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We theoretically investigate strong-coupling properties of a Bose-Fermi mixture. In the mass- and population-
balanced case, two of the authors have shown that a strong heteropairing interaction in this mixture brings about
coupling phenomena between Fermi atomic excitations and Bose atomic and composite molecular excitations,
that appear as an anomalous multiple peak structure in the single-particle spectral weight (SW) [Kharga, Inotani,
Hanai, and Ohashi, J. Phys. Soc. Jpn. 86, 084301 (2017)]. In this paper, we show that, although these many-body
phenomena are sensitive to mass and population imbalances between the Bose and Fermi components, SW
still exhibits the multiple peak structure in moderately mass-imbalanced 87Rb-40K and 23Na-40K mixtures. We
also point out that the photoemission spectrum is a useful quantity to observe this spectral anomaly. Since
a real trapped Bose-Fermi mixture is usually accompanied by mass and (local) population imbalances, our
results would contribute to the study of a strongly interacting Bose-Fermi mixture, under realistic imbalanced
conditions.

DOI: 10.1103/PhysRevA.100.063609

I. INTRODUCTION

The high tunability of an ultracold atomic gas has con-
tributed to the development of quantum many-body physics
discussed in various research fields [1–4]: Using an optical
lattice technique, Greiner and coworkers have observed the
superfluid–Mott-insulator transition in a 87Rb Bose gas [5].
In 40K [6] and 6Li Fermi gases [7–9], the superfluid phase
transition and the BCS-BEC crossover phenomenon [10–14]
have been realized, by using a tunable pairing interaction
associated with a Feshbach resonance [15].

Besides Bose gas and Fermi gas, a gas mixture of Bose
and Fermi atoms has also extensively been studied in cold
atom physics, both experimentally [16–21] and theoretically
[22–27]. This Bose-Fermi mixture is similar to a 4He-3He
mixture, as well as quark matter in high-energy physics [28].
Using this similarity, as well as the advantage that one can
tune the strength of a Bose-Fermi pairing interaction by using
a heteronuclear Feshbach resonance, Ref. [28] suggests that
this atomic mixture may be used as a quantum simulator
for the study of dense QCD matter, where a bound di-quark
(boson) and an unpaired quark (fermion) form a nucleon
(composite fermion).

For a mass- and population-balanced Bose-Fermi mixture,
two of the authors have recently shown that a strong Bose-
Fermi pairing interaction causes couplings between Bose
atomic excitations and Fermi atomic excitations (Bose-Fermi
coupling), as well as atomic excitations and molecular ex-
citations (atom-molecule coupling) [26]. As an interesting
phenomenon associated with these couplings, the Fermi com-
ponent of the single-particle spectral weight (SW) has been
known to exhibit a triple-peak structure, consisting of two
sharp peaks along the free fermion dispersion and composite

molecular dispersion, and a broad downward peak related
to Bose single-particle excitations. Here, we recall that SW
in a free Fermi gas only has a single peak line along the
free particle dispersion. In a two-component Fermi gas in the
BCS-BEC crossover region, SW is known to exhibit a double-
peak structure associated with the pseudogap phenomenon
originating from strong-pairing fluctuations [29–32]. Thus,
the triple-peak structure in the Fermi SW is expected to be
characteristic of a strongly interacting Bose-Fermi mixture.

To confirm this expectation, however, one should remem-
ber that any real Bose-Fermi mixture is composed of different
kinds of atoms or different isotopes, such as 87Rb-40K [16–18]
and 23Na-40K [19,20] gases, so that it is always accompanied
by mass imbalance. In addition, when it is trapped in a har-
monic potential, bosons and fermions have different density
profiles. Thus local population imbalance is unavoidable, even
when both components have the same number of atoms.
Although a box-type trap has recently been invented [33–35]
(where a trapped gas is almost uniform), the conventional
harmonic trap is still used in many experiments. At this stage,
it is unclear to what extent these realistic situations affect the
above-mentioned many-body coupling phenomena obtained
in the somehow academic mass- and population-balanced
case. We briefly note that a highly population-imbalanced
Bose-Fermi mixture has recently attracted much attention in
the study of the Bose polaron [36–38].

In this paper, we investigate single-particle properties of
a Bose-Fermi mixture with a heteronuclear Feshbach reso-
nance. Extending the previous work [26] to include mass
and population imbalances, we examine how these affect
strong-coupling corrections to SW. We clarify whether or not
the many-body coupling phenomena obtained in the mass-
and population-balanced case survive in mass-imbalanced
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87Rb-40K and 23Na-40K mixtures. As an observable quantity
related to SW, we also deal with the photoemission spectrum
[39–43].

This paper is organized as follows. In Sec. II, we explain
our formulation. We separately examine effects of population
imbalance and mass imbalance in Secs. III, and IV, respec-
tively. In Sec. V, we pick up a 87Rb-40K mixture as well
as a 23Na-40K mixture as two typical examples of mass-
imbalanced Bose-Fermi mixtures. Throughout this paper, we
set h̄ = kB = 1, and the system volume V is taken to be unity,
for simplicity.

II. FORMULATION

We consider a gas mixture of single-component Bose
atoms and single-component Fermi atoms, with a heteronu-
clear Feshbach resonance. This Bose-Fermi mixture is mod-
eled by the Hamiltonian

H =
∑

p,s=B,F

ξ s
pc†

p,scp,s − UBF

∑
p,p′,q

c†
p+q,Bc†

p′−q,Fcp′,Fcp,B, (1)

where c†
p,s is the creation operator of a Bose (s=B) and a

Fermi (s=F) atom. ξ s
p = εs

p − μs = p2/(2ms) − μs is the ki-
netic energy of the s component, measured from the chemical
potential μs (where ms is an atomic mass). −UBF(< 0) is
a Bose-Fermi pairing interaction, which is assumed to be
tunable by a heteronuclear Feshbach resonance. This contact-
type interaction brings about the ultraviolet divergence. As
usual, we absorb this singularity into the s-wave scattering
length aBF [25], which is related to the bare pairing interaction
−UBF as

4πaBF

m
= − UBF

1 − UBF
∑pc

p
m
p2

. (2)

Here, m = 2mBmF/(mB + mF) is twice the reduced mass, and
pc is a cutoff momentum.

We measure the interaction strength in terms of (ktotaBF)−1

[25], where ktot = (3π2Ntot )1/3 with Ntot = NB + NF being the
total number of atoms (where Ns=B,F is the number of atoms in
the s component). In the population-balanced case (NB = NF,
or Ntot = 2NF), this scaled variable ktot coincides with the
Fermi momentum kF = (6π2NF)1/3 of a single-component
Fermi gas with NF atoms. This simple relation is no longer
satisfied when NB �= NF. However, even in such a case, apart
from the numerical constant with O(1), k−1

tot physically means
the interparticle spacing (∼N−1/3

tot ).
In this paper, we only deal with a uniform gas, ignoring

effects of a harmonic trap. However, the local population
imbalance coming from the difference of the density pro-
file between the Bose and Fermi components in a trap is
partially examined by considering the population-imbalanced
case (NB �= NF).

Strong-coupling corrections to Bose and Fermi single-
particle excitations can be described by the self-energy
�s=B,F(p, iωs) in the single-particle thermal Green’s func-
tions,

Gs=B,F(p, iωs) = 1

iωs − ξ s
p − �s(p, iωs)

, (3)

where iωB (iωF) is the boson (fermion) Matsubara frequency.

FIG. 1. (a) Self-energies �s=B,F in iTMA. (b) Bose-Fermi scat-
tering matrix �BF(q, iωF ) in Eq. (10), physically describing het-
eropairing fluctuations. The solid line is the bare Fermi Green’s
function G0

F in Eq. (7). The wavy line is the modified Bose
Green’s function G̃0

B in Eq. (5). The dashed line is the heteropairing
interaction −UBF.

We evaluate �s(p, iωs ) within the framework of the T -
matrix-type approximation developed in Ref. [26]. This ap-
proximation is diagrammatically described in Fig. 1. This
diagrammatic structure is formally the same as that in the or-
dinary (non-self-consistent) T -matrix approximation (TMA)
[25,44,45]; however, the crucial difference is that the bare
Bose Green’s function,

G0
B(p, iωB) = 1

iωB − ξB
p

, (4)

used in the TMA self-energy is now replaced by the modified
one [26]:

G̃0
B(p, iωB) = 1

iωB − ξ̃B
p

. (5)

Here, ξ̃B
p = ξB

p + �B(0, 0) ≡ εB
p − μ̃B [where μ̃B = μB −

�B(0, 0)] involves the self-energy correction at p = iωB = 0.
The modified Green’s function G̃0

B(p, iωB) in Eq. (5) then
satisfies the Hugenholtz-Pines theorem [46],

μB − �B(p = 0, iωB = 0) = 0, (6)

which states that the Bose excitations become gapless at the
Bose-Einstein condensation (BEC) phase-transition tempera-
ture Tc.

We here present some notes on this improved T -matrix
approximation (iTMA) [26].

(1) The ordinary TMA [25] uses the bare Bose Green’s
function G0

B in Eq. (4), which has a gapped single-particle
dispersion even at Tc. Because of this, TMA underestimates
effects of low-energy Bose excitations near Tc. Thus, iTMA
is considered to be valid for a wider temperature region than
TMA.

(2) With increasing the interaction strength, the Fermi
chemical potential μF at low temperatures is expected to
decrease from the Fermi energy εF, because most Fermi and
Bose atoms eventually form bound molecules in the strong-
coupling regime. While this behavior of μF is really obtained
in iTMA [26], TMA cannot describe this. In this sense, iTMA
is applicable to a stronger coupling regime than TMA.
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(3) However, iTMA still has room for improvement. For
example, in evaluating the diagrams shown in Fig. 1, iTMA
still employs the bare Fermi single-particle Green’s function:

G0
F(p, iωF) = 1

iωF − ξF
p
. (7)

We also recall that the modified Bose Green’s function in
Eq. (5) only involves the self-energy at q = νn = 0. Thus,
in summing up the diagrams in Fig. 1, iTMA completely
ignores many-body effects described by the dynamical part of
the self-energy, such as quasiparticle damping, mass enhance-
ment, as well as wave-function renormalization. [Note that the
resulting dressed Green’s function in Eq. (3) involves these
effects.] In addition, judging from the knowledge about the
BCS-BEC crossover phenomenon in a two-component Fermi
gas [47], we find that an effective interaction between com-
posite molecules is only partially taken into account through
�B(0, 0) involved in G̃0

B(p, iωB). Such a molecular interaction
described by �F(p, iωF) and �B(p �= 0, iωB �= 0) is ignored
in iTMA. To overcome these deficiencies of iTMA, we need
to employ the self-consistent T -matrix approximation [47],
where all the Green’s functions in Fig. 1 are replaced by
the fully dressed ones. This extension remains as our future
problem.

The summation of the diagrams in Fig. 1 gives

�B(p, iωB) = T
∑
q,iω′

F

�BF(q, iω′
F)G0

F(q − p, iω′
F − iωB), (8)

�F(p, iωF) = −T
∑
q,iω′

F

�BF(q, iω′
F)G̃0

B(q − p, iω′
F − iωF),

(9)

where

�BF(q, iωF) = − UBF

1 − UBF	BF(q, iωF)

= 1
m

4πaBF
+ [

	BF(q, iωF) − ∑pc
p

m
p2

] (10)

is the iTMA Bose-Fermi scattering matrix, which physically
describes heteropairing fluctuations. Here,

	BF(q, iωF) = −T
∑
p,iωB

G0
F(q − p, iωF − iωB)G̃0

B(p, iωB)

=
∑

p

1 − f
(
ξF

q−p

) + n
(
ξ̃B

p

)
ξF

q−p + ξ̃B
p − iωF

(11)

is the heteropair correlation function, where n(x) and f (x) are
the Bose and Fermi distribution function, respectively.

The BEC phase-transition temperature Tc is determined
from the Hugenholtz-Pines condition in Eq. (6). We actually
solve this equation, together with the equation for the number
NB (NF) of Bose (Fermi) atoms,

NB = −T
∑
p,iωB

GB(p, iωB), (12)

NF = T
∑
p,iωF

GF(p, iωF), (13)

to self-consistently determine Tc, μB(Tc), and μF(Tc). Above
Tc, we only deal with the number equations (12) and (13), to
evaluate μB(T ) and μF(T ).

The single-particle SW As=B,F(p, ω) is related to the
analytic-continued Green’s functions as

As=B,F(p, ω) = − 1

π
Im[Gs(p, iωs → ω + iδ ≡ ω+)], (14)

where δ is an infinitesimally small positive number. The
photoemission spectrum (PES) Is=B,F(p, ω) [39–41] is then
obtained from Eq. (14) [42,43], within the ignorance of the
final-state interaction:

IF(p, ω) = 2πt2
F p2AF(p, ω) f (ω), (15)

IB(p, ω) = 2πt2
B p2AB(p, ω)n(ω). (16)

Here, ts is a transfer-matrix element from the initial atomic
hyperfine state |I〉 to the final one |F 〉 ( �= |I〉). Between the
two, the Fermi SW will be found to be more useful for the
study of many-body coupling phenomena mentioned in Sec. I.
Thus, we only examine the Fermi PES in this paper.

III. SINGLE-PARTICLE EXCITATIONS IN A
POPULATION-IMBALANCED BOSE-FERMI MIXTURE

A. Outline and summary of main results in this section

In this section, we treat a Bose-Fermi mixture with popu-
lation imbalance (NB �= NF). For simplicity, we set mB = mF.
We first examine the BEC phase-transition temperature Tc in
the presence of population imbalance. We then discuss single-
particle excitations in a Bose-Fermi mixture with population
imbalance. In this discussion we first consider the case at Tc,
and then proceed to the case above Tc.

We summarize the main results obtained in this section.
(1) When NB � NF, we obtain a quantum critical point

(QCP). When the interaction strength exceeds the QCP, the
BEC phase transition no longer occurs.

(2) When the population difference is small (NB ∼ NF),
we show that the Fermi SW AF(p, ω) exhibits a triple-peak
structure, describing Fermi atomic excitations, Bose atomic
excitations, and Bose-Fermi molecular excitations. Such a
structure is not clearly seen in the Bose SW AB(p, ω). The
latter result is due to the fact that the detailed coupling
mechanism of Bose atomic excitations with other excitation
channels is somehow different from that of Fermi atomic
excitations.

(3) When NB/NF � 1, both the atom-molecule and Fermi-
Bose couplings become weak in the Fermi SW AF(p, ω), so
that it exhibits a single-peak structure. In contrast, the atom-
molecule coupling still remains when NB/NF 	 1, leading to
a double-peak structure in AF(p, ω). Our results in the highly
population-imbalanced case are directly related to the Bose-
polaron problem [36–38].

B. BEC phase-transition temperature Tc and effects
of population imbalance

Figure 2 shows the BEC transition temperature Tc in a
Bose-Fermi mixture with population imbalance (NB �= NF).
In this figure, the population imbalance is tuned by the
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FIG. 2. Calculated Bose-Einstein condensation temperature Tc in
a Bose-Fermi mixture with population imbalance (NB �= NF). The
population imbalance is parametrized by Rp in Eq. (17): Rp > 0
(Rp < 0) corresponds to the case of NB > NF (NB < NF ). We set
mB = mF. The dashed line shows T̄ 0

c in Eq. (19). T 0
c is the BEC

phase-transition temperature in an ideal gas of NB bosons in Eq. (18).
“QCP” is the quantum critical point at which Tc vanishes.

polarization parameter:

Rp ≡ NB − NF

NB + NF
. (17)

In the weak-coupling limit (ktotaBF)−1 � −1, since Fermi
atoms do not affect the BEC phase transition, Tc is simply
given by that in an ideal Bose gas:

T 0
c = 2π

mB

(
NB

ζ (3/2)

)2/3

, (18)

where ζ (3/2) 
 2.613 is the zeta function. Starting from
this case, when NB < NF (Rp < 0), we see in Fig. 2 that
the overall interaction dependence of Tc is similar to that in
the population-balanced case (NB = NF) [26]: Tc gradually
decreases from T 0

c with increasing the interaction strength,
to eventually vanish around the unitary limit (ktotaBF)−1 = 0.
This vanishing Tc is due to the formation of Bose-Fermi
molecules at the two-body level, and the most Bose atoms pair
up with Fermi atoms to become composite molecules there.
As a result, BEC of unpaired Bose atoms no longer occurs,
when the interaction strength exceeds the QCP [(ktotaBF)−1 ∼
0], as seen in Fig. 2.

When NB > NF (Rp > 0), the BEC phase transition re-
mains to exist (Tc > 0) even in the strong-coupling limit
[(ktotaBF)−1 	 +1]. This is simply because as many as
�NB ≡ NB − NF(> 0) bosons remain unpaired in this limit.
Indeed, as shown in Fig. 2, Tc in the strong-coupling limit is
well described by their BEC transition temperature T̄ 0

c :

T̄ 0
c = 2π

mB

(
�NB

ζ (3/2)

)2/3

. (19)

C. Single-particle spectral weight As=F,B(p, ω) at Tc

Figures 3(a1)–3(a5) show the Fermi SW AF(p, ω) in
the unitary limit at Tc. In the population-balanced case

FIG. 3. Calculated intensity of single-particle spectral weights
As=B,F(p, ω) in a population-imbalanced unitary Bose-Fermi mixture
at T = Tc. (a1–a5) AF(p, ω). (b1–b5) AB(p, ω) × sgn(ω). We set
mB = mF. The spectral intensity is normalized by ε−1

tot ≡ 2m/k2
tot .

In the left panels, we plot the dashed lines along the spectral peak
positions for an eye guide.

[Fig. 3(a3)], the Fermi SW exhibits a triple-peak structure
as a result of the Fermi-Bose and atom-molecule couplings
[26] mentioned in Sec. I: (A) a sharp peak line along the
Fermi free particle dispersion, ω = ξF

p ; (B) a broad downward
peak in the negative-energy region around ω = −ξ̃B

p , where
the Bose dispersion ξ̃B

p is given below Eq. (5); and (C) a
sharp upward peak line along the composite molecular dis-
persion, ω = ξCF

p ≡ p2/(2MCF) − μCF, where MCF 
 mB +
mF is a molecular mass and μCF is the molecular chemical
potential [48].

When the ratio NB/NF decreases from unity [decreasing
from Fig. 3(a3) to Fig. 3(a1)], peaks B and C gradually
disappear. This is simply because the system approaches a
free Fermi gas. In the highly population-imbalanced case in
Fig. 3(a1), the peak line (A) is only seen, as expected. In the
opposite case, with increasing the ratio NB/NF > 1, while the
broad peak (B) gradually disappears, the molecular peak (C)
continues to exist, in addition to the free fermion dispersion
(A), even in Fig. 3(a5).
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D. Explanation for atom-molecule and Bose-Fermi
coupling phenomena

To understand these population-imbalance effects on the
Fermi SW, we approximately treat the Bose-Fermi scattering
matrix �BF(q, iωF) in Eq. (10) as the composite molecular
propagator [26]:

�BF(q, iωF) 
 Z

iωF − ξCF
q

, (20)

where Z (>0) is the renormalization factor. Strictly speaking,
this approximation is justified only in the strong-coupling
limit [where one finds Z = 8π2/(m2aBF) [26]]; however,
even not in this extreme limit, Eq. (20) is still useful
in considering how heteropairing fluctuations affect single-
particle excitations. Substituting Eq. (20) into the self-energy
�F(p, iωF) in Eq. (9), and carrying out the ω′

F summation, we
obtain

�F(p, iωF) = Z
∑

q

[
n
(
ξ̃B

q

)
iωF − ξCF

p−q + ξ̃B
q

+ f
(
ξCF

q

)
iωF + ξ̃B

p−q − ξCF
q

]


 ZN0
B

iωF − ξCF
p

+
〈

ZNCF

iωF + ξ̃B
kCF−p

〉
kCF

. (21)

Here, NCF = ∑
q f (ξCF

q ) is the number of composite Fermi
molecules with the chemical potential μCF > 0, N0

B =∑
q n(ξ̃B

q ), and |kCF| = √
2MCFμCF gives the size of the Fermi

surface in the composite Fermi molecular gas. The average
〈· · · 〉Q is taken over the direction of Q. In the last expression of
Eq. (21), we have approximately set q = 0 in the denominator
of the first term, by using the fact that the Bose distribution
function n(ξ̃B

q ) diverges at q = 0 at Tc. In the last term, we
have also approximated q in the denominator to kCF, by noting
that the region near the Fermi surface of the composite Fermi
molecules is important.

We comment on the difference between the two terms in
the last line of Eq. (21). Between the two, the factor N0

B
in the first term physically means that unpaired free Bose
atoms contribute to the coupling between a Fermi atom and
a composite Fermi molecule. In this case, because the Bose
atoms around q = 0 dominantly contribute to this coupling
phenomenon, a Fermi atom with momentum p couples with
a composite Fermi molecule with the same momentum p, as
seen in the first term of Eq. (21). Because of this, the angular
integration is absent in this term. On the other hand, the
factor NCF in the last term indicates that the coupling between
Fermi and Bose atoms is dominated by the composite Fermi
molecules. In this case, the region near the Fermi surface of
these molecules is expected to be crucial for this coupling
phenomenon. That is, Fermi molecules with various direc-
tions of the Fermi momentum kCF contribute to this coupling
phenomenon. As a result, a Fermi atom with momentum p
couples with Bose atoms with various kinetic energies ξ̃B

kCF−p,
leading to the angular integration of kCF in Eq. (21). Because
of this, Bose excitations give a broad spectral structure in the
negative-energy region of the Fermi SW [see, for example,
Fig. 3(a3)].

Substituting Eq. (21) into Eq. (3), we obtain [26]

GF(p, iωF → ω+)


 1

ω+ − ξF
p − ZN0

B
ω+−ξCF

p
− 〈 ZNCF

ω++ξ̃B
kCF−p

〉
kCF

. (22)

Equation (22) explains that heteropairing fluctuations couple
the Fermi atomic excitations ω = ξF

p (A) with the molecular
excitations ω = ξCF

p (C) with the coupling strength ZN0
B, as

well as with the Bose excitations ω = −ξ̃B
kCF−p (B) with the

coupling strength ZNCF.
When the number of Bose atoms decreases (NB/NF < 1),

both N0
B and NCF in the denominator in Eq. (22) decrease, to

eventually vanish in the limit NB → 0. This immediately ex-
plains the single-peak structure in the Fermi SW in Fig. 3(a1).
When NF decreases (NB/NF > 1), while NCF vanishes in the
large population-imbalance limit, N0

B approaches the nonzero
value NB. Thus, Eq. (22) is reduced to

GF(p, ω+) = 1

ω+ − ξF
p − ZNB

ω+−ξCF
p

, (23)

which has the two poles

E±
p = 1

2

[[
ξF

p + ξCF
p

] ±
√[

ξF
p − ξCF

p

]2 + 4ZNB
]
. (24)

Equation (24) explains the double-peak structure in Fig. 3(a5).
That is, the Fermi single-particle excitations in the highly
population-imbalanced regime (NB/NF 	 1) are dominated
by the atom-molecule coupling phenomenon.

Applying the same approximation to the Bose component,
we obtain [26,49]

GB(p, iωF → ω+)


 1

ω+ − ξB
p − 〈 ZN0

F

ω+−ξCF
k̃F−p

〉
k̃F

− 〈 ZNCF

ω++ξF
kCF−p

〉
kCF

. (25)

Here, N0
F = ∑

q f (ξF
q ), and |k̃F| = √

2mFμF. Equation (25)
shows that the Bose single-particle excitations (ω = ξB

p ) cou-
ple with composite Fermi molecular excitations (ω = ξCF

k̃F−p
),

as well as Fermi hole excitations (ω = −ξF
kCF−p); however, be-

cause of the angular averages in the denominator of Eq. (25),
the triple-peak structure is not clearly seen in the Bose SW
AB(p, ω), when NB = NF [see Fig. 3(b3)].

When the number NF of Fermi atoms decreases (NB/NF >

1), both N0
F and NCF decrease. Thus, the Bose SW is gradually

reduced to that in a free Bose gas (where the single peak
line is along ω = ξB

p ), as seen in Figs. 3(b3)–3(b5). With
increasing NF (NB/NF < 1), the system eventually reaches the
situation that N0

F → NF 	 NCF ∼ N0
B. Because of this, the

spectral structures in Figs. 3(b1) and 3(b2) are dominated
by Bose atomic excitations and broad composite molecular
excitations, but the downward broad peak associated with
Fermi hole excitations becomes weak.

The above discussions indicate that the Fermi SW AF(p, ω)
is more suitable than the Bose SW AB(p, ω), for the study of
the Fermi-Bose and atom-molecule coupling phenomena.
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FIG. 4. (a1–a4) Calculated intensity of the Fermi SW AF(p, ω)
in a highly population-imbalanced Bose-Fermi mixture (NB/NF =
100 	 1) at Tc. We take mB = mF. The spectral intensity is nor-
malized by ε−1

tot . In each left panel, the black dashed lines show
the peak positions of AF(p, ω). The white solid line shows the
peak position of the spectrum of the Bose-Fermi scattering matrix
−Im[�BF(q, iωF → ω+)] shown in (b1)–(b4). In the left panels, the
intensity is normalized by 2π 2/(mktot ).

E. Relation to the Bose-polaron problem in the highly
population-imbalanced case

We point out that the highly population-imbalanced
case (NB/NF 	 1) is related to the Bose-polaron system
[36–38,50]. To clearly see this, we note that, in the strong-
coupling limit, the quasiparticle dispersions E±

p in Eq. (24)
are reduced to {

E+
p = ξF

p + 4πaBF
m NB,

E−
p = ξCF

p − 4πaBF
m NB.

(26)

These are the same as the polaron energies obtained in
Ref. [50]: E+

p represents an atomlike quasiparticle, which
repulsively interacts with surrounding bosons (repulsive po-
laron). In addition, in the presence of a bound state, there
exists another scattering process where a composite Fermi
molecule (ω = ξCF

p ) appears in the intermediate state. This
process causes an additional quasiparticle with the dispersion
E−

p , which attractively interacts with surrounding bosons. In
Ref. [50], it is referred to as the attractive polaron.

Figures 4(a1)–4(a4) show that the atom-molecule coupling
phenomenon seen in Fig. 3(a5) also occurs away from the
unitary limit: Because a two-body bound state is formed in
the strong-coupling regime [(ktotaBF)−1 > 0], the appearance
of the lower sharp peak in Figs. 4(a3) and 4(a4) would
be reasonable. However, we also see a sharp molecular peak
line in Fig. 4(a1), in spite of the absence of a two-body bound
state when (ktotaBF)−1 = −0.5 < 0.

Regarding this, when we plot the spectrum
Im[�BF(p, iωF → ω+)] of the Bose-Fermi scattering matrix,
one finds an isolated sharp peak line below the continuum
spectrum, not only in the strong-coupling side where
(ktotaBF)−1 � 0 [Figs. 4(b2)–4(b4)], but also in the weak-
coupling side where (ktotaBF)−1 < 0 [Fig. 4(b1)]. Because
the formation of a two-body bound state does not occur when
(ktotaBF)−1 < 0, Fig. 4(b1) implies the stabilization of a
Bose-Fermi bound state by a many-body (medium) effect.

To see this many-body effect in a simple manner, we
approximate Eq. (10) at Tc to

�BF(q, ω+)


 1
m

4πaBF
+ ∑

p

[
1

εF
q−p+εB

p −ω̃+
− m

p2

]
− N0

BG0
F(q, ω+)

, (27)

where ω̃ = ω + μF, and we have taken the analytic con-
tinuation iωF → ω+. When we ignore the last term in the
denominator of Eq. (27), the condition for the pole of this
equation,

m

4πaBF
+

∑
p

[
1

εF
q−p + εB

p − ω̃+
− m

p2

]
= 0, (28)

is essentially the same as the two-body bound-state equation,
which only has a solution when aBF > 0. Thus, the term
N0

BG0
F(q, ω+) in Eq. (27) may be interpreted as a many-

body (medium) correction to the bound state. Including this
correction term, we obtain the pole equation of Eq. (27) at
q = 0 as, after carrying out the p summation,

m

4πaBF
− m

3
2

4π

√
|ω̃| + N0

B

|ω̃| = 0. (29)

The pole equation (29) has a bound-state solution even when
(ktotaBF)−1 � 0 [24]. For example, at unitarity (a−1

BF = 0),
Eq. (29) gives

ω̃ = −
(
4πN0

B

) 2
3

m
. (30)

The above discussion explains the reason why the sharp
peak line appears below the continuum of the spectrum
Im[�BF(p, iωF → ω+)] in all the right panels in Fig. 4. We
also see in Figs. 4(a1)–4(a4) that the lower spectral peak of
AF(p, ω) (black dashed line) is close to this sharp peak line
(white solid line). The reason why the former is somehow
pushed down from the latter is due to the coupling with the
Fermi atomic excitations ω = ξF

p [see E−
p in Eq. (24)].

The above discussions are also applicable to the
population-balanced case (NB = NF): In Fig. 5, the spectrum
−Im[�BF(p, iωF → ω+)] of the Bose-Fermi scattering matrix
(right panels) has an isolated sharp peak. In these panels, the
peak energy is lowered as the interaction strength increases,
because of the increase of the binding energy of a Bose-
Fermi bound state. This tendency is the same as the highly
population-imbalanced case shown in Fig. 4. This bound-state
peak in �BF(p, iωF → ω+) brings about the lower peak in the
Fermi SW AF(p, ω), as shown in the left panels.

To conclude, the character of a Bose-Fermi molecule con-
tinuously changes from a many-body bound state assisted
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FIG. 5. Same plot as Fig. 4 for the population-balanced case
NB = NF.

by a medium to a two-body bound state with increasing the
strength of a heteropairing interaction. We briefly note that
a similar crossover phenomenon from a polaron state to the
two-body bound state (polaron-molecule crossover) has been
discussed in the Bose-polaron system at T = 0 [50].

F. Single-particle spectral weight As=F,B(p, ω) above Tc

In the normal state above Tc, we expect the following two
thermal effects.

(1) The Bose distribution function n(ξ̃B
q ) no longer diverges

at q = 0, so that the approximation giving the first term in

the last line of Eq. (21) becomes worse. Roughly speaking,
this would lead to the broadening of the peak line coming
from molecular excitations in the Fermi SW AF(p, ω). In
addition, because the factor ZN0

B = Z
∑

q nB(ξ̃B
q ) decreases

with increasing temperature, the atom-molecule coupling also
becomes weak.

(2) When Bose-Fermi bound states thermally dissociate
into unpaired atoms at high temperatures, the approximate
expression for the Bose-Fermi scattering matrix �BF(q, iωF)
in Eq. (20) is no longer valid.

Keeping these two thermal effects in mind, we find in
Figs. 6(a1)–6(a3) [(ktotaBF)−1 = −0.5 < 0] that the molec-
ular peak line soon becomes obscure with increasing tem-
perature above Tc. In this case, because of the weak
Bose-Fermi pairing interaction, the sharp spectral peak in
−Im[�BF(q, iωF → ω+)] describing molecular excitations
also soon disappears above Tc [see Figs. 6(b1)–6(b3)]. Thus,
the above-mentioned two thermal effects are considered to
suppress the atom-molecular coupling in the Fermi SW
AF(p, ω) in the weak-coupling case.

In the strong-coupling regime [(ktotaBF)−1 = 0.5 > 0],
Figs. 6(d1)–6(d3) indicate that the molecular spectrum still
remains even at T/T 0

c = 2.5, because of large molecular
binding energy. In this case, thermal effects on the atom-
molecule coupling are dominated by thermal effect 1 in the
above discussion. Indeed, in Figs. 6(c1)–6(c3), while the
molecular peak line gradually becomes broad with increasing
temperature, the existence of this coupling phenomenon itself
can still be confirmed in AF(p, ω) even at T/T 0

c = 2.5 Fig.
6(c3)].

Figure 6 indicates that, when we use the Fermi SW
to examine the crossover from the medium-assisted
(many-body) bound state in the weak-coupling regime to
the two-body bound state in the strong-coupling regime in a

FIG. 6. Intensity of the Fermi SW AF(p, ω), as well as the spectrum −Im[�BF(q, iωF → ω+)] of the Bose-Fermi scattering matrix, in a
highly population-imbalanced Bose-Fermi mixture (NB/NF = 100). The dashed lines show the peak positions of AF(p, ω). The normalization
of the spectral intensity is the same as that in Fig. 4. (a1–a3, b1–b3) Weak-coupling case (ktotaBF )−1 = −0.5. (c1–c3, d1–d3) Strong-coupling
case (ktotaBF )−1 = 0.5.
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FIG. 7. Calculated BEC phase-transition temperature Tc in a
Bose-Fermi mixture with mass imbalance. We set NB = NF. The
parameter Rm is defined in Eq. (31): Rm > 0 (Rm < 0) corresponds
to the case of mF > mB (mF < mB). The dashed line is the quantum
critical point (QCP) at which Tc vanishes. T 0

c is the BEC phase-
transition temperature in an ideal Bose gas given in Eq. (18).

highly population-imbalanced Bose-Fermi mixture, we need
to set the temperature near Tc in order to observe the former
bound state.

IV. SINGLE-PARTICLE PROPERTIES OF THE
MASS-IMBALANCED BOSE-FERMI MIXTURE

A. Outline and summary of main results in this section

In this section, we consider a Bose-Fermi mixture with
mass imbalance (mB �= mF). We take NB = NF. We first deter-
mine Tc as a function of the interaction strength and the mass-
imbalance parameter Rm defined in Eq. (31) below. We then
discuss strong-coupling corrections to the Fermi and Bose
SWs in a unitary Bose-Fermi mixture at Tc, in the presence
of mass imbalance.

The main results obtained in this section are as follows.
(1) The QCP is always obtained in the mass-imbalanced

case when NB = NF. We also find that the competition be-
tween the BEC phase transition of Bose atoms and the for-
mation of Bose-Fermi composite molecules physically deter-
mines the critical interaction strength (ktotac

BF)−1 at which Tc

vanishes.
(2) As in the population-imbalanced case, the Fermi SW

AF(p, ω) is more useful than the Bose SW AB(p, ω) for the
study of mass-imbalance effects on atom-molecule and Bose-
Fermi coupling phenomena. Among the three peak lines seen
in the Fermi SW AF(p, ω) at mF = mB, the Fermi atomic
and Bose atomic branches remain when mB/mF 	 1. In the
opposite case (mB/mF � 1), the Fermi atomic and Bose-
Fermi molecular dispersions remain in AF(p, ω). These two
results continuously change from one to the other, as the ratio
mB/mF varies.

B. Tc in the presence of mass imbalance

Figure 7 shows the BEC phase-transition temperature Tc

and effects of mass imbalance in a Bose-Fermi mixture, where

FIG. 8. Critical interaction strength (ktotac
BF )−1, which is defined

as the interaction strength at which Tc vanishes, in a mass-imbalanced
Bose-Fermi mixture. The dashed line shows the approximate result
(ktota

c,app
BF )−1 in Eq. (33). We set NB = NF.

mass difference is parametrized by

Rm = mF − mB

mF + mB
. (31)

In this figure, Tc gradually decreases from the ideal Bose-gas
value T 0

c in Eq. (18) with increasing the Bose-Fermi inter-
action strength, to eventually vanish at a certain interaction
strength (the QCP). Although this phenomenon has already
been known in the mass-balanced case [25,26], Fig. 7 indi-
cates that this suppression effect is more (less) remarkable,
when mB/mF > 1 (mB/mF < 1). To clearly show this, we plot
in Fig. 8 the critical interaction strength (≡ (ktotac

BF)−1) at
which Tc vanishes.

To understand this mass-imbalance effect on Tc, we note
that the BEC phase transition must occur before Bose atoms
form Bose-Fermi bound states by the heteropairing interaction
−UBF: In the strong-coupling side (ktotaBF)−1 > 0, the charac-
teristic temperature below which the bound molecules appear
is given by the binding energy E2b

bind of a two-body bound state,
given by

E2b
bind = 1

ma2
BF

, (32)

where m is given below Eq. (2). Thus, the BEC phase
transition would not occur, when the bare BEC transition
temperature T 0

c (∝ m−1
B ) in Eq. (18) is much lower than E2b

bind.
Using this discussion, we can approximately estimate the
critical interaction strength (≡ ac,app

BF ) at the QCP from the
condition T 0

c 
 E2b
bind, which gives

(
ktota

c,app
BF

)−1 =
(

4

3
√

πζ (3/2)

)1/3 1√
1 + mB/mF

= 0.66
1√

1 + mB/mF
. (33)

Because Eq. (33) assumes a two-body bound state,
it is only valid for (ktota

c,app
BF )−1 > 0. However, a many-

body bound state actually exists in the weak-coupling side
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FIG. 9. Spectral intensity −Im[�BF(q, iωF → ω+)] of the Bose-
Fermi scattering matrix in a highly mass-imbalanced Bose-Fermi
mixture (mB/mF = 20, or Rm 
 −0.9). We take the interaction
strength (ktotaBF )−1 to be equal to the critical value (ktotac

BF )−1 =
−0.25 at which Tc vanishes.

(ktotaBF)−1 � 0 [24,51]. For example, Fig. 9 shows the spec-
trum −Im[�BF(p, iωF → ω+)] of a Bose-Fermi scattering
matrix in the highly mass-imbalanced case (mB/mF = 20 	
1) at the critical interaction strength (ktotac

BF)−1 = −0.25 < 0
(T = 0). In this figure, an isolated molecular branch is seen
below the continuum, as in the population-imbalanced case
(see Figs. 4–6). This many-body bound state in the weak-
coupling region [(ktotaBF)−1 � 0] naturally explains why the
critical coupling (ktotac

BF)−1 can be negative in Fig. 8.
Apart from the weak-coupling side (ktotac

BF)−1 < 0, the
overall behavior of (ktotac

BF)−1 shown in Fig. 8 is consistent
with Eq. (33). This indicates that the competition between the
BEC transition of Bose atoms and the formation of composite
Bose-Fermi molecules determines the QCP.

C. Single-particle spectral weight As=B,F(p, ω) at Tc

Figure 10 shows As=B,F(p, ω) in a mass-imbalanced uni-
tary Bose-Fermi mixture at Tc. In the Fermi SW (left panels),
we find that effects of mass difference are different between
the cases of mB/mF > 1 and mB/mF < 1: Among the two
sharp peaks (A and C) and the broad peak (B) in Fig. 10(a3),
peak C, coming from the atom-molecule coupling, gradually
disappears with increasing the ratio mB/mF > 1 [decreasing
from Fig. 10(a3) to Fig. 10(a1)]. When mB/mF decreases from
unity, Figs. 10(a3)–10(a5) show that the broad peak (B), orig-
inating from the Fermi-Bose coupling, gradually disappears.

To understand these results, we plot in Fig. 11 N0
B =∑

p nB(ξ̃B
p ) and N0

CF ≡ NB − N0
B [∼ NCF = ∑

p f (ξCF
p )] in a

unitary Bose-Fermi mixture at Tc. Noting that these quanti-
ties are directly related to the atom-molecule coupling and
Fermi-Bose coupling, respectively [see Eq. (22)], we find
from Fig. 11 that the former (latter) coupling phenomenon
becomes dominant when Rm → 1 (Rm → −1). In addition,
the momentum dependence of the Bose kinetic energy ξ̃B

p
becomes weak with increasing mB, so that the broadening by
the angular integration in the last term in the denominator of

FIG. 10. Single-particle spectral weight in a unitary Bose-Fermi
mixture with mass imbalance. We take T = Tc and NB = NF. The left
and right panels show AF(p, ω) and sgn(ω)AB(p, ω), respectively.
The second panels from the top (bottom) show the case of a 87Rb-40K
(23Na-40K) mixture. For an eye guide, we plot the peak positions in
the left figures (dashed lines).

Eq. (22) is suppressed. Because of this, the broad peak (B)
in the mass-balanced case in Fig. 10(a3) gradually becomes
sharp, as one moves from Fig. 10(a3) to Fig. 10(a1).

We next consider the Bose SW AB(p, ω). The right pan-
els in Fig. 10 show that, with decreasing the ratio mB/mF

[Figs. 10(b1)–10(b5)], the spectral intensity of the downward
broad branch gradually becomes weak. Because this branch
comes from the last term in the denominator of Eq. (25), the
decrease of NCF with decreasing mB/mF shown in Fig. 11
explains this behavior. We point out that this mechanism is the
same as the suppression of the broad downward branch in the
Fermi SW when mB/mF � 1 (see the left panels in Fig. 10).

However, although the factor N0
F is enhanced when mB/mF

decreases (see Fig. 11), the coupling phenomenon coming
from the second last term in the denominator of Eq. (25) is
not clearly seen in Fig. 10(b5). This result is quite different
from the case of Fermi SW, where the enhancement of N0

B
brings about the additional upward sharp peak line along the
molecular dispersion, as seen in the left panels in Fig. 10. This
difference originates from the fact that, while Bose excitations
around q = 0 dominantly contribute to this coupling phe-
nomenon in the latter case, Fermi atomic excitations around
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FIG. 11. The number N0
B = ∑

p n(ξ̃B
p ) of free Bose atoms, as

well as the number N0
CF ≡ NB − N0

B of the Bose-Fermi molecules in
a unitary Bose-Fermi mixture at Tc, as functions of mass imbalance
parameter Rm in Eq. (31). We also plot the number N0

F = ∑
p f (ξF

p )
of free Fermi atoms [52]. Since the direct evaluation of NCF =∑

p f (ξCF
p ) in Eq. (22) is difficult, we approximately use N0

CF for NCF

in our discussions.

the Fermi surface are crucial for the former coupling phe-
nomenon, which is reflected by the angular integration in the
second to last term in the denominator of Eq. (25). As a result,
while the coupling between a Fermi atom with momentum p
and a composite Fermi molecule having the same momentum
leads to the appearance of a sharp spectral peak line along the
molecular dispersion in AF(p, ω), the coupling of a Bose atom
at momentum p and composite Fermi molecules having vari-
ous kinetic energies ξCF

k̃CF−p
makes this coupling phenomenon

obscure in AB(p, ω). Thus, as in the population-imbalanced
case, the Fermi SW AF(p, ω) is more suitable for the study of
strong-coupling corrections to single-particle excitations in a
mass-imbalanced Bose-Fermi mixture.

V. EXAMPLES: 87Rb-40K AND 23Na-40K MIXTURES

A. Outline and summary of main results in this section

In this section, we pick up 87Rb-40K and 23Na-40K
mixtures, as typical examples of experimentally realized
Bose-Fermi systems. Besides the Fermi SW AF(p, ω) (which
is not observable at the current experimental stage of cold
atom physics), we also deal with the PES IF(p, ω), as an ob-
servable quantity involving information about single-particle
excitations.

We find that, when NB/NF � 1, the Fermi PES IF(p, ω)
exhibits a multiple-peak structure in both the unitary 87Rb-40K
and 23Na-40K mixtures. Such an anomalous structure is absent
when NB/NF � 1.

B. Fermi single-particle spectral weight AF(p, ω)

Figures 10(a2) and 10(a4) show the Fermi SW in the
cases of 87Rb-40K and 23Na-40K mixtures, respectively. These

FIG. 12. Calculated Fermi SW AF(p, ω) in a 87Rb-40K mixture
(left panels), as well as a 23Na-40K mixture (right panels), at various
interaction strengths (NB = NF). We set T = Tc for the upper three
cases. For the lowest case when (ktotaBF )−1 = 1, because Tc is absent
for (ktotac

BF )−1 � 0.43 in a 87Rb-40K mixture and for (ktotac
BF )−1 �

0.7 in a 23Na-40K mixture, we show the results in the normal state at
T = 0.01T 0

c (which is the lowest temperature within our numerical
calculation).

figures predict that the Fermi SW still exhibits the triple-peak
structure in the 87Rb-40K case. Although the broad peak (B)
is suppressed in a 23Na-40K mixture, we can still see the
atom-molecule coupling in this mixture.

Figure 12 shows that these many-body coupling phenom-
ena still remain to some extent, away from the unitary limit.
In both the mixtures, the atom-molecule coupling is found to
remain with decreasing the interaction strength (see the upper
two panels in Fig. 12). This is simply due to the increase of N0

B
and the decrease of NCF in the denominator in Eq. (22). As one
increases the interaction strength (see the lowest two panels
in Fig. 12), the Fermi-Bose coupling becomes important,
reflecting the decrease of N0

B and the increase of NCF. In
Figs. 12(a4) and 12(b4), only the Fermi-Bose coupling is seen.

C. Fermi photoemission spectrum IF(p, ω)

Figure 13 shows the Fermi PES IF(p, ω) in a Bose-Fermi
mixture, where the parameters in each panel are the same
as those in the corresponding panel in Fig. 12. Comparing
Figs. 12 and 13, one finds that, although the spectral structure
seen in the positive-energy region of SW is suppressed by
the Fermi distribution function in the PES [see Eq. (15)], it
can still detect the downward broad spectral structure coming
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FIG. 13. Calculated Fermi PES IF(p, ω). Left panels: 87Rb-40K
mixture. Right panels: 23Na-40K mixture. The parameters are the
same as those in Fig. 12. The spectral intensity is normalized by
4πt2

F m. This normalization is also used in Figs. 14 and 15.

from the Fermi-Bose coupling associated with heteropairing
fluctuations.

For the upward peak line along the molecular dispersion
seen in the Fermi SW, since the thermal broadening of the
Fermi distribution function f (ω) around ω = 0 weakens the
suppression of the spectral intensity in the positive-energy
region in the Fermi PES, it gradually appears in the PES
with increasing temperature, as shown in Fig. 14. Of course,
this idea to observe the molecular branch is not always valid,
especially for the very high-temperature region where Bose-
Fermi molecules thermally dissociate into unpaired atoms.
However, since the molecular binding energy is large in the
strong-coupling regime, the temperature region where this
idea works would be wide there.

Figure 15 shows effects of population imbalance on the
Fermi PES IF(p, ω). As expected from Fig. 3, the multiple
peak structure gradually becomes obscure in IF(p, ω) with
decreasing the ratio NB/NF from unity (see the upper two
panels of Fig. 15). Noting that a real trapped Bose-Fermi
mixture is always accompanied by local population imbalance
[ρB(r) �= ρF(r), where ρs=F,B(r) is the local density of the
s component], one may interpret IF(p, ω) in Fig. 15 as the
local PES at various spatial positions. Of course, in order to
study detailed trap effects, we need to extend our theory to
include effects of a harmonic potential. However, within this
simple interpretation, one can still expect that the detailed
spectral structure is smeared out after the spatial average of the

FIG. 14. Fermi PES IF(p, ω) in the unitary limit above Tc. We
set NB = NF. Left panels: 87Rb-40K mixture (Tc = 0.695T 0

c ). Right
panels: 23Na-40K mixture (Tc = 0.828T 0

c ). The results at Tc are
shown in Figs. 13(a2) and 13(b2).

FIG. 15. Effects of population imbalance on the Fermi PES
IF(p, ω) in a unitary Bose-Fermi mixture at T = 1.5T 0

c . Left pan-
els: 87Rb-40K mixture. Right panels: 23Na-40K mixture. For the
population-balanced results, see Figs. 13(a2) and 13(b2).
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spectrum, when the dominant contribution to the spectrum
comes from the spatial region where ρB(r) � ρF(r) [see
Figs. 15(a1) and 15(b1)]. To overcome this problem to some
extent, one idea is to detect spectra, avoiding the spatial
region where ρB(r) � ρF(r). For this purpose, the local
photoemission-type experiment developed by the JILA group
[41] would be useful. As an alternative way, a box trap
[33–35] may also be promising, because an almost uniform
gas is realized there.

VI. SUMMARY

To summarize, we have discussed single-particle excita-
tions and effects of mass and population imbalances in a
Bose-Fermi mixture. Including heteropairing fluctuations as-
sociated with an attractive Bose-Fermi interaction within the
framework of the improved T -matrix approximation devel-
oped by two of the authors, we calculated the single-particle
spectral weight, as well as the photoemission spectrum, in the
normal state above the BEC phase-transition temperature Tc.

In the mass- and population-balanced case (mB = mF and
NB = NF), it is known that strong heteropairing fluctuations
cause couplings between atomic excitations and composite
molecular excitations (atom-molecule coupling), as well as
between Fermi atomic excitations and Bose atomic excitations
(Fermi-Bose coupling). These many-body phenomena bring
about two additional spectral peaks in the Fermi SW. Together
with the ordinary spectral peak along the single-particle Fermi
dispersion, the resulting Fermi SW exhibits a triple-peak
structure.

In the presence of population imbalance, we showed that,
when NB/NF � 1, both the atom-molecule and Fermi-Bose
coupling phenomena become weak, so that the Fermi SW
becomes close to that in a free Fermi gas. When NB/NF 	 1,
the former coupling continues to exist, leading to a double-
peak structure in the Fermi SW. This difference comes from
the fact that, while the atom-molecule coupling constant
is dominated by the number of unpaired Bose atoms, the
Fermi-Bose coupling constant is deeply related to the number
NCF of Bose-Fermi molecules [NCF � min(NB, NF)]: Both
coupling constants thus become small when NB/NF � 1. In
contrast, the former coupling remains nonzero even when
NB/NF 	 1.

We have also examined how mass difference between a
Fermi atom (mF) and a Bose atom (mB) modifies many-

body corrections to single-particle excitations. In both the
limits mB/mF � 1 and mB/mF 	 1, we found that the Fermi
SW exhibits not a triple-peak but a double-peak struc-
ture; however, their physical meanings are different. When
mB/mF � 1, the atom-molecule coupling causes the second
peak line in addition to the ordinary peak line along the
free particle dispersion. In the opposite limit, the additional
peak comes from the Fermi-Bose coupling. This is because
the strengths of these couplings differently depend on the
ratio mB/mF.

When one goes away from these limiting cases, the Fermi
SW exhibits the triple-peak structure as in the mass-balanced
case. We explicitly confirmed this in the cases of mass-
imbalanced 87Rb-40K (mB > mF) and 23Na-40K (mB < mF)
mixtures. We also pointed out that these many-body coupling
phenomena may be observed by the photoemission-type ex-
periment, by explicitly evaluating the photoemission spectra
for these realistic examples.

In this paper, we have treated a uniform Bose-Fermi mix-
ture, for simplicity. In a real trapped mixture in a harmonic
potential, we expect that the Fermi and Bose atoms have
different density profiles, leading to local population imbal-
ance. Although this inhomogeneity effect has only partially
been examined in this paper, by considering the population-
imbalanced case, to fully understand strong-coupling proper-
ties of a trapped Bose-Fermi mixture, it would be necessary
to explicitly treat the trapped geometry. Besides this, we
have also ignored an interaction between Bose atoms, which
would be crucial for the stability of this system [23,53].
These problems remain as our future challenges. Since the
atom-molecule and Fermi-Bose couplings are characteristic
many-body phenomena in a Bose-Fermi mixture with a het-
eropairing interaction, our results would contribute to further
understanding of strong-coupling properties of this novel
quantum many-body system.
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