ (K )i j and
Mi j ≡ (M)i j are given by

Ki j =
∫ x j+1

x j−1

dx
dNi(x)

dx

dNj (x)

dx
, (A5)
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Mi j =
∑

k

∫ x j+1

x j−1

dx Ni(x)Nj (x)Nk (x). (A6)

The equations for T are obtained from the condition
δL/δT † = 0 as (

1
2 K + M

)
T = 0. (A7)

In solving the tunneling problem in the presence of a
rectangular potential, we find solutions that have the following

asymptotic form:

Ti →

⎧⎪⎪⎨
⎪⎪⎩

T1 = e−ikh + rheikh

T2 = 1 + rh

TN−1 = th
TN = theikh.

(A8)

The transmission probability of Higgs modes is given by
T = |th|2.
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