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Measurement of a 7Li tune-out wavelength by phase-patterned atom interferometry
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Atom interferometers typically use the total populations at the interferometer’s output ports as the signal, but
useful information can be encoded into spatial phase patterns. An interferometer translates the phase pattern
into a measurable pattern in the atomic density that we use to perform a direct precision measurement of
the 7Li tune-out wavelength near 671 nm. Expressed as a detuning from the |2S1/2, F = 2〉→|2P1/2, F ′ = 2〉
transition, we find 3329.5(1.4) MHz for the tensor-shifted tune out of the |2S1/2, F = 2, mF = 0〉 state with
σ± light polarization and 3310.6(4.9) MHz for the tune out of the scalar polarizability. This technique may be
generalized for directly sensing spatially varying phase profiles.
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In atom interferometers, phase differences between matter
waves propagating on separated paths translate into measur-
able population differences at the output ports [1]. The phase
difference is typically uniform across the sample [2–14] or has
a constant gradient [15–18]. Detection tends to average out
spatial phase patterns that may be introduced during the inter-
ferometer. These patterns [19] provide additional information
that could be used to detect spatially varying fields such as
magnetic fields [20], gravity gradients [16], and thermal radi-
ation [21]. Here, we propose and demonstrate phase-patterned
atom interferometry, where the signal source imprints a spatial
phase pattern onto an atom interferometer (Fig. 1). Image
analysis extracts the resulting population pattern, despite a
signal-to-noise ratio well below unity for any single image.
We implement this technique to measure the tune-out (TO)
wavelength of 7Li near 671 nm, the wavelength where the
ground state’s polarizability α, or ac Stark shift fac, vanishes.

TO wavelengths are important in fundamental and applied
physics, offering a versatile tool in quantum state engineering
[22]. Since TO wavelengths are unique to a specific state, they
can be used to create species- and state-dependent potentials
[23–27] and for minimizing measurement backaction [28].
Precision measurements of TO wavelengths [29–36] may also
be used to test all-order atomic theory [22,37,38] and QED
[39,40]. In particular, ab initio calculations in simple atoms
with three or fewer electrons admit explicit accounting of
electron-electron correlations [41–45]. Comparing theory and
experiment for lithium serves to benchmark approximation
methods applicable to heavier atoms [46]. This makes lithium
a strong candidate for a precision polarizability reference
species [47]. Here, we present a direct measurement of a TO
wavelength in lithium.

We implement phase-patterned interferometry in our TO
measurement by focusing a laser beam to a size smaller than
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the atomic sample. Thermal speeds in the atomic sample far
exceed the recoil speed, so previous methods that rely on
deep potentials [29,30,35,36] or addressing a single interfer-
ometer arm with a thicker beam [31,33,34] are impossible.
Our focused beam introduces ac Stark shift gradients that are
opposite on opposite sides of its center. An interferometer
translates the opposite gradients into measurable population
differences that are proportional to the polarizability (Fig. 1),
despite the signal-to-noise ratio being well below unity for any
single image. At the TO wavelength, the coherent effect of the
beam disappears.

The experiment begins with 2×107 7Li atoms in a
magneto-optical trap (MOT). Optical pumping (OP) prepares
atoms in the |F = 2, mF = 0〉 ground state [48].

Four stimulated Raman π/2 pulses driven by two counter-
propagating laser beams with a frequency difference near the
2S1/2 hyperfine splitting drive the interferometer along the z
axis. The first pulse separates the matter waves for T = 53 μs
(�z = 9 μm), while the second pulse brings the arms back
into |F = 2, mF = 0〉 for measuring TO.

The phase-patterning pulse (purple in Fig. 1) addresses
the interferometer for τ = 100 μs between the second and
third Raman pulses, propagating along the ŷ imaging axis.
A complementary interferometer occupying |F = 1, mF = 0〉
during T ′ can also close, but its TO frequency is different by
roughly the 800-MHz |2S1/2, F = 1〉→|2S1/2, F = 2〉 hyper-
fine splitting. Pulsing MOT repump light during T ′ = 110 μs
destroys the coherence of the complementary interferometer
(see Appendix C 1).

The third and fourth Raman pulses bring the interfer-
ometer arms back together and interfere them, with a fre-
quency difference modified by fm. Tuning fm to f +

m = 24 kHz
( f −

m = 34 kHz) adds a bias to the phase difference between
the interferometer arms. Any additional phase shift, like the
Stark shift induced by the phase-patterning beam, produces
changes to the atomic population output into F = 1, the
state detected by absorption imaging. The population pattern
imprinted by the Stark-shifting beam reverses upon tuning fm

between f ±
m .
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FIG. 1. Principle of the experiment. (a) Trajectories of atoms in
|F = 2, mF = 0〉 (solid lines) and |F = 1, mF = 0〉 (dashed lines)
are shown with pulses of the Stark-shifting beam (purple) and Raman
beams (gold). The central purple curve represents the intensity of the
Stark-shifting beam. The waves symbolize the phase shift accrued
by the matter waves. (b) Schematic of the atomic density in |F = 1〉
at the interferometer output. Atoms on opposite sides of the beam
center accrue opposite phase differences, which the interferometer
translates into opposite population differences. (c) Atomic energy
levels are perturbed by the presence of the light field. Only when
the Stark-shifting laser (purple arrow) is tuned to the tune-out wave-
length �TO away from the |2S1/2, F = 2〉→|2P1/2, F ′ = 2〉 transition
at optical frequency f0 does the polarizability vanish and the pertur-
bation on |F = 2, mF = 0〉 is 0.

During the Stark-shifting laser pulse, each arm of the
interferometer accrues a matter-wave phase 2π fac(�L, x, z)τ
according to the local ac Stark shift (where �L is the laser’s
detuning from the |2S1/2, F = 2〉→|2P1/2, F ′ = 2〉 transi-
tion). The shift fac can be expressed as a product of the
frequency-dependent polarizability and the light intensity,
varying linearly in small differences between �L and the
TO detuning �TO and proportionally to the local intensity
I (x, z)∝ exp(−2x2/w2

x ) exp(−2z2/w2
z ) (where x and z are co-

ordinates perpendicular to the beam axis and wz ≈ 150 μm
and wx ≈ 600 μm describe the corresponding 1/e2-intensity
“waists” for the anamorphic beam). The phase difference
measured by the interferometer is proportional to the intensity
difference between the arms. Therefore, the phase differ-
ence is linearly proportional to the local intensity gradient
dI (x, z)/dz and the separation between the arms for small dis-
tances �z�wz along the beam profile. This phase difference
accrues over the interaction time τ as

�φ(�L, x, z) ∝ η
dI (x, z)

dz
�z(�TO − �L )τ, (1)

where η = ±1 parameterizes the sign of the phase sensitivity
as chosen by biasing the interferometer phase via f ±

m . For
the small phase differences induced in our experiment with
respect to the bias points, the population difference introduced
by the interferometer is proportional to sin(�φ) ≈ �φ. The
resulting dipole-shaped pattern reverses sign when the laser
is tuned to the opposite side of TO or when the sign of η is
reversed by tuning f ±

m .
Processing four types of alternating experimental shots

extracts the interferometer signal from the Stark-shifting beam
(Fig. 2). Boldface type denotes a two-dimensional image of
pixel intensities in the x-z imaging plane, i = i(x, z). Two
shots at fixed Stark-shifting laser wavelength alternate in
phase sensitivity (i±1 (�L ), where the 1 indicates the presence

FIG. 2. Image processing. (a) The Stark-shifting laser steps in
a range that contains �TO. The phase sensitivity alternates between
positive with f +

m (filled circles) and negative with f −
m (open circles).

Shots without Stark pulses also alternate between positive (filled
triangles) and negative (open triangles) phase sensitivity. (b) Each
image type exhibits features according to its sensitivity and Stark
pulse state. (c) The images in (b) can be expressed as linear combi-
nations of four features. (d) These two raw images, one with each
sensitivity, exhibit the effect of the Stark pulse with the highest
single-shot sensitivity we achieve, i.e., with maximal |�TO−�L|. The
signal pattern is subtle at best.

of the Stark-shifting pulse and the ± represents the sign of
f ±
m ). The Stark-shifting laser pulse is blocked after every

tenth shot, and the phase sensitivity also alternates for these
unpulsed shots (i±0 , where the 0 indicates the absence of the
Stark pulse).

We isolate the pattern of interest by linearly combin-
ing averages of these image types, as outlined explicitly in
Appendix B. Subtracting the averaged unpulsed shots from
the averaged pulsed shots for each sensitivity,

R±(�L ) = i±1 (�L ) − i±0 , (2)

reveals the effect of the Stark pulse. Taking the difference
between the resulting residual images

D(�L ) = R+(�L ) − R−(�L ) (3)

cancels the incoherent response from the pulse [single-photon
scattering, Z(�L)] and amplifies the sensitivity-dependent co-
herent response [ac Stark effect, S(�L)], which vanishes when
the laser is tuned to �TO. We fit the D(�L ) with the highest
signal-to-noise ratio to a model M that follows Eq. (1) for
an anamorphic Gaussian beam. Projections of the difference
images onto M cross through zero at TO (Fig. 3). We perform
this analysis on each of 320 subsets s from the full data set
comprising 330 000 images taken over a two-week campaign,
providing estimates of TO �TO,s that bin to a Gaussian
distribution and integrate down with nearly the square root
of the integration time (a power of –0.4) to 1.2-MHz precision
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FIG. 3. Results of image processing. The above shows projec-
tions D(�L ) · M averaged over all subsets (gray data points), which
cross through zero at �TO (fit in blue). Insets show a selection of the
D(�L ) at different Stark laser frequencies (averaged over all subsets
for clarity). M fits the average D(�L ) with the highest contrast.
Below shows the difference between the data and fit.

(see Fig. 9). We anticipate this two-dimensional, projective
analysis to be the most generally applicable approach for
phase-patterned atom interferometry.

To bypass inaccuracy in the master laser spectroscopy and
to calibrate a Doppler systematic, the detunings �L and �TO

are referenced to spectroscopy of the optically pumped, cold-
atom sample on the |2S1/2, F = 2〉→|2P1/2, F ′ = 2〉 transi-
tion along two axes: ẑ and the axis we use to measure TO. Af-
ter the sample is prepared, it has an inadvertent center-of-mass
velocity with magnitude ∼1 m/s. Spectroscopy along ẑ in
the imaging plane permits a calibration of the corresponding
Doppler shift by measuring the launch speed along ẑ in time-
of-flight images. The sample’s velocity may also have a com-
ponent along the Stark beam axis used to measure TO during
interferometry (≈ŷ) that cannot be measured with our time-
of-flight imaging. To quantify this, we perform spectroscopy
with the Stark-shifting beam as it propagates along the TO
axis and then compare the result to the Doppler-corrected f0

from spectroscopy along ẑ. We attribute any discrepancy to
the Doppler shift along that axis and correct the final TO
measurement in Table I (see Appendix A 3).

While our Stark-shifting laser has a suitably narrow
linewidth of 1 MHz, it also emits amplified spontaneous
emission (ASE) [49]. Measuring the ∼30-nm-wide broadband
power spectrum allows us to calculate the associated system-
atic shift (see Table I and Appendix C 5).

The polarizability of an atom in a particular hyperfine state
F and Zeeman sublevel mF can be decomposed into a scalar
term (αs) and a pair of polarization-dependent vector and
tensor terms (αv and αT , respectively) [38,50]:

α = αs + C
mF

2F
αv − D

3m2
F − F (F + 1)

2F (2F + 1)
αT . (4)

TABLE I. Systematic effects in measuring TO for |2S1/2, F =
2, mF = 0〉 relative to the |2S1/2, F = 2〉→|2P1/2, F ′ = 2〉 transition
with σ± polarization. All frequencies are given in MHz. A detailed
evaluation of each effect is presented in the Appendix denoted in
parentheses.

Effect Correction 1-σ uncertainty

Doppler shift (A 3) +1.58 0.06
Broadband laser emission (C 5) −0.09 0.1
F = 1 interference (C 1) −0.01 0.04
mF = ±1 interference (C 2) 0.04
f0 Zeeman shift (C 3) +0.09 0.02
f0 statistical 0.05
Polarization impurity (C 4) 0.3

Total +1.59 0.33

One-dimensional fit 3327.95 1.40

Final result 3329.54 1.44

The factors C = |e−1|2−|e+1|2 and D = 1−3|e0|2 depend on
the circular component magnitudes of the light’s polarization
vector 	e (ê∓1 = σ̂± and ê0 = π̂ ). The tensor term in Eq. (4)
gives rise to a ∼50-MHz shift to TO between π and σ±
polarizations for |F = 2, mF = 0〉. Because the scalar polar-
izability in Eq. (4) dominates at most wavelengths and is
independent of experimental geometry, the TO wavelength is
conventionally defined as the wavelength at which specifically
the scalar polarizability vanishes: αs(�∗

TO) = 0. We typically
refer to TO in this paper more experimentally, as the condition
at which the total polarizability is 0, given a specific state and
light polarization: α(�TO) = 0.

A Wollaston prism purifies the Stark beam’s polarization,
and a pair of wave plates (one λ/2 and one λ/4) control the po-
larization. We use two methods to ensure that the polarization
is a linear combination of σ± which contains no π component
for the final TO measurement (see Appendix C 4). We also
scan out the full tensor shift by rotating the linear polarization
through eight values in Fig. 4.

Single-photon scattering is particularly strong in this ex-
periment due to the proximity of TO to the |2S1/2〉→|2P1/2〉
and |2S1/2〉→|2P3/2〉 transitions in Li. This contributes to

FIG. 4. Measured TO detuning varies with the polarization. The
variation fits to a full amplitude of 56.9(4.7) MHz (solid line). For
comparison, we show a fit constrained to the theoretical variation
of 47 MHz (dashed line). The λ/4 wave-plate angle is fixed in
relationship to the λ/2 wave-plate angle according to (θλ/2−6◦) =
2(θλ/4 − 4◦). See Appendix C 4 for details.
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FIG. 5. One-dimensional analysis of scattering systematic.
(a) After rotating out the tilt of D(�L ) (here shown for �M ), we
integrate along x and rescale the values to the local atom density. We
fit a full model (blue dashed line) as the sum of an odd signal (green
line) and even scattering peak (red line). That the scattering peak
is negative implies that scattering expresses more strongly in R−.
(b) Amplitudes of the signal portion of the fit in cross through zero.
The line shows a fit to the amplitudes, which crosses zero at �TO.

imperfect cancellation of scattering in D(�L ). Any posi-
tion offset between the remaining scattering pattern and the
signal produces a systematic offset in the projections pre-
sented in Fig. 3. Our particular geometry permits further
reduction of the two-dimensional signal into one dimension
along the interferometer axis ẑ, simplifying evaluation of the
systematic.

To generate a one-dimensional signal, we average D(�L )
over all subsets and integrate the images perpendicular to
the interferometer axis. The resulting trace [see Fig. 5(a)] for
each �L is a sum of the residual effect of scattering and the
phase-patterned signal of interest. We fit the trace for each �L

to a sum of those components with independent signal and
scattering amplitudes. A plot of the amplitude of the signal
portion of the fit [see Fig. 5(b)] crosses through zero at �TO,
the fit result presented in Table I.

Our measurement of the tensor-shifted TO in 7Li
for |2S1/2, F = 2, mF = 0〉 with σ± polarization yields a
result of �TO = 3329.5(1.4) MHz from the |2S1/2, F =
2〉→|2P1/2, F ′ = 2〉 transition, a wavelength precision of
2.2 fm. Our measurement of the scalar TO for |2S1/2, F = 2〉
yields a result of �∗

TO = 3310.6(4.9) MHz.
We compare our experimental result to the established

atomic theory [Eq. (4)] using a hyperfine basis [38,50] to
calculate the optical frequency that satisfies α(�TO,th) = 0
for |F = 2, mF = 0〉 and σ± polarization. One can obtain
the same result by solving for the wavelength at which fac

vanishes, where the Stark shift is summed over each hyper-
fine transition whose coupling strength depends on a state-
and polarization-dependent geometric (Clebsch-Gordan) co-
efficient. Theoretical matrix elements from [46] and ex-
perimental transition energies from [51] predict �TO,th =
3323.5(1.3) MHz, in slight 3-σ tension with our measure-
ment. While our calculation neglects the effects of the core
polarizability and states beyond the n = 2 doublet, those
contributions enter below our precision near the 0.1-kHz level
in lithium. We also note that theory predicts the size of the
polarization-dependent tensor shift to TO be 47 MHz, while
we observe a 56.9(4.7)-MHz modulation (a 2-σ tension). Our

measurement provides a less precise estimate of the scalar TO,
dominated by our uncertainty in the polarization-dependent
tensor shift. Calculating the tensor shift in Eq. (4) as a
function of polarization shows that the scalar TO sits 1/3
of the full tensor shift below the result for σ± polarization.
Theory predicts the scalar polarizability for |2S1/2, F = 2〉
to vanish at �∗

TO,th = 3308.1(1.3) MHz. Using our measured
56.9(4.7)-MHz tensor shift, we estimate scalar tune out for
|2S1/2, F = 2〉 to occur at �∗

TO = 3310.6(4.9) MHz, in good
agreement with theory.

The comparison suggests that the tension between our
measurement and theory might be related to an undetected
polarization-related effect. For example, the polarization of
the laser’s ASE pedestal also changes as we change the
polarization of the Stark-shifting beam. It is conceivable that
the laser emits a spectral feature far enough from the carrier
that we could not detect it electronically but close enough
to the carrier that we could not resolve it with our grating
spectrometer. Such a feature’s coupling strength could have a
strong polarization dependence, since some couplings vanish
at one polarization and are nonzero at the other polarization.
The presence of a feature like this would shift the preci-
sion measurement and the polarization dependence plotted in
Fig. 4.

In summary, we pattern a phase profile into an atomic
sample using a laser and an atom interferometer, applying
the technique to measure the tune-out wavelength of 7Li’s
|2S1/2, F = 2, mF = 0〉 state. Image analysis of modulated
shots reads out the faint signal. The measurement references
an atomic transition probed at the cold-atom sample, allowing
for a calibration of the Doppler effect.

These phase-patterning results establish a foundation for
tailoring phases in a variety of arenas. Extensions of our
method may aid in sensing or compensating for fields that
vary spatially. Spatially varying fields like those from thermal
radiation [21,52,53] and lattice light shifts [19,54] in atomic
clocks, for example, are emerging as important systematic
effects in those experiments capable of searching for vari-
ation of the fundamental constants [55]. One could pattern
a phase onto a clock by creating an intensity profile that
locally perturbs the clock frequency, introducing a phase shift
that compensates for spatially varying systematic effects. In
applications where a quantum sensor searches for variations
from a known spatial distribution in a field, researchers may
choose to pattern the sample so as to bias the phase at every
position and maximize the sensitivity to deviations.

Tune-out measurements enjoy a fortunate circumstance in
which current theoretical and experimental uncertainties are
comparable. Ab initio calculations in atoms with few electrons
can account for electron-electron correlations using the varia-
tional Hylleraas basis set [41–45]. The Hylleraas calculations
are expected to produce the most accurate results in lithium,
where they serve as a benchmark for approximation methods
[56] also applicable to heavier atoms [46]. Measurement of
TO in metastable helium [36] has also inspired a rich interac-
tion with theory [39,57]. Our tension with theory suggests that
an independent measurement of TO in ultracold 6,7Li [58–66]
could add a valuable contribution to the dialogue between
theory and experiment.
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APPENDIX A: EXPERIMENTAL DETAILS

1. State preparation

The experiment begins by laser cooling and trapping
roughly 2×107 7Li atoms in a MOT [48]. The high thermal
speeds of the atoms near the Doppler temperature (TD ≈
140 μK, vth ≈ 0.7 m/s) demand hasty state preparation, inter-
ferometry, and imaging. After turning off the MOT magnetic
quadrupole field, we wait about 2 ms to allow the gradient
to decay with ∼1-ms time constant; during this time, an
optical molasses limits expansion of the sample. The residual
field gradient of 0.5 G/cm is small enough compared to the
1.3-G bias magnetic field to establish a homogeneous quan-
tization axis that defines the ẑ axis. After molasses, the sam-
ple’s center-of-mass velocity 	vl has a component of roughly
1.5 m/s in the x-z absorption imaging plane, likely due to the
decay of the magnetic gradient in the presence of the nonzero
bias field. Figure 6 shows a detailed summary of the axes.

To optically pump (OP) the atoms into the magnetically
insensitive |F = 2, mF = 0〉 state, we apply light tuned to
the |2S1/2, F = 2〉→|2P1/2, F ′ = 2〉 transition for 20 μs. The
linearly polarized OP beam propagates diagonally in the x-y
plane and is retroreflected. It must be purely π polarized for
efficient pumping, so we rotate the angle of the magnetic
bias field using three axes of Helmholtz coils to optimize OP
efficiency. MOT repump light repumps atoms decaying into
F = 1 during OP. Microwave spectroscopy shows that 80%
of the atoms exit OP in the |F = 2, mF = 0〉 state. Roughly
16% remain in mF = −2, 4% in mF = +2, and no atoms are
detectable in the mF = ±1 states or the F = 1 manifold. The
final atomic density distribution is approximately Gaussian
with a waist of wa ≈ 500 μm, far larger than the interferome-
ter arm separation.

2. Laser lock

A master laser stabilizes the frequencies of the cool-
ing and trapping lasers. It is an external cavity diode laser
(ECDL), frequency-stabilized (“locked”) near the ground
state’s crossover resonance between hyperfine states on the
|2S1/2〉→|2P3/2〉 transition using modulation transfer spec-
troscopy (MTS) of a hot lithium spectroscopy cell. The MTS
lock is stable to ∼100 kHz but is offset from the true crossover
resonance by ∼10 MHz due in part to an asymmetric error
signal. This offset precludes it from serving as the reference
frequency from which we measure �TO. Light from the
master laser injection-locks the diode laser that generates light
for the Raman beams driving the atom interferometer.

FIG. 6. Description of experimental axes. The cloud is shown in
red at the center of the gray vacuum chamber. The OP beam (green)
propagates diagonally in the x-y plane with linear polarization paral-
lel to the magnetic field B that defines the z axis. Counterpropagating
Raman beams (gold) propagate close to ẑ with orthogonal linear
polarizations, one along x̂ and one along ŷ. The imaging beam (dark
red) propagates antiparallel to gravity g and produces absorption
images of F = 1 at the CCD camera. Four MOT beams (red) lie in
the x-y plane with two more along ẑ (not shown). The Stark laser
(purple) probes TO along an axis as close to the imaging axis as
possible during interferometry, with polarization in the x-y plane
close to x̂. The Stark laser also performs cold-atom spectroscopy
along the TO measurement axis (CASTO) and along ẑ in the imaging
plane (CASz), both with polarization close to x̂.

The Stark-shifting laser that performs the phase patterning
and cold-atom spectroscopy is an ECDL (Toptica, DLC DL
PRO 670), which is offset-locked using an optical beat note
with the light used to drive Raman transitions. A phase lock
feeds back to the Stark laser’s current and grating angle for
the offset lock. The frequency of the local oscillator (LO)
in the offset lock is tuned around 2.5 GHz, which is either
tripled to lock the laser near the TO wavelength during
interferometry or quadrupled to perform cold-atom spec-
troscopy of the |2S1/2〉→|2P1/2〉 transition, ∼10 GHz below
the |2S1/2〉→|2P3/2〉 transition. The laser spectrum ultimately
inherits a FWHM Gaussian linewidth of 1 MHz. Its entry
into the vacuum chamber is shuttered by a 180-MHz acousto-
optical modulator (AOM), both for the Stark-shifting pulse
during interferometry and for cold-atom spectroscopy along
both axes described below.

3. Cold-atom spectroscopy

The frequency reference provided by the master laser is
not accurate enough to serve as a reference in the TO mea-
surement. To establish a more accurate reference for our TO
measurement relative to a specific transition, we perform cold-
atom spectroscopy (CAS) of the |2S1/2〉→|2P1/2〉 transition
with the Stark-shifting laser on the optically pumped sample.
To help calibrate Doppler effects arising from motion of the
cold atoms, we perform CAS along the z axis (CASz) and the
axis we use to measure TO (CASTO). The Stark-shifting laser
lock and AOM shutter remain identical for CASz and CASTO;
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FIG. 7. Cold-atom spectroscopy. (a) Spectroscopy along ẑ in the
imaging plane permits a calibration of the Doppler shift along that
axis. The blue line is a fit to the sum of two Lorentzian peaks.
The average fit result to the left peak serves as a reference for all
detunings in this paper. (b) Spectroscopy along the TO axis helps
calibrate any Doppler shift along that axis. The purple line is a
fit to the sum of two Lorentzian peaks. Comparing the average fit
results to the Doppler-corrected results in (a) provides an estimate
of the Doppler shift along the Stark beam axis. Each inset shows an
absorption image of the atomic population detected in F = 1 when
spectroscopy is performed along the corresponding axis.

the only difference is a magnetic mirror that optionally redi-
rects the beam to the z axis from the TO axis.

We specify laser frequencies fL relative to the optical
frequency of the master laser fMTS. The difference between
the master laser and the Stark-shifting laser at the atoms is set
by the LO frequency in the offset lock (quadrupled for CAS
or tripled for interferometry) � f and some frequency offsets
foff introduced by the AOM shutter and phase lock:

fL = fMTS − � f + foff . (A1)

Taking differences between laser frequencies measured in this
way cancels the common-mode foff term [see Eq. (A3)].

The center-of-mass velocity 	vl of the sample produces a
Doppler shift and introduces an important Doppler systematic
to the TO measurement performed along that axis. To calibrate
the shift, we first perform CASz on an axis in the imaging
plane where we can measure the component of the launch
speed along the spectroscopy axis vz by fitting the z posi-
tion of the cloud in time-of-flight absorption images. During
CASz, the Stark-shifting laser propagates within 5◦ of ẑ. Its
linear polarization is roughly parallel to x̂, i.e., (σ++σ−)/

√
2.

This beam has a 1/e2-intensity waist of 1.5 mm and power
of �0.4 mW. Scanning the LO frequency scans the detun-
ing of the Stark-shifting laser with respect to the master
MTS spectroscopy. As a function of the LO frequency near
the |2P1/2〉→|2P3/2〉 fine-structure splitting, the fraction of
the atoms appearing in images of F = 1 reveals two re-
solved peaks from the |2S1/2〉→|2P1/2〉 transition (Fig. 7).
The |2S1/2, F = 2〉→|2P1/2, F ′ = 2〉 transition appears with
lower LO frequency (higher laser frequency) at � f D1,22

z .
The |2S1/2, F = 2〉→|2P1/2, F ′ = 1〉 transition appears with
higher LO frequency (lower laser frequency) at � f D1,21

z . We
fit the results to the sum of two Lorentzians.

We correct the shifted CASz resonance by an amount
vzkD1,22

z , where kD1,22
z is the z component of the wave vector

of this light:

f0 = fMTS − (
� f D1,22

z + vzk
D1,22
z

) + foff . (A2)

This constitutes a single measurement of the spectroscopic
baseline. We interleave these spectroscopy measurements 14
times throughout the TO measurement campaign and quote
optical frequencies as detunings relative to the average result
〈� f D1,22

z 〉+〈vzkD1,22
z 〉 = 10 668.36(5) MHz:

�L = fL − 〈 f0〉. (A3)

Following each CASz measurement of f0, we also perform
CASTO on the axis along which the Stark laser propagates
during the interferometry sequence, within 5◦ of ŷ. The polar-
ization of this beam lies in the x-y plane and is a linear combi-
nation of σ± with roughly equal weights. We compare the av-
erage result along this axis 〈� f D1,22

TO 〉 to 〈� f D1,22
z 〉+〈vzkD1,22

z 〉
and attribute any discrepancy to the Doppler effect along the
TO axis. We apply the correction to the final TO measurement.

4. Atom interferometer

Two beams drive stimulated Raman transitions between
|2S1/2, F = 2, mF = 0〉 and |2S1/2, F = 1, mF = 0〉, counter-
propagating along an axis within 5◦ of ẑ, perpendicular
to gravity. The Raman beams are detuned from the
|2S1/2〉→|2P3/2〉 transition by −200 MHz and drive fast
π/2 pulses in 160 ns [48]. The difference in optical frequency
between the two laser fields, labeled 1 and 2, for pulse p is set
near the ground-state hyperfine splitting f (p)

12 ≈ 803.5 MHz to
stimulate the Raman transition. Each light field perturbs the
ground states differently, which modifies the splitting from
its bare resonance. Tuning f (p)

12 to the perturbed state splitting
improves the coupling rate. The third and fourth Raman pulses
address the atoms with a modified laser frequency difference
compared to the first two pulses f (3,4)

12 = f (1,2)
12 + fm. The

small modulation imprints an additional interferometer phase
2π fmT that we use to tune the sensitivity of the interferometer
[Fig. 8(d)].

The Raman beams’ polarizations follow a lin ⊥ lin
scheme, so that one beam’s polarization is approximately
(σ++σ−)/

√
2 and the other beam’s is (σ+−σ−)/

√
2. With-

out orthogonalizing the beams’ polarizations, multiple Raman
pathways through Li’s unresolved |2P3/2, F ′〉 states would
destructively interfere and preclude a transition for mF = 0.
While allowing Raman transitions for mF = 0, lin ⊥ lin can-
not drive Raman transitions for mF = ±2, so those residual
populations after OP cannot undergo an interferometer and do
not contribute a systematic to the TO measurement.

The Stark-shifting beam must propagate as close to the
ŷ imaging axis as possible for its effect to be visible in the
images, but it might retain a small projection onto ẑ in our
experiment. Any nonzero projection of the propagation axis
onto ẑ precludes a purely π -polarized beam. Because the TO
axis and the ẑ axis form a plane, it is possible for its polar-
ization to be purely orthogonal to ẑ, corresponding to a linear
combination of σ± components [close to x̂ = (σ++σ−)/

√
2].

We therefore use a polarization perpendicular to ẑ for the TO
measurement. The beam is focused tightly to wz ≈ 150 μm
along the interferometry axis and more weakly perpendicular
to the interferometry axis, wx ≈ 600 μm.

5. Signal scaling

While the overall scale factor of the interferometer phase
difference in Eq. (1) is not relevant for identifying the zero
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FIG. 8. Decoherence of the complementary interferometer.
(a) The four π/2 Raman pulses (gold rectangles) can drive two
separate interferometers. We decohere the complementary (upper)
interferometer by selectively addressing the |2S1/2, F = 1〉 state with
MOT repump light (dashed red pulse). Light gray lines indicate
noninterfering beam-splitter outputs. (b) Raman beams (solid gold)
couple the interfering states. MOT repump light decoheres only
the F = 1 state. (c) Fixing the modulation frequency at the top
of the fringe [dashed red square in (d)], and the MOT repump
pulse destroys the contrast of the complementary interferometer.
(d) Population fringes without the decoherence pulse (gray circle
data) represent the sum of the complementary interferometer signals,
which have identical phase. After the decoherence pulse, only con-
trast from the desired lower interferometer remains (open red square
data). The dashed and filled red square indicates the fixed fm at which
the decay curve in (c) was taken, while the solid (open) green circle
indicates the f ±

m used for positive (negative) phase sensitivity (see
Fig. 2).

crossing at �TO, the sensitivity of the measurement is propor-
tional to the maximum phase difference. The maximum phase
at fixed detuning occurs at x = 0 and z = ±wz/2, where the
intensity gradient is highest. The peak of the intensity gradient
is proportional to the peak intensity Ip ∝ P/wxwz (P is the
optical power, here ≈3 mW) and gains another factor of 1/wz

when I (x, z) is differentiated. This leads to a proportionality
of the maximum phase difference at fixed �L �=�TO:

|�φ|�L,max ∝ PT τ/wxw
2
z . (A4)

The maximum interferometer phase difference that the Stark-
shifting pulse induces in this work is ∼π/10. It would appear
advantageous to maximize P, T , and τ while minimizing wz.
In practice, the parameters must satisfy some constraints.

The waist wz must remain large enough to satisfy two
criteria. First, the phase pattern with spatial scale ≈wz must be
readily observable given the spatial resolution of the imaging
system, here 13 μm per camera pixel. Second, each atom en-
ters the interferometer with a randomly oriented thermal speed

and covers a distance zth = (2T + T ′)vth ≈ (2T + τ )vth over
the course of the interferometer. This itineracy thermally
dephases the pattern unless wz � zth. T must be small enough
that the arm separation �z samples the intensity gradient
finely enough to observe its spatial variation.

The usable pulse power P is limited by the atoms’ in-
coherent response, single-photon scattering. Although the ac
Stark shift and polarizability vanish at �TO, single-photon
scattering events from each of the |2S1/2〉→|2P1/2〉 and
|2S1/2〉→|2P3/2〉 transitions still occur proportional to Pτ

(though inversely proportional to the square of the detuning
from each transition). Such scattering events destroy the co-
herence of the interferometer arms, so this limits the product
Pτ . In practice, we roughly optimized for target parameters
using numerical simulations prior to setup.

APPENDIX B: DATA AND IMAGE PROCESSING

To a first approximation, images of laser-cooled atomic
densities exhibit two-dimensional Gaussian profiles. If the
Stark-shifting beam is centered on the atomic density profile,
any gradient at the center of the density distribution would
be attributable to phase patterning from the Stark laser. In
practice, experimental noise complicates this ideal situation;
the atomic density distribution is not precisely Gaussian,
the number of atoms fluctuates and drifts, and the position
of the cloud fluctuates and drifts on a length scale comparable
to the Stark beam size. These position offsets between the
beam and underlying density profile mimic the signal. Fur-
thermore, a low signal-to-noise ratio in the images makes it
difficult to identify the signal in any individual image [see Fig.
2(d)]. These realities prohibit simply fitting the atomic density
distribution to a Gaussian function and analyzing the residuals
for the Stark signature. We instead develop an image analysis
method that averages out fluctuations and drifts.

Written explicitly for each pulse state ∈{0, 1} and sensitiv-
ity ±, the four image types are as follows:

i+1, j (�L, j ) = A j + B j + N j + S j (�L, j ) + Z j (�L, j )

i+0,k = Ak + Bk + Nk
(B1)

i−1,l (�L,l ) = Al − Bl + Nl − Sl (�L,l ) + Zl (�L,l )

i−0,m = Am − Bm + Nm.

For each shot, A is the atomic density profile, B describes
background population gradients introduced by the interfer-
ometer, S(�L ) is the Stark signal, Z(�L ) comes from single-
photon scattering, and N is imaging noise. A total of ∼330 000
images contribute to the measurement of �TO.

We average each image type within a subset s. The average
atomic density, background interferometer signal, and imag-
ing noise are independent of image type, so they cancel in the
residual images for s.

R+
s (�L) = 〈i+1, j∈s|�L 〉 − 〈i+0,k∈s〉

≈ S(�L ) + Z(�L ).

R−
s (�L ) = 〈i−1,l∈s|�L 〉 − 〈i−0,m∈s〉

≈ −S(�L ) + Z(�L ). (B2)

063603-7



ERIC COPENHAVER et al. PHYSICAL REVIEW A 100, 063603 (2019)

FIG. 9. Statistics of image analysis results. (a) The fit result �TO,s from each subset. Each data point is the zero crossing of a fit to Ps(�L )
(see Fig. 3, for example). (b) A histogram of the results looks reasonably Gaussian, justifying using the standard error as an uncertainty metric.
(c) The overlapped Allan deviation of the points in (a) shows the error integrating down with a power of –0.4.

Subsets of 1000 images, spanning 30 minutes of integration,
produce the smallest uncertainty in our experiment.

The difference of residuals removes the effect of single-
photon scattering induced by the Stark-shifting beam and
provides direct access to the signal of interest:

Ds(�L ) = R+
s (�L ) − R−

s (�L ) ≈ 2S(�L ). (B3)

Averaging over all the subsets generates the highest signal-to-
noise images D(�L ) = 〈Ds(�L )〉 (see insets in Fig. 3).

Fitting the images for the TO frequency requires a fit
for the dipole pattern. D expresses the Stark pattern most
strongly when the Stark laser is tuned furthest from TO to
�M , about 400 MHz from �TO. Following the form of the
phase difference [Eq. (1)], we fit D(�M ) to a model

M(a, θ, x0, z0, σx̃, σz̃)

= az̃ exp
[ − (z̃ − z0)2/2σ 2

z̃

]
exp

[−(x̃ − x0)2/2σ 2
x̃

]
,

(B4)

where the image coordinates (x, z) are rotated by an angle θ

(the angle of the Raman beams to ẑ) about (x0, z0) to (x̃, z̃).
The amplitude a, angle θ , center (x0, z0), and widths σx̃ and
σz̃ are free parameters in the fit.

The projection of Ds(�L ) onto M quantifies the strength
and sign of the dipole pattern as a function of the laser
frequency:

Ps(�L ) = Ds(�L ) · M =
∑

x,z

Ds(�L, x, z)M(x, z). (B5)

The zero crossing of a fit to Ps(�L ) provides an estimate
for �TO for each of 320 subsets, �TO,s (see Fig. 9). The
result of this two-dimensional analysis is an average over
subsets �TO = 〈�TO,s〉, with a statistical uncertainty given by
the standard error among the measurements of each subset:
3335.7(1.2) MHz. Simulating noisy fake data offers an op-
portunity to set a known �TO and check for extra systematic
effects in the image analysis protocol, though we find none.

APPENDIX C: SYSTEMATIC EFFECTS

1. Decoherence of F = 1 interferometer

After the second π/2 Raman pulse in the interferometer,
each pair of components in a particular hyperfine state can
close an interferometer with the two remaining pulses. Fur-
thermore, their TOs differ by roughly the ground-state hyper-
fine splitting ∼800 MHz, so this state impurity can introduce
a substantial systematic shift. To restrict our measurement to
the TO of the |F = 2, mF = 0〉 state, a 70-μs pulse of MOT
repump light destroys the coherence of the |F = 1, mF = 0〉
interferometer during T ′ (Fig. 8) by driving single-photon
scattering events. Without the decoherence pulse, each of
the complementary interferometers contributes amplitude in
the detected F = 1 interferometer output and their signals
add [48]. The peak output of the fringe is set by the sum
of contrasts for each of the interferometers. We probe the
contrast decay of the complementary interferometer by fixing
fm at the top of the fringe [Fig. 8(d)] and scanning the duration
of the decoherence pulse. The contrast of the complementary
interferometer decays with a time constant of 6.5(1.7) μs
[Fig. 8(c)], leaving behind a population fraction of 2×10−5.
Assuming half the population undergoes each of the inter-
ferometers, this systematic totals to ≈(1×10−5)800 MHz =
0.01 MHz.

2. mF = 1 interference

After optical pumping, we do not detect any atoms in the
|2S1/2, F = 2, mF = ±1〉 states. The level of imaging noise
introduces an uncertainty of about 2% in the populations
in each Zeeman sublevel. The atoms in |2S1/2, F = 2, mF =
±2〉 cannot undergo the interferometer due to interfering Ra-
man pathways, but summing the Raman pathways for the Rabi
frequency of the |2S1/2, F = 2, mF = ±1〉 states gives a sub-
stantial 86% that of the mF = 0 state of interest. The reduced
Rabi flopping pulse efficiency [sin2(0.86π/4)/ sin2(π/4)] =
0.78 reduces the contrast of that interferometer once for each
of the four pulses [sin2(0.86π/4)/ sin2(π/4)]4 = 0.37. The
mF = 1 states tune out at a frequency 7.71 MHz different
from mF = 0. The 2% population uncertainty would be split
between the interferometer of interest and the complementary
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F = 1 interferometer we decohere, so only 1% contributes
to a systematic shift in the signal. The total uncertainty is
(0.37)(0.01)(7.71 MHz) = 0.03 MHz. Each of the mF = ±1
states contributes this uncertainty, so we add them in quadra-
ture and arrive at a total uncertainty of 0.04 MHz.

3. Spectroscopy Zeeman shift

Because OP leaves atoms skewed towards the mF = −2
state, the measurement of 〈 f0〉 is subject to a Zeeman
shift proportional to the population asymmetry between
mF = ±2. The Zeeman shift for the |2S1/2, F = 2, mF =
±2〉→|2P1/2, F ′ = 2, m′

F = ±1〉 transition is roughly
∓0.760 MHz. With a population asymmetry of 12% and
roughly half the optical power contributing to these transitions
due to the polarization, we estimate this to systematically
shift the peak center by 0.09(2) MHz.

Note that this Zeeman shift manifests nearly identically
in both CASz and CASTO, since the polarizations are nearly
identical along both axes and they are taken at the same
magnetic field. Given that the Zeeman effect produces equal
shifts in both, their relative comparison reveals the Doppler
shift without any additional shift due to the magnetic field.

The Stark-shifting laser’s σ± polarization couples the
mF = 0 ground state to m′

F = ±1 for the TO measurement.
We note that while the transition energies for the two polariza-
tion components experience opposite Zeeman shifts up to the
megahertz level, the shifts to the coupling strengths effectively
average out across the two components and the shift to TO
remains negligible.

4. Polarization

We calculate from theoretical matrix elements and ex-
perimental transition energies that TO varies maximally by
47 MHz [38,46,50,51] between π and σ± polarizations for
|F = 2, mF = 0〉. The polarization of the Stark-shifting laser
along the TO axis must therefore be controlled to within
several degrees. Since we cannot achieve pure π polarization
in our geometry, we aim for a pure linear combination of
σ±, which produces a maximal tensor shift that pushes the
measured TO detuning upward.

A Wollaston prism purifies the Stark beam’s polarization
with an extinction ratio of ∼105. The purified beam passes
sequentially through a λ/2 wave plate tilted to an angle θλ/2

and a λ/4 wave plate tilted to θλ/4 (Thorlabs WPH05M-670
and WPQ05M-670, respectively). Each is mounted on its own
motorized rotation stage (Thorlabs PRM1Z8). After the wave
plates, the beam encounters two in-plane broadband dielectric
mirrors and one periscoping metallic mirror before passing
through a vacuum window and impinging on the atoms. We
probe the polarization of the Stark beam via two methods.

First and more coarsely, we sample the polarization of the
beam before the vacuum chamber with a polarizing beam
splitter (PBS) and rotate the motorized wave plates to generate
a polarization outside the chamber that closely matches the
target polarization parallel to x̂ (i.e., parallel to the plane of
the optical table). This polarization occurs at θPBS,λ/2 = 6◦
and θPBS,λ/4 = 4◦. We perform a TO measurement at this
polarization and at a series of linear polarizations incremented
by 20◦ (see Fig. 4). Steps of 10◦ in θλ/2 rotate the polarization

FIG. 10. Wave-plate optimization. When propagating along the
Stark beam axis, the Stark beam’s polarization can be precisely
tuned to minimize scattering close to the π polarization required for
OP. This requires co-optimization of (a) the λ/2 angle and (b) the
λ/2 angle. Fits for the minima are shown in purple. For these
experiments, the laser is locked to � f D1,22

TO (see Fig. 7). The minima
most closely identify π polarization, and we rotate the polarization
90◦ from there for the primary TO measurement.

by 20◦, so θλ/4 requires steps of 20◦ to follow. The wave-plate
angles, therefore, respect a fixed relationship of (θλ/2−6◦) =
2(θλ/4−4◦) for this scan. These measurements trace out the
polarization-dependent tensor variation of the polarizability.
The fit to these data accesses two important features: the
amplitude of the variation as well as the central polarization,
where �TO is maximized and the polarization most closely
resembles x̂. While theory predicts a 47-MHz variation, we
observe a variation of 56.9(4.7) MHz. Because some slight
ellipticity may be present at the atoms using this method, the
full tensor variation may be marginally larger. The degree
of ellipticity present using this method should produce a
systematic much smaller than the uncertainty in the amplitude
of the fit. The central polarization fits to θ0,λ/2 = 12.4(9)◦,
corresponding to θ0,λ/4 = 17(2)◦. Vacuum windows can in-
duce polarization rotations significant enough to shift the TO
measurement through their birefringence [31,67]. Therefore,
this method of setting the polarization with a polarizer outside
the vacuum chamber alone is likely insufficient, so we devise
a separate method for better accuracy.

Second, we probe the polarization in situ by driving the
OP transition with the Stark laser along the TO axis. Though
the geometry does not allow for the Stark beam to be purely
π -polarized as is required for OP, optimization of the polariza-
tion to this axis reduces the scattering by a factor of ∼5. We
find the wave-plate settings that minimize scattering on the OP
transition at θOP,λ/2 = 329.5(1)◦ and θOP,λ/4 = 289.6(1)◦ (see
Fig. 10). The polarization must rotate from there by 90◦, so
we rotate the θλ/2 by 45◦ and the θλ/4 by 90◦. The motorized
rotation mounts specify a rotation accuracy of 0.2◦, so we now
assume each wave plate to be within this specification from
the setting to optimally achieve a linear combination of σ±
polarizations. These optimized polarizations are at θTO,λ/2 =
14.5◦ and θTO,λ/4 = 19.6◦. We expect this optimization to
produce the more accurate result and use it for the precision
measurement campaign.

The discrepancy between the two polarization optimiza-
tions above provides a natural scale for the error in the
wave-plate settings. The methods disagree by �θλ/2 =
θTO,λ/2−θ0,λ/2 = 2.1(9)◦ [a linear polarization uncertainty of
4(2)◦] and by �θλ/4 = θTO,λ/4−θ0,λ/4 = 3(2)◦. The linear
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FIG. 11. Power spectral density of the Stark laser’s amplified
spontaneous emission. To calculate the associated systematic shift,
we truncate the lasing peak (thin purple trace) and restrict attention to
the remaining broadband emission (thick black trace). This spectrum
is imaged at a resolution bandwidth of 0.022 nm, though the noise
bandwidth is larger.

error scales the full tensor shift by the projection of the polar-
ization onto the wrong axis. We use our measured tensor shift
to determine the uncertainty: sin2(4◦)(57 MHz) = 0.3 MHz.
The ellipticity introduced by the λ/4 wave plate can only
vary the polarization between a pure linear combination of
σ± and, at worst, an equal superposition of π and the circular
components. The maximal projection of half the power onto π

renders this systematic only half as potent as that from the lin-
ear polarization angle: 0.5 sin2(3◦)(57 MHz) = 0.1 MHz. We
do not investigate the presence of or correct for polarization
drift as in Ref. [31].

The final value of �TO uses data obtained only with the
second method of polarization control. It does not include
the data presented in Fig. 4. Correcting for the polarization-
dependent tensor shifts at each data point therein requires
accurately knowing the full size of the tensor shift. Given the
ambiguity between theory and our results, we omit those data
from our final analysis and sacrifice the uncertainty reduction
they offer.

5. Broadband laser emission

Diode lasers output amplified spontaneous emission
(ASE), a broadband spectrum spanning ∼100 nm. We set
the Stark laser near TO and record its power spectral density
(PSD) using a grating spectrometer (Princeton Instruments
Acton SpectraPro SP-2300 with PIXIS 400 CCD). Imperfect
alignment in the spectrometer imaging system asymmetrically
distributes photons from the lasing peak across a series of
pixels. We identify the associated artifacts using features
common to the peaks of a neon-argon calibration lamp. The
artifacts span 1 nm, so we ignore spectral information within
±0.5 nm of the lasing peak (see Fig. 11). We sum the atom
interferometer phases from a monochromatic lasing peak and
the ASE separately and solve for the zero crossing of the

phase shift. This computed shift in TO totals <0.1 MHz.
Uncertainty in this shift derives from the wavelength cali-
bration of the spectrum, the total power in the lasing peak
used to calculate the PSD in dBc, and the parameters used
for truncating the lasing peak as shown in Fig. 11.

The phase-locked laser beat note provides spectral infor-
mation in a more narrow-band region closer to the laser
peak. The Gaussian distribution near the peak of the beat
note is symmetric and exhibits –3-dB points separated by
1.4 MHz. No asymmetry is apparent in the Lorentzian tails.
We conclude that only the broadband emission in Fig. 11
systematically shifts the TO measurement.

6. Hyperpolarizability

TO measurements benefit from the Stark shift zero crossing
being independent of intensity, which is hard to calibrate
in situ. There is a higher-order shift from the hyperpolar-
izability proportional to the square of the intensity. Fourth
order in perturbation theory, this term involves sums over
four-photon processes. A three-level model with a ground
state and two excited states [e.g., |g〉 = |2S1/2〉, |a〉 = |2P1/2〉,
and |b〉 = |2P3/2〉] is the minimal model capable of cataloging
all the dominant four-photon couplings (g→a→g→a→g;
g→a→g→b→g; g→b→g→a→g; and g→b→g→b→g).

We compute the energy eigenvalues of the three-level
Hamiltonian with a drive detuned between the two excited-
state transitions. The perturbed energy of |g〉 can be expanded
in a power series of the drive intensity I , where the term ∝I
is the polarizability and the term ∝I2 is the hyperpolariz-
ability. The hyperpolarizability’s zero crossing coincides with
the polarizability’s zero crossing at TO, so it contributes no
significant shift to TO at our level of precision.

7. Single-photon scattering

The image analysis presented above is not impervious
to the monopole-shaped pattern generated by single-photon
scattering. It assumes that the scattering pattern is identical for
each phase sensitivity. Admitting a small mismatch between
the sensitivities spoils this assumption and introduces an
asymmetry that prevents perfect cancellation in D(�L ). That
is, a small component of Zs(�L ) may survive in Eq. (B3) [or
Eq. (3)]. There is still no shift as long as the scattering pattern
is perfectly centered on the dipole signal pattern. If so, the
projection of the scattering monopole onto M is 0 because
it involves integrating the product of an odd function and an
even function with the same center. Any systematic position
offset between the center of the scattering pattern and the
center of the signal pattern introduces a systematic offset in
the projections Ps(�L ).

Though the scattering and signal patterns originate from
the same Stark beam profile, an offset between the patterns
may still arise. While the dipole signal pattern remains station-
ary, atoms that scatter a photon do recoil at 8.5 cm/s. There is
an angle �5◦ between the Stark beam and the imaging beam.
During the ∼100 μs between scattering in the middle of the
interferometer and detection, the monopole pattern can drift in
the imaging plane by sin(5◦)(8.5 cm/s)(100 μs) ∼1 μm and
produce a systematic shift to the analysis in Sec. B.
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The phase-patterned signal specific to the work presented
here contains information relevant to TO only along one
axis, ẑ. Rotating out the 4.41◦ tilt apparent in D(�L ) and
integrating along x reduces the signals to one dimension [see
Fig. 5(a)]. Rescaling to the local atomic density from a similar
one-dimensional integration of the averaged unpulsed shots
removes any asymmetry introduced by an offset between the
center of the Stark beam and the background A±B. We fit
the resulting trace to a sum (blue) of the monopole scattering
contribution (red) and the dipole signal contribution (green).
Only the amplitude of the signal portion of the fit is ger-
mane to the TO measurement, so we plot those amplitudes

as a function of Stark laser wavelength [see Fig. 5(b)] and
fit for the zero crossing. This scattering-corrected result is
shifted down from the result of the two-dimensional analysis
(Fig. 9) by 7.76 MHz. The uncertainty in the fit combines the
statistical uncertainty of the measurement and the systematic
uncertainty from this scattering offset.

The small excited-state fine-structure splitting exacerbates
the effect of scattering in Li due to the relatively small detun-
ing of TO from the resonances. While scattering introduces
the largest systematic shift in this measurement, it would
be a smaller concern in different atomic species or for the
phase-patterning technique more generally.
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