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Confinement-induced resonance with weak background interaction
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We studied the scattering problem of two distinguishable atoms with unequal mass, where one atom (atom α)
is trapped in a quasi-one-dimensional (quasi-1D) tube and the other one (atom β) is localized by a 3D harmonic
trap. We show that in such a system if atom α is much heavier than β, confinement-induced resonance (CIR) can
appear when the 3D s-wave scattering length as of these two atoms is much smaller than the characteristic lengths
(CLs) of the confinements, for either as > 0 or as < 0. This is quite different from the usual CIRs which occur
only when as is comparable with the CL of confinement. Moreover, the CIRs we find are broad enough to serve
as a tool for the control of effective interatomic interaction. We further show the mechanism of these CIRs via
the Born-Oppenheimer approximation. Our results can be used for the realization of strongly interacting systems
with ultracold atoms with weak 3D background interaction (i.e., small as), e.g., the realization of ultracold gases
with strong spin-dependent interaction at zero magnetic fields.
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I. INTRODUCTION

One important advantage of the quantum simulation with
ultracold atomic gases is that in such a system the interatomic
interaction can be efficiently controlled. The most widely used
technique for this control is via magnetically tunable Fesh-
bach resonance (MFR) [1,2]. In addition, the confinement-
induced resonance (CIR) is also a powerful tool, with which
one can tune the interaction between trapped ultracold atoms
by changing the geometric parameters of the confinements
[3–16].

In most cases, when a CIR occurs the characteristic
length (CL) of the confinement should be comparable with
the s-wave scattering length as of the two atoms in three-
dimensional (3D) free space. For instance, as shown by
Olshanii, the CIR condition for two atoms in a quasi-1D
tube with a CL a⊥ is a⊥/as ≈ 1.4603 [3]. This makes sense
because a “resonance” usually appears when the values of
several characteristic parameters of the system are similar to
each other. Nevertheless, for the optical confinements realized
in current experiments, the CLs are usually larger than 1000a0

with a0 being the Bohr’s radius, while for most kinds of
cold atoms |as| is below (or about) 200a0 in the absence of
magnetic field (B = 0) [17]. As a result, to realize a CIR one
has to resort to the MFR to enhance the value of as. So far
the only exception is the CIR of 173Yb atoms featured by an
extremely large background scattering length (about 2000a0

[18]) [19].
Therefore, it is natural to ask if the above limitation can be

broken or not. Namely, can a specific CIR which satisfies the
following two conditions be realized?
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(i) The CIR can occur when the CLs of the confinements
are much larger than the scattering length |as|.

(ii) The CIR is broad enough so that it can be used as an
efficient tool for the control of effective interaction between
ultracold atoms.

Various interesting phenomena may benefit from such a
specific CIR. For instance, such a CIR can occur at zero
magnetic fields (B = 0), for which different atomic hyper-
fine states are degenerate, and thus spin-changing scattering
processes between hyperfine spin channels are energetically
permitted [20,21]. Using this CIR one can control these pro-
cesses and then realize systems with strong interatomic spin-
spin interaction, e.g., the spin-exchange interaction, which
is important for the quantum simulation of the Kondo ef-
fect or other magnetic effects [19,22–28]. Notice that these
spin-spin interactions cannot be controlled via a usual MFR
because spin-changing scattering processes are energetically
suppressed by the Zeeman-energy gap between different hy-
perfine channels, which are induced by the magnetic field of
the MFR [29]. Besides, such a specific CIR can be realized
without the help of a magnetic field. Thus the magnetic
field can be reserved for purposes other than the control of
interatomic interaction, e.g., the trapping of atoms in an atom
chip [30]. Moreover, since this CIR can occur for small 3D
scattering length as, as shown below, the collisional losses
may be suppressed.

In previous studies, it has been demonstrated that for
ultracold gases with negative 3D scattering length as (i.e.,
as < 0), a specific CIR which satisfies the conditions (i) and
(ii) can be realized in two cases, i.e., the scattering between
two atoms in a 3D isotropic square optical lattice [9–11] and
the scattering between a heavy atom freely moving in 3D
space and a light atom localized in a 3D harmonic trap [12].
Nevertheless, for most species of ultracold atoms in current
experiments we have as > 0 for B = 0. To our knowledge, the
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FIG. 1. Schematic diagram of our quasi-(1 + 0)D system. Atoms
α and β are simultaneously confined in a quasi-1D tube which is
described by a 2D isotropic harmonic potential with frequency ω⊥ in
the x-y plane. Atom β is further trapped by an external harmonic trap
along the z direction, which is centered at the origin of the z axis and
has frequency ωz.

specific CIR which can occur for both as > 0 and as < 0 has
not been discovered before.

In this manuscript, we propose that such a specific CIR can
be realized for a mixed-dimensional ultracold gas with either
positive or negative 3D scattering length as. Explicitly, we
consider the scattering between an atom (atom α) moving in
quasi-1D confinement and another atom (atom β) localized in
a 3D harmonic trap, and thus behaving as a quasi-0D impurity
(Fig. 1). We find that in such a “quasi-(1 + 0)D” system a CIR
which satisfies both conditions (i) and (ii) can occur when
atom α is much heavier than the atom β, for either as > 0
or as < 0.

We further explain the mechanism of the specific CIRs in
our system with an analysis based on the Born-Oppenheimer
approximation (BOA). Explicitly, we find that the specific
CIR of our system mainly results from both of the following
two facts,

(A) As specified by the BOA, the heavy atom α can
experience a 1D finite-range potential VBOA(zα ) along the
axial direction of the quasi-1D confinement (the z direction),
which is induced by the light atom β. In addition, for the
case with small |as|, VBOA(zα ) is proportional to the strength
of the 3D Huang-Yang pseudopotential between the atoms α

and β, i.e., as/μ, with μ being the reduced mass of these two
atoms. For our system with α being much heavier than β, μ is
approximately the mass of atom β. Therefore, for small |as|,
the 1D potential VBOA(zα ) for atom α can still be strong under
the condition that the atom β is light enough.

(B) When as > 0, VBOA(zα ) is a 1D finite-range purely re-
pulsive potential, i.e., a 1D potential barrier. Intuitively speak-
ing, there should be no resonance in such a system, because
there is no bound state. However, a low-energy scattering
resonance can still appear when the height of VBOA takes some
certain values. We illustrate this effect with an analytically
solvable 1D square-barrier model. As a result of this effect,
when one tunes VBOA via the CLs of the confinements, a CIR
can be induced. On the other hand, when as < 0, VBOA(zα ) is
a 1D attractive potential well with the depth dependent on the
CLs of the confinements. Thus it is quite natural that a CIR
can be induced when one tunes the depth of VBOA(zα ) to some
certain value by changing the CLs of the confinements.

Our results are helpful for realizing strong effective inter-
atomic interaction of ultracold atoms in quasi-1D confinement
with localized impurities, which can be either spin dependent
or spin independent. Such a system can be used for the study
of Kondo physics [25–27,31–33], quantum open system [34],

and precision measurement [35,36]. Also, our result shows
the existence of broad CIRs for small positive 3D scattering
length, and thus implies the possibility of finding such CIRs
in more general systems.

The remainder of this manuscript is organized as follows.
In Sec. II we solve the quasi-(1 + 0)D scattering problem of
two atoms with unequal mass and show the appearance of
the specific CIRs. In Sec. III we explain our result with the
analysis based on BOA. In particular, we illustrate that in the
1D cases a low-energy scattering resonance can be induced by
a purely repulsive potential barrier. A summary of our results
is given in Sec. IV. In the Appendix, we show some details of
our calculation.

II. CIR IN A QUASI-(1 + 0)D SYSTEM

In this section, we first introduce the quasi-(1 + 0)D sys-
tem studied in this work, and then give the definition of CIR
for our system. After that, we illustrate our numerical results
which show that specific CIRs satisfying the above conditions
(i) and (ii) can appear in our system, for either as < 0 or
as > 0.

A. System and Hamiltonian

As shown in Fig. 1, we consider the two-body problem
with a heavy atom α and a light atom β. The atom α is
moving in a quasi-1D confinement along the z direction (axial
direction), which is described as a 2D isotropic harmonic
potential with frequency ω⊥ in the x − y plane (transverse
plane), and atom β is trapped in a 3D harmonic potential
with frequencies ωxy and ωz in the x − y plane and z direction,
respectively. For simplicity, here we assume the confinements
of atoms α and β have the same transverse frequencies, i.e.,
ωxy = ω⊥.

As a result of the above assumption ωxy = ω⊥, the trans-
verse relative motion of these two atoms can be decoupled
from their center-of-mass motion. Thus, in the two-body
problem, we can ignore the center-of-mass motion in the x
and y directions. Therefore, the Hamiltonian for this system is

H = H0 + V. (1)

Here H0 is the free Hamiltonian and can be expressed as

H0 = H⊥ + H (α)
z + H (β )

z , (2)

where

H⊥ = − h̄2

2μ
∇2

ρ + μω⊥ρ2

2
(3)

is the free Hamiltonian for the transverse relative motion of
the two atoms, with μ and ρ being the reduced mass and
the relative position of these two atoms in the x − y plane,
respectively. In Eq. (2),

H (α)
z = − h̄2

2mα

∂2

∂z2
α

(4)

and

H (β )
z = − h̄2

2mβ

∂2

∂z2
β

+ mβωzz2
β

2
(5)
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are the Hamiltonian for the motion of the atoms α and β in
the z direction, respectively, where mα(β ) and zα(β ) are the
mass and z coordinate of the atom α (β), respectively. For this
system, we can define two CLs a⊥ and az of the confinement
as follows:

a⊥ =
√

h̄

μω⊥
, az =

√
h̄

mβωz
. (6)

In this manuscript, we will focus on the case that

mα � mβ. (7)

In Eq. (1) V is the interaction potential between the two atoms
and is modeled with the Huang-Yang pseudopotential, i.e.,

V (r) = 2π h̄2as

μ
δ(r)

∂

∂r
(r·), (8)

with as being the 3D s-wave scattering length of these two
atoms and r = ρ + (zα − zβ )ez being the 3D relative position
vector of the two atoms. Here ez is the unit vector along the z
direction.

B. Low-energy scattering and CIR

In this manuscript we consider the low-energy scattering
between atoms α and β which are in the ground state φ⊥(ρ)
of H⊥ and the ground state φz(zβ ) of H (β )

z , respectively.
Thus the incident state for the scattering problem can be
expressed as


 (0)(ρ, zα, zβ ) = eikzα

√
2π

φz(zβ )φ⊥(ρ), (9)

with k being the incident momentum of the atom α. We con-
sider the low-energy case where the incident kinetic energy of
atom α is much lower than the frequencies of the transverse
and axial confinements, i.e.,

h̄2k2

2mα

� h̄ωz, h̄ω⊥. (10)

Here we emphasize that using Eq. (6) we can reexpress this
condition as ka⊥, kaz � √

2mα/mβ. Thus, when the mass
ratio between atoms α and β is large enough, this condition
can be satisfied even when k is larger than 1/a⊥ or 1/az.
Under such a low-energy condition, the corresponding scat-
tering state 
 (+)(ρ, zα, zβ ) is determined by the Schrödinger
equation

H
 (+)(ρ, zα, zβ ) =
(

h̄2k2

2mα

+ h̄ωz

2
+ h̄ω⊥

)

 (+)(ρ, zα, zβ )

(11)

and the outgoing boundary condition

lim
|zα |→∞


 (+)(ρ, zα, zβ )

= 1√
2π

{eikzα + f (e)(k)eik|zα |

+ f (o)(k)sgn[zα]eik|zα |}φz(zβ )φ⊥(ρ), (12)

where f (e)(k) and f (o)(k) are the effective 1D scattering
amplitudes for the even and odd partial waves, respectively,
and can be expressed as

f (e)(k) ≈ −1

1 + ikae
, (13)

f (o)(k) ≈ −ik

ik + a−1
o

(14)

in the low-energy limit. Here ae and ao are the even and odd
wave 1D scattering lengths, respectively. They are functions
of the 3D scattering length as as well as the CLs a⊥ and az of
the confinement. In other words, we have

ae/o = ae/o(as, a⊥, az ). (15)

In the low-energy case, when the mean value of the inter-
atomic distance is much larger than the width of the matter-
wave packets of these two atoms, the transverse motion of the
two atoms and the axial motion of atom β are frozen in the
ground state of the corresponding confinements. As a result,
our system can be described by a simple pure-1D effective
model for the axial motion of atom α, with the effective
Hamiltonian [37]

H (eff) = − h̄2

2mα

∂2

∂z2
α

+ Veff (zα ), (16)

with

Veff (zα ) = g(even)δ(zα )d̂e + g(odd)δ′(zα )d̂o. (17)

Here δ(zα ) is the Dirac delta function, δ′(zα ) = d
dzα

δ(zα ), and

the operators d̂e and d̂o are defined as

d̂eψ (zα ) ≡ 1

2

[
ψ (zα )|zα=0+ + ψ (zα )|zα=0−

]
,

d̂oψ (zα ) ≡ 1

2

[
d

dzα

ψ (zα )

∣∣∣∣
zα=0+

+ d

dzα

ψ (zα )

∣∣∣∣
zα=0−

]
.

In Eq. (17) the strengths g(even) and g(odd) can be expressed as
functions of the scattering lengths ae,o as

g(even) = − h̄2

mαae
, g(odd) = h̄2

mα

ao, (18)

respectively [37]. A straightforward calculation shows that
the effective potential Veff (zα ) can reproduce the low-energy
scattering amplitudes f (e,o)(k) given by the exact “quasi-
1D+quasi-0D” Hamiltonian H .

Furthermore, when the confinement CLs a⊥ and az take
some particular values, we may have

ae = 0,

and thus the low-energy even-wave scattering amplitude
f (e)(k) can be maximally enhanced, i.e., | f (e)(k)| ≈ 1. This
is known as the even-wave CIR. Similarly, we may have
ao = ∞ for some other particular values of a⊥ and az. As a
result, the odd-wave scattering amplitude f (o)(k) is maximally
enhanced [| f (o)(k)| ≈ 1]. This is known as the odd-wave CIR
[37]. It is clear that under an even-wave or odd-wave CIR the
corresponding effective interaction intensity g(even) or g(odd)

would be enhanced to infinity, respectively. In addition, when
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FIG. 2. Effective interaction strength g(even) as a function of a⊥/as for different mass ratio mα/mβ and confinement aspect ratio az/a⊥. The
two broadest CIRs located are labeled by CIR(R)

even and CIR(L)
even, respectively. In (d) we further show the definition of the width WL of CIR(L)

even.

the system is in the region around an even- (odd-) wave
CIR point, one can control g(even) (g(odd)) by changing the
confinement CLs a⊥ and az. Since in our system the even and
odd partial waves are decoupled, the appearance of even-wave
CIR is actually independent of the odd-wave scattering, and
vise versa.

In this work we only consider the even-wave CIRs. We will
show that, when the mass ratio mα/mβ is large enough, an
even-wave CIR can occur even when |as| is much smaller than
the CLs a⊥ and az of the confinements of our system.

C. Specific even-wave CIRs

Now we study the even-wave CIRs of our system. To this
end, we should calculate the even-wave scattering length ae

or the effective interaction intensity g(even) defined in Eq. (18).
We adopt the theoretical approach in our previous work where
CIRs for cases with mα = mβ are studied [27]. The details of
this method are presented in the Appendix.

In Fig. 2 we show g(even) as a function of a⊥/as, for
the cases with different mass ratio mα/mβ , with az/a⊥ =
1 [Figs. 2(a)–2(d)] and az/a⊥ = 1.5 [Figs. 2(e)–2(h)]. It is
clearly shown that in each case multiple CIRs can appear
for either as > 0 or as < 0. As pointed out in our previous
work, that is due to the coupling between the relative and
center-of-mass motion of the two atoms in the z direction
[12,26,27,38,39]. In Fig. 3 we further illustrate the trans-
mission coefficient T (k), which is defined as T (k) = |1 +
f (e)(k) + f (o)(k)|2, for several cases. We compare the results
given by the quasi-(1 + 0)D calculation based on the explicit
Hamiltonian H in Eq. (1) and the one from the effective 1D
model H (eff) of Eq. (16). It is clearly shown that in each
case the effective potential Veff (zα ) can reproduce the exact
results in the low-energy limits, as mentioned in the above
subsection.

Furthermore, two broadest CIRs are located at the higher
and lower ends of a⊥/as, which are denoted as CIR(R)

even and
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1
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0

0.01

FIG. 3. Transmission coefficients T (k) as function of incident
momentum k of atom α for various cases with as < 0 (a) and as > 0
(b). Here we take az/a⊥ = 1.5 and mα/mβ = 8. The solid and dashed
line are given by the calculations based on the exact quasi-(1 + 0)D
Hamiltonian H defined in Eq. (1) and the effective 1D Hamiltonian
H (eff) defined in Eq. (16), respectively.
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FIG. 4. Positions of CIR(R)
even and CIR(L)

even as functions of az/a⊥
for different mass ratio.

CIR(L)
even in Fig. 2, respectively. More importantly, as shown

in Fig. 2, when the mass ratio mα/mβ is increased, CIR(R)
even

and CIR(L)
even are rapidly shifted to the places with larger

|a⊥/as|. For instance, when az/a⊥ = 1 the CIR(R)
even occurs at

a⊥ = 7.211as for mα/mβ = 2, a⊥ = 14.12as for mα/mβ = 4,
and a⊥ = 28.09as for mα/mβ = 8. Similarly, when az/a⊥ = 1
the CIR(L)

even occurs at a⊥ = −0.9989as for mα/mβ = 2, a⊥ =
−2.747as for mα/mβ = 4, and a⊥ = −6.152as for mα/mβ =
8. This is also shown in Fig. 4 where the positions of CIR(L)

even
and CIR(R)

even are illustrated as functions of the confinement
aspect ratio az/a⊥ for different mass ratio mα/mβ . In addition,
Fig. 4 also shows that, for a fixed mass ratio, when az/a⊥ is
larger, CIR(R)

even and CIR(L)
even can appear for larger |a⊥/as|.

According to our above results, when the mass ratio mα/mβ

of the two atoms is large enough, CIR(R)
even and CIR(L)

even can
occur when the confinement CLs az and a⊥ are much larger
than |as| for as > 0 and as < 0, respectively. Namely the
condition (i) in Sec. I can be satisfied by these two CIRs.

Now we consider the condition (ii) in Sec. I, i.e., the
controllability of the effective interaction strength g(even) in the
region of CIR(L,R)

even . As shown in Fig. 2, using these CIRs one
can control g(even) via the confinement CLs a⊥,z. This control
is applicable when g(even) is robust enough with respect to a⊥,z,
so that the fine-tuning of a⊥,z is not required. For our system
we can analysize the robustness of g(even) as follows. We first
take the cases with az/a⊥ = 1 as an example. As illustrated

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

FIG. 5. WL/|sL| of CIR(L)
even as a function of the mass ratio mα/mβ .

As shown in the main text, WL is defined as the distance between the
position of CIR(L)

even and the nearest zero-crossing point of g(even) as
illustrated in Fig. 2(d).

in Fig. 2(d), we define the width WL of the CIR(L)
even as the

distance between the position of this CIR and the nearest
zero-crossing point of g(even). For convenience, we further
denote sL as the position of CIR(L)

even (i.e., CIR(L)
even appears

when a⊥ = az = sLas). Thus one can control g(even) via tuning
a⊥,z in the region between (sL − WL )as and (sL + WL )as.
Therefore, to realize a precise control for g(even), the relative
error of a⊥,z should be much less than WL/|sL|. In Fig. 5 we
illustrate WL/|sL| for various cases. It is shown that we always
have WL/|sL| � 30%. Therefore, the CIR(L)

even is applicable for
the control of g(even) when the relative error of a⊥,z is much
less than 30%. This condition can be satisfied in most of
the current experiments. Furthermore, the analysis for the
cases with other values of az/a⊥ as well as CIR(R)

even lead to
a similar result. So we conclude that in the regions of CIR(L)

even
and CIR(R)

even the effective interaction intensity g(even) is robust
enough with respect to a⊥,z, and thus these CIRs can be used
for the control of g(even).

On the other hand, we also notice that the CLs of the
laser trapping potentials are proportional to the quadratic root
of the corresponding laser intensities, i.e., a⊥,z ∝ I1/4

⊥,z , with
I⊥ (Iz) being the intensity of the laser beam which creates
the transverse (axial) confinement. In many experiments, the
intensities of the trapping lasers can be varied by a factor of
at most 3 or 4, which yields that a⊥,z can be tuned by a factor
of at most 1.3–1.4. The variation of a⊥,z in a broader range
may be difficult. As a result, for a certain system one can tune
g(even) in a finite region with the help of CIR(L,R)

even (e.g., the
strongly interacting region with large |g(even)|), but it is not
easy to freely control g(even) in the whole range from −∞ to
+∞.

III. ANALYSIS BASED ON THE BOA

In the above section, we show that for our quasi-(1 + 0)D
system CIRs can appear when the 3D scattering length is
much smaller than the confinement CLs. In this section, we
qualitatively explain the appearance of these specific CIRs
with an analysis based on the BOA.
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As shown above, for our system the atom α is much heavier
than the atom β, i.e., mα � mβ . Therefore, the mass of atom α

is also much larger than the reduced mass μ of the two atoms,
which is the effective mass of the two-atom relative motion.
Consequently, both of the coordinates zβ of the atom β and
the transverse coordinate ρ of the two-atom relative motion
are the “fast variable” of our system, while the coordinate
zα of atom α is the only “slow variable.” Therefore, in the
spirit of BOA, the axial motion of atom α is governed by a 1D
Hamiltonian

HBOA = − h̄2

2mα

∂2

∂z2
α

+ VBOA(zα ). (19)

Here the potential VBOA(zα ) is the energy of fast variables for
a fixed axial position zα of the atom α, i.e., the ground-state
energy of the Hamiltonian H⊥ + Hβ

z + V with zα being a
classical parameter (c number). Furthermore, since the 3D
scattering length as is very small, i.e., the bare interaction
V (r) in Eq. (8) is very weak, we can treat V (r) as a first-order
perturbation in the calculation of VBOA(zα ). A straightforward
calculation yields

VBOA(zα ) =
(

as

μ

)
2h̄2

√
πa2

⊥az
e−z2

α/a2
z . (20)

We first consider the case with as < 0. Equation (20)
shows that in this case VBOA(zα ) is always negative, i.e., it
is a 1D finite-range potential well which is determined by
the confinement CLs {az, a⊥}, as well as the factor as/μ.
Therefore, if the reduced mass μ is sufficiently small (i.e.,
the mass ratio mα/mβ is large enough), the potential well
VBOA(zα ) would be deep enough and thus the 1D even-wave
scattering resonance can appear (i.e., the even-wave scattering
length can become zero). Thus, as shown in Figs. 2 and 4(b),
when mα/mβ becomes larger, the CIRs can occur for smaller
as. On the other hand, when the ratio as/μ is fixed, the shape
of VBOA(zα ) still changes with a⊥ and az. Resonance can
be induced when these two parameters are tuned to some
particular values.

For the case with as > 0, the potential VBOA(zα ) given by
Eq. (20) is always positive. That is, VBOA(zα ) is a potential bar-
rier. In this case the appearance of the resonance seems to be
counterintuitive. Nevertheless, for 1D scattering a zero-energy
even-wave resonance really can occur for a potential barrier
which is always positive. As an example, we consider the scat-
tering of a particle on a square potential barrier in the z axis,
as shown in Fig. 6(a). The Hamiltonian of this toy model is

htoy = − h̄2

2m

∂2

∂z2
+ W (z), (21)

with W (z) = g0 for |z| � b/2 and W (z) = 0 for |z| > b/2
(b > 0) [Fig. 6(a)]. A direct calculation shows that the
even-wave scattering length atoy for this toy model is

atoy = b

2
− coth(b

√
2mg0/h̄2/2)√

2mg0/h̄2
. (22)

In Fig. 6(b), atoy is shown as a function of the width b and the
height g0 of the potential. Equation (22) yields that we have
atoy = 0 when g0 ≈ 2.9h̄2/(mb2). An even-wave resonance
can occur under this condition.

zb/2−b/2

(a)
W (z)

g0

0 2 4 6 8 10
-1

-0.5

0

0.5

1

FIG. 6. (a) Pure-1D square potential barrier W (z) in the Hamil-
tonian (21). (b) Scattering length atoy of the pure-1D square barrier
as function of width b and height g0. An even-wave CIR occurs when
g0 ≈ 2.9h̄2/(mb2).

Therefore, similar to the case of as < 0, when as > 0
an even-wave CIR can appear provided that the mass ratio
mα/mβ is so large that the strength as/μ of VBOA(zα ) is strong
enough, and the confinement CLs az and a⊥ are tuned to some
particular values.

To conclude, the above analysis shows that the specific
CIRs of our system mainly result from the following two facts.
First, the potential VBOA(zα ) depends on the ratio as/μ, which
is essentially because the Huang-Yang pseudopotential V is
proportional to as/μ. Second, an even-wave resonance can
always occur for a finite-range 1D potential, no matter if it
is a potential well or a potential barrier.

IV. SUMMARY

In this work we study the low-energy scattering between a
heavy atom α moving in quasi-1D confinement and a local-
ized light atom β. We show that if the atom β is light enough,
two specific CIRs can appear even if the 3D interatomic
scattering length as is much smaller than the CLs of the
confinements, for either as > 0 or as < 0. With these two
CIRs, one can realize strong effective interatomic interaction
even if the 3D background interaction between these two
atoms is very weak, and thus realize a strongly interacting
impurity system without the help of MFR. So far the mix-
ture of ultracold atoms with different mass ratio has been
realized by many experimental groups, e.g., the mixtures of
173(4)Yb- 7Li [40], 161Dy- 40K [41], and 40K-6Li [42–44].
We are very hopeful our proposal will be realized in these
experimental systems.

We plan in the future to find these kind of specific CIRs,
which can appear for small as and are broad enough for ex-
perimental control, in more types of confinements. As shown
in Sec. I, they could be very useful for quantum simulations
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and precision measurements, especially the ones which are
based on spin-dependent interatomic interaction and should
be performed at a very low magnetic field or B = 0.
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APPENDIX: CALCULATION OF EVEN-WAVE
SCATTERING LENGTH FOR QUASI-(1 + 0)D SYSTEM

In this Appendix, we present the detailed calculation of
the even-wave scattering length ae defined in Eq. (13) of the
main text. As mentioned in our main text, our approach is the
same as our previous work, Ref. [27], where we performed
this calculation for the equal-mass case with mα = mβ . Since
the calculation method is introduced in detail in Ref. [27], here
we only show the basic idea of this method and the formulas
which are different from the ones in the equal-mass case.

As shown in Ref. [27], the scattering wave function

 (+)(ρ, zα, zβ ) introduced in Sec. II A satisfies the Lippmann-
Schwinger type equation


 (+)(ρ, zα, zβ ) = 
 (0)(ρ, zα, zβ )

+ 2π h̄2as

μ

∫
dz′GE (ρ, zα, zβ ; 0, z′, z′)η(z′),

(A1)

where 
 (0)(ρ, zα, zα ) is the incident state defined in Eq. (9)
of the main text and E = h̄2k2

2mα
+ h̄ωz

2 + h̄ω⊥ is the scattering
energy. Here GE (ρ, zα, zβ ; 0, z′

α, z′
β ) is the Green’s function

defined as

GE (ρ, zα, zβ ; ρ′, z′
α, z′

β ) =〈ρ, zα, zβ | 1

E + i0+ − H0
|ρ′, z′

α, z′
β〉

(A2)

and η(z) is the regularized scattering wave function

η(z) = ∂

∂zr

[
zrψ

(+)

(
0, z + mβ

M
zr, z − mα

M
zr

)]∣∣∣∣
zr→0

, (A3)

with M = mα + mβ . Upon substituting Eq. (A1) into
Eq. (A3), one immediately obtains the integral equation
of η(z)

η(z) = 
 (0)(0, z, z) + 2π h̄2as

μ

∂

∂zr

[
zr

∫
dz′GE

(
0, z + mβ

M
zr, z − mα

M
zr ; 0, z′, z′

)
η(z′)

]∣∣∣∣
zr→0+

. (A4)

Solving Eq. (A4), one could obtain η(z) and hence the scattering state 
 (+)(ρ, zα, zβ ). Subject to the outgoing boundary condition
in Eq. (12), one could find the even-wave scattering amplitude as follows:

f (e)(k) =mα

μ

(2π )3/2as

ik

√
μω⊥
h̄π

∫
dz′ cos(ikz′)φ∗

0 (z′)η(z′). (A5)

In the zero momentum limit, the even-wave scattering amplitude can be written as

f (e)(k) ≈ −1

1 + ikae
. (A6)

Therefore, if we can obtain the function η(z), we can obtain the even-wave scattering length ae via Eqs. (A5) and (A6). To
derive η(z), we rewrite Eq. (A4) as an integral equation for η(z). As in Ref. [27], we first reexpress the Green’s function as

GE (0, zα, zβ ; 0, z′, z′) = μω⊥
h̄π

g(zα, zβ ; z′, z′) + GE ′ (0, zα, zβ ; 0, z′, z′). (A7)

Here the two terms are given by

g(zα, zβ ; z′, z′) = −i
mα

h̄2

eik|zα−z′ |

k
φ0(zβ )φ∗

0 (z′) − mα

h̄2

∞∑
nz=1

e−
√

2mαnzωz/h̄−k2|zα−z′ |√
2mαnzωz/h̄ − k2

φnz (zβ )φ∗
nz

(z′) (A8)

and

GE ′ (0, zα, zβ ; 0, z′, z′) = −
∫ ∞

0
dβ eβE ′

Kβ (0, zα, zβ ; 0, z′, z′), (A9)

with E ′ = E − 2h̄ω⊥, which is smaller than the threshold energy of H0, and

Kβ (0, zα, zβ ; 0, z′, z′) = μω⊥
2π h̄ sinh(h̄ω⊥β )

√
mα

2π h̄β
exp

[
−mα (zα − z′)2

2h̄β

]

×
√

mβωz

2π h̄ sinh(h̄ωzβ )
exp

[
−mβωz

[(
z2
β + z′2) cosh(h̄ωzβ ) − 2zβz′]

2h̄ sinh(h̄ωzβ )

]
. (A10)
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Using the result Eq. (A7) and the approach present in Ref. [27], we find that Eq. (A4) can be converted to an integral equation
for η(z),

η(z) =
 (0)(0, z, z) + 2h̄ω⊥as

∫
dz′g(z, z; z′, z′)η(z′) + 2π h̄2as

μ

{
F1(z)η(z) +

∫
dz′F2(z, z′)[η(z′) − η(z)]

}
, (A11)

which is solvable numerically. Here

F1(z) = − μ3/2

(2π h̄2)3/2

∫ ∞

0
dβ

⎡
⎣ h̄ω⊥

√
(mα + mβ )ωz exp

(
βE ′ − mβωz[mβωz h̄β+2mα tanh(h̄ωzβ/2)]

2h̄[mα+mβωz h̄β coth(h̄ωzβ )] z2
)

sinh(h̄βω⊥)
√

mβωzβ cosh(h̄ωzβ ) + mα sinh(h̄ωzβ )/h̄
− 1

β3/2

⎤
⎦ (A12)

and

F2(z, z′) = −
∫ ∞

0
dβ eβE ′Kβ (0, z, z; 0, z′, z′). (A13)

We numerically solve Eq. (A11) and derive the function η(z). Substituting the result into Eqs. (A5) and (A6), we finally obtain
the even-wave scattering length ae.
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