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Distinct oscillations of the purity of the single-particle density matrix for many-body open quantum systems
have been shown to exist [D. Dast, D. Haag, H. Cartarius, and G. Wunner, Phys. Rev. A 93, 033617 (2016)]. They
are found in PT -symmetric Bose-Einstein condensates, in which the coherence of the condensate drops and is
almost completely restored periodically. For this effect the presence of a gain and loss of particles turned out to
be essential. We demonstrate that it can also be found in closed quantum systems whose subsystems experience
a gain and loss of particles. This is shown with two different lattice setups for cold atoms, viz., a ring of six
lattice sites with periodic boundary conditions and a linear chain of four lattice wells. In both cases pronounced
purity oscillations are found, and it is shown that they can be made experimentally accessible via the average
contrast in interference experiments. This shows that it is possible to identify this characteristic effect in closed
quantum systems which have been proposed to realize PT -symmetric quantum mechanics via separation into
subsystems.

DOI: 10.1103/PhysRevA.100.063605

I. INTRODUCTION

Today it is well established that PT -symmetric quantum
mechanics [1,2] can be used as an effective description of
open quantum systems [3]. In this context complex potentials
introduce a coupling to an environment which is not defined
in detail. A negative imaginary part describes a decrease of the
probability amplitude of a quantum particle to be in the system
under consideration. In the same sense a positive imaginary
potential represents an increase of this probability amplitude.
PT symmetry of the Hamiltonian offers the possibility of
balanced gain and loss, since a PT -symmetric potential
has spatially separated sinks and sources of the probability
amplitude, but with the same strength. This was introduced
and used in many quantum mechanical applications [4–8]
as well as in quantum field theories [9–12], where a rich
variety of characteristic effects of these systems, such as
self-orthogonality, spontaneous PT -symmetry breaking, or
quasi-Hermiticity was uncovered. However, the formalism is
not restricted to quantum mechanics but also has applications
in classical systems such as electromagnetic waves [13–17] or
electronic devices [18].

In optics in particular the concept of PT symmetry, or non-
Hermitian Hamiltonians in general, has been very fruitful.
Based on the fact that imaginary contributions to the refractive
index can be understood as sources and sinks of the electro-
magnetic field amplitude [19], systems of optical wave guides
with balanced gain and loss were constructed and successfully
proved the applicability of the theoretical formalism in ex-
periments [20–22]. This has led to remarkable experimental
verifications such as relations to topological properties of
lattice systems [23] or nonadiabatic state flips [17].
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If a single particle is studied, the complex potentials act on
the particle’s probability amplitude to be in the system [24].
A different interpretation can be obtained in many-particle
systems. For example, in the Gross-Pitaevskii equation of a
Bose-Einstein condensate (BEC) the gain and loss terms in
the potential modify the amplitude of the mean-field wave
function, and thus describe a coherent injection or removal
of particles [25]. In this approach the quantum system of a
BEC is only discussed on the mean-field level and its quantum
many-body character remains hidden.

However, the many-body properties are clearly impor-
tant for the system. On the one hand it can be conjectured
that quantum fluctuations make the appearance of exact PT
symmetry impossible [26]. On the other hand the dynamics
of a condensate subject to balanced gain and loss shows a
characteristic signature. As was shown [27,28], the coherence
of a condensate can be affected substantially by the gain and
loss effects. In the system studied in Refs. [27,28] the purity
of the single-particle density matrix, which can be used as a
measure of how close the condensate is to a mean-field state,
drops periodically during the dynamics but is also almost
completely restored in each period. This is in contradiction
with the usual assumption that coherence gets lost due to
interactions but never recurs.

A very fundamental study of the corresponding mechanism
for the information flow in linear quantum systems is pre-
sented by Kawabata et al. [29]. Experimental studies of linear
systems with respect to the available information were done
in Refs. [30–32].

The results of Refs. [27,28] were obtained in a many-
particle description, where a master equation in Lindblad form
[33] was used to introduce the gain and loss of atoms. It is
known that this description shows all effects visible in the
Gross-Pitaevskii equation of the system and converges to its
imaginary potentials in the mean-field limit of the many-body
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system. However, in this description the sources and drains of
particles are still located in some environment, which is not
specified further. Since proposals exist how PT -symmetric
BECs can be realized, we wish to investigate whether or not
these realizations exhibit the purity oscillations. We suggest
to exploit such possible realizations and in this work we
demonstrate that purity oscillations can indeed be found and
identified beyond any doubt in these systems. Since these pro-
posals are subsystems embedded in a larger closed structure,
we show here that purity oscillations can be found in closed
quantum systems, which has, to the best of our knowledge,
never been observed before. This renders the experimental re-
alization of quantum systems with purity oscillations possible.

Our starting point is the proposal of Kreibich et al. [34,35],
which consists of a multiwell trap for the BEC. Some of the
inner wells are considered as the system and the outer wells
form the environment. In the mean-field limit the influx and
outflux of particles into and from the system have exactly the
same influence on the condensate as the imaginary potentials.
A primary objective of the present work is to investigate
whether such a Hermitian system, of which only a subsystem
is considered, can show a behavior similar to the open system
with respect to the time evolution of the coherence in the
system, i.e., whether or not the purity oscillations discussed
by Dast et al. [27] can occur in this Hermitian system.

To do so, we use two approaches. The first consists of a
six-well setup with periodic boundary conditions. It consists
basically of two coupled trimers; certainly a nontrivial system
since already the isolated trimer can exhibit a rich dynamics
[36]. The second one is a chain of four wells, which is very
close to the original proposal of Kreibich et al. [34] and in
which only the inner two wells are regarded as the system
with gain and loss. The many-body dynamics of these systems
is studied and the purity of the single-particle density matrix
is calculated. This will show that, as in the open system [27],
due to the gain and loss of atoms in the subsystem the purity
can perform oscillations, in which it drops to small values but
always is nearly completely restored. As was discussed by
Dast et al. [27] this effect leads to a measurable quantity in
interference experiments since a high purity is necessary for a
distinct average contrast in interference patters. At low values
of the purity the average contrast vanishes. We confirm that
this behavior is also present in our setups.

To do so, we start with a six-well system with periodic
boundary conditions in Sec. II. After the preparation of the
initial state (Sec. II A) and the introduction of the calculations
for the dynamics (Sec. II B) we investigate the particle number
dynamics in the single wells (Sec. II C) and show the effect on
the purity of the single-particle density matrix (Sec. II D) as
well as on the contrast in interference experiments (Sec. II E).
This is compared with the dynamics of a chain of four wells in
Sec. III. Conclusions from these numerical studies are drawn
in Sec. IV.

II. DYNAMICS OF CONDENSATES WITH
PERIODIC BOUNDARY CONDITIONS

In this section the system proposed in Fig. 1 is analyzed,
with the central question under investigation being to what
extent the many-particle dynamics of two coupled BECs

1 2 3

6 5 4

J1 J1

J1 J1
J2J2

subsystem 1

subsystem 2

FIG. 1. Schematic representation of the setup discussed in
Sec. II: Two coupled three-site subsystems forming a six-site Her-
mitian system.

shows a behavior similar to that of a condensate in a simple
open system. A special focus is set on the time evolution of
the coherence of the condensates as expressed by the purity of
the single-particle density matrix.

A. Initial state

The situation considered is as follows. The two subsystems
are initially fully separated by setting the tunneling strength
J2 to zero. At t = 0 each subsystem is populated with a pure
BEC. However, the two BECs do not share phase coherence
with each other. The potential wall between the subsystems
is then lowered, assigning a finite value to J2 and inducing a
dynamics in the system.

An initial state representing the situation described above
can be found by proposing mean-field states for each subsys-
tem individually, which are pure a priori. These states can
be calculated with the discrete dimensionless Gross-Pitaevskii
equation for three sites in the stationary case, i.e.,

μc1 = g|c1|2c1 − J1c2,

μc2 = g|c2|2c2 − J1c1 − J1c3,

μc3 = g|c3|2c3 − J1c2,

(1)

where g represents the macroscopic particle-particle inter-
action and μ is the chemical potential. The ground state
of this system of equations is calculated numerically under
the normalization condition |c1|2 + |c2|2 + |c3|2 = 1

2 , which
ensures that the combined system is of norm 1. The mean-field
coefficients ci of the ground state can be chosen to be real
at all sites i, and for the exemplary case of g = J1 = 1 the
calculation yields c1 = c3 ≈ 0.3604 and c2 ≈ 0.4902.

B. Many-particle dynamics

In general the many-particle state in the Fock base corre-
sponding to a mean-field state is given by

|c, N〉 =
∑

n1+···+nM=N

√
N!

n1! · · · nM!
cn1

1 · · · cnM
M |n1, . . . , nM〉,

(2)

where N is the total number of particles in the system, M is
the number of sites, and the coefficients nj denote the number
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of particles at site j. For our case of two independent mean-
field states in two identical subsystems a direct product of two
three-well states is needed with N/2 in each subsystem, i.e.,

|ψ〉 = |{c1, c2, c3}, N/2〉 ⊗ |{c4, c5, c6}, N/2〉. (3)

The coefficients c1 = c3 = c4 = c6 and c2 = c5 are those
calculated above.

The dynamics of the many-particle system is solved with a
Bose-Hubbard type Hamiltonian

H = −
∑
i, j

Ji ja
†
i a j + U

2

∑
j

Ua†
j a

†
j a ja j (4)

with Jji = Ji j , in which no on-site energy term is present since
all wells are assumed to have the same on-site energy and
dimensionless units are chosen appropriately. The operators
a†

i and ai create and annihilate a particle at site i, respectively.
To reflect the system of Fig. 1 and to agree with the mean-field
state used as initial condition, we set J12 = J23 = J45 = J56 =
J1, J34 = J61 = J2, and U = g/(N − 1).

C. Filling level dynamics

Central quantities in analyzing the dynamical behavior are
the expectation values of the number operator 〈n̂ j〉 = 〈â†

j â j〉
for each site (referred to as filling levels in the following).
Because of the system’s symmetry that of the initial state does
not get lost during the temporal evolution and there are only
two independent filling levels, viz., the central levels of the
subsystems (c2 = c5) and all other levels (c1 = c3 = c4 = c6).

By propagating the initial state with a simple Runge-Kutta
algorithm, the time evolution of the many-particle states is
calculated for a system of N = 70 particles. Of course the
system’s dynamics depends critically on its parameters. A
detailed study of the parameter dependence in the description
via a master equation is given in Refs. [28,37]. In this paper
we wish to observe clear purity oscillations, and thus search
for appropriate parameters. The nonlinear interaction strength
g and the tunneling strength within the subsystems J1 are set
to 1 as above and the behavior of the system is investigated
for different couplings J2 between the subsystems since this
parameter induces the dynamics after the condensates have
been prepared independently. In our study a value of J2 = 2
turned out to provide a dynamics very similar to that of the
investigation of open systems [27]. An example for this choice
of J2 is shown in Fig. 2. After some onset period relatively
stable oscillations are established. Due to the underlying
symmetry they show a phase difference of π between the
central site of each subsystem and its outer sites. A stronger
coupling of the subsystems (i.e., J2 > 2J1) also yields an
oscillatory behavior. However, the amplitude and stability of
the oscillations decrease. Larger choices of the nonlinearity g
result in very unstable oscillations as well.

D. Investigation of the purity

In accordance with the study in open systems [27], we use
the purity

P = M

M − 1
tr

(
σ2

red

) − 1

M − 1
(5)
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FIG. 2. Time evolution of the filling levels for N = 70, g = J1 =
1, and J2 = 2 for two initially fully separated BECs. Relatively
stable oscillations are established after some onset period. Due to
the symmetry of the system and conservation of the total particle
number, there is a phase difference of π between the oscillations of
the central site (solid line) and those of the outer sites (dashed line).

of the reduced single-particle density matrix σred with the
elements

σred,i j = 〈a†
i a j〉∑M

k=1〈a†
kak〉

(6)

and the dimension M of the system to quantify how close the
state considered is to a pure condensate. One of the subsys-
tems corresponds to the open system of Ref. [27], and thus we
use its purity P with i, j ∈ {1, 2, 3} and M = 3. For complete-
ness we compare it with the purity Ptot of the whole system,
i.e., Ptot is calculated with i, j ∈ {1, . . . , 6} and M = 6.

Since it is known that the purity oscillations are strongly
related to the coupling of a system to its gain-loss environment
[27,28], we investigate the purity for different strengths of
the coupling of the two condensates as mediated by the
tunneling constant J2 in Fig. 3. The purity P (solid lines) of
one subsystem is displayed alongside the overall purity Ptot

(dashed lines) of the six-site system. Since the subsystems
are initially prepared in a mean-field state, i.e., with a pure
condensate, all curves in the figure have to start at P = 1
for t = 0. As time progresses the purity does in fact undergo
oscillations, whose amplitude is strongly determined by the
strength of the coupling. For J2 = 0.5 [Fig. 3(a)] the minimum
of the first oscillation is still higher than P = 0.9. It decreases
for the stronger coupling J2 = 1 [Fig. 3(b)] and reaches a
value of P ≈ 0.35 for J2 = 2 [Fig. 3(c)].

Increasing the coupling even further to J2 = 3 [Fig. 3(d)]
only results in a slight initial increase of the amplitude. This
minimal improvement goes along with an unwanted strong
overall decrease of the purity with time. In addition, the almost
harmonic shape that the oscillations possess for smaller values
of J2 is lost. This is in agreement with the study of the open
system [27,28], in which it was found that the purity oscilla-
tions are aligned with the particle number oscillations. In our
closed system the most pronounced purity oscillations with
an almost constant amplitude are achieved for the coupling
strength J2 = 2, which also leads to the most stable particle
number oscillations.

As mentioned above, previous studies [27,38] found the
rapid loss and subsequent restoration of the coherence to be a
phenomenon of open systems, which is not possible without
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FIG. 3. Time dependence of the purity P (solid lines) of one subsystem and the purity Ptot (dashed lines) of the total system for different
values (a) J2 = 0.5, (b) J2 = 1, (c) J2 = 2, and (d) J2 = 3 of the coupling strength between the two systems. The other parameters are N = 70
and g = J1 = 1. The purity P undergoes oscillations that can be very distinct and of a large amplitude for higher values of J2. The total purity
stays almost constant at Ptot = 0.4 and decreases only slightly over time, which can be explained solely by statistical reasons. The amplitude
and average of the oscillations of P decrease over time as well, especially for the highest value of the tunneling strength, J2 = 3 (d).

the coupling to an environment. In full agreement, in our
case it is only possible to observe such purity oscillations
by evaluating the purity for the two subsystems individually
in the coupled Hermitian system presented in this paper.
That is, for one subsystem the other assumes the role of the
environment.

Since the initial state of the system consists of two com-
pletely separated and incoherent BECs, the overall purity
starts below 1 at Ptot = 0.4, which corresponds to two states
with nonzero occupation of magnitude N/2. These are exactly
the two separate mean-field states. As time progresses Ptot

does not show any dynamical behavior except for a slight
decrease due to statistical reasons (i.e., there are more acces-
sible states of lower purity). An overall deterioration of the
subsystem’s purity P can also be observed in the long-term
time evolution for the same reasons. On a long timescale
the amplitude as well as the average value of the oscillations
decrease.

E. Contrast in interference experiments

The coherence of the atoms in a BEC as measured by the
purity plays a crucial role in interference experiments. As
demonstrated, e.g., in Ref. [39], the potential barrier between
two lattice sites can be turned off, which results in an expan-
sion of the atomic clouds of each site such that they ultimately
interfere. An interference pattern can be visualized with a light
source and detected using a CCD camera. For a system of low
coherence these interference patterns will be different each
time the interference experiment is executed, because in this

case there is no defined phase between the atoms of each site.
However, if the system is coherent and there is a defined phase
relation between the atoms of both sites, the interference
pattern will be identical if the experiment is repeated under
the same conditions. This behavior is expressed in the average
contrast of the interference pattern. For the pattern created
by the atoms of two neighboring sites j and k, this term can
be expressed in terms of the elements of the single-particle
density matrix [38],

ν jk = 2|〈â†
j âk〉|

〈â†
j â j〉 + 〈â†

k âk〉
∈ [0, 1]. (7)

The coherence between both sites is quantified by the two-
site purity

Pjk = (〈â†
j â j〉 − 〈â†

k âk〉)2 + 4〈â†
j âk〉〈â†

k â j〉
(〈â†

j â j〉 + 〈â†
k âk〉)2

, (8)

which is gained by considering only the matrix elements of
sites j and k in Eq. (5). Together with the squared particle
imbalance

I jk =
( 〈â†

j â j〉 − 〈â†
k âk〉

〈â†
j â j〉 + 〈â†

k âk〉

)2

(9)

this two-site purity determines the average contrast,

ν2
jk = Pjk − I jk . (10)
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FIG. 4. Average contrast ν12 after time t in an interference ex-
periment of sites 1 and 2 compared with the purity P12, the squared
particle imbalance I12 of the two sites, and the overall purity P of the
subsystem for the same parameters as in Fig. 2. The average contrast
undergoes distinct oscillations close in shape and size to those of the
purities P12 and P. The moderate particle imbalance is not able to
disturb this behavior, partly since its minima almost coincide with
the maximum of the purity.

Hence, the two-site purity is equal to the squared average con-
trast if the filling levels are identical for both sites. In general,
any finite particle imbalance lowers the average contrast while
the two-site purity provides an upper limit for ν2

jk .
For a system of only two sites, as, e.g., in Refs. [27,28],

the abstract quantity purity of the system is thereby related
to a quantity observable in experiment. Even though it is not
possible to generalize this concept for multiple sites in an
easy manner, it is still feasible for the system presented in
this section because both outer sites of the subsystems behave
identically. Thus, if a high coherence is observed between the
central site and one of the outer sites, there has to be a high
coherence in the subsystem as a whole.

However, for the average contrast to be largely determined
by the purity, the dynamics of the particle imbalance has
to play only a minor role. To explore the relationship of
these quantities for the system under investigation, the time
evolution of the average contrast ν12 in an interference of sites
1 and 2 is compared in Fig. 4, with the particle imbalance
I12, the two-site purity P12, and the overall purity P of the
subsystem. Right from the start of the time evolution, while
the dynamics of the filling levels are still in their onset phase,

1 2 3 4

J

subsystem 1 subsystem 2

J J

FIG. 5. Schematic representation of the chain setup, in which
four lattice sites are coupled. The left pair of wells forms subsystem
1 and the right pair establishes subsystem 2.
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FIG. 6. Particle numbers in the subsystems of the chain of four
wells. The initial state consists of 20 particles in subsystem 1 and
only one particle in subsystem 2. For a coupling constant J = 2 and
no particle-particle interactions (g = 0), the dynamics of the system
shows very uniform oscillations.

there are already distinct oscillations of the average contrast
closely related in frequency and shape to the oscillations of
the purity.

Although ν12 is smaller than 1 for t = 0, this small dis-
crepancy caused by the finite particle imbalance does not
effect the qualitative behavior. Furthermore, the maxima and
minima of the evolving oscillations of I12 almost coincide with
the minima and maxima of the purity, respectively. Therefore
the dynamical behavior of the particle imbalance does not
compromise the alignment of the oscillations of the average
contrast and the purity, but rather reinforces it. This beneficial
phase relation between the purity and the particle imbalance
is due to the strict symmetries of the system and cannot be
expected to occur generally.

III. DYNAMICS OF CONDENSATES IN
A CHAIN OF FOUR WELLS

Instead of the system shown in Fig. 1, one can also consider
a chain of wells without periodic boundary conditions. These
systems can be set up in a line, and thus can be realized in a
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1

0 5 10 15 20 25 30 35 40

P

t

subsystem 1 subsystem 2

FIG. 7. Purity oscillations in the two subsystems of the chain of
four wells for the same parameters as in Fig. 6. The oscillations in
both halves of the system alternate with a phase shift of π .
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FIG. 8. Average contrast in the two subsystems of the chain of
four wells for the same parameters as in Fig. 6. The contrast shows a
dynamic behavior similar to the purity oscillations shown in Fig. 7.

simpler way as compared to the ring studied in the last section.
However, in this case the periodic boundary conditions are
lost. As we will see in the following, this is not necessarily a
drawback for the observation of purity oscillations in general.
We were able to identify them in a chain of six wells, built
similarly to the setup shown in Fig. 1 by simply opening the
chain. However, the loss of symmetry in the system leads to
a more irregular dynamics. Intuitively, smaller systems with
fewer degrees of freedom should show a less complicated
dynamics. To put this assumption to a test, we study a chain
of only four lattice sites with one condensate in the left pair
of wells (subsystem 1) and another condensate in the right
pair of wells (subsystem 2), as shown in Fig. 5. To calculate
the dynamics of this system, Eq. (4) can be adapted by
taking the sum over only four sites and loosing the coupling
between the first and last sites, which would close the ring.

As in the setup used before, the most pronounced purity os-
cillations are achieved for a coupling constant J = 2 between
the neighboring lattice sites. It can be intuitively understood
that strong oscillations of the occupation numbers of the sites
occur for high particle imbalances in the initial state. The
oscillations for these parameters are shown in Fig. 6 for the
case of g = 0, which leads to very long-lived oscillations. As
can be seen they are very pronounced and still smooth enough
that one can expect visible purity oscillations. Note that in the
linear case the choice of the interaction strength J just fixes
the scale of time for given atomic parameters.

Indeed we find that, similarly to the ring of wells discussed
before, the oscillations of the particle numbers correlate
strongly with the observed purity oscillations. In Fig. 7 one

can see that the oscillations of the purity show large ampli-
tudes as well. In particular, the effect that the purity is restored
almost completely after dropping survives in the system with-
out periodic boundary conditions. Because of the large initial
particle imbalance and the fact that the particles do not interact
with each other (g = 0), it is obvious that the total purity of
the system remains constant at a relatively high value, which
could be confirmed in our numerical calculations.

As shown in Sec. II E, the purity oscillations of a system
influence the average contrast ν, and thus the contrast can be
used to verify their existence in an experiment with atoms. In
the case of our chain the contrast also shows strong oscilla-
tions, which is confirmed in Fig. 8. However, we observe an
increasingly irregular behavior, which can be traced back to
the more irregular behavior of the purity oscillations. Never-
theless the purity oscillations in a chain of four wells can still
be observed by measuring the average contrast in one of the
subsystems. This shows that in principle the periodic bound-
ary conditions are not necessary, and the qualitative effect,
viz., the appearance of the purity oscillations, is equivalent
in both systems. The decisive reason is the gain and loss of
particles in one of the subsystems. This can be achieved in a
sufficiently controlled manner in both setups.

IV. CONCLUSION

We have demonstrated the appearance of purity oscilla-
tions in two possible setups of multiwell systems for cold
atoms, whose subsystems can be considered as open many-
body arrangements allowing for particle exchange. One is a
two-dimensional layout of six wells with periodic boundary
conditions. The second is a linear chain of four wells. In
both cases clear and pronounced purity oscillations are found.
In contrast to the previous report [27] the gain and loss of
particles is not shifted to an undefined environment but gained
from a closed system and its division into subsystems.

In interference experiments the abstract purity of the
single-particle density matrix becomes a quantity indirectly
observable due to its clear relation to the average contrast.
Because of the symmetric behavior of the outer sites in the
setups used in this paper the purity becomes accessible in
an interference of two neighboring sites of a subsystem. The
symmetry is even such that the particle imbalance supports
the oscillations of the average contrast rather than impairing
it. Thus, we are convinced that one of these setups could turn
out to be an experimentally feasible way of demonstrating
the distinct purity oscillations predicted for balanced open
quantum systems beyond the mean-field description.
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