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Population transfer via a dissipative structural continuum
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We propose a model to study quantum population transfer via a structural continuum. The model is composed
of two spins which are coupled to two bosonic modes separately by two control pulses, and the two bosonic
modes are coupled to a common structural continuum. We show that efficient population transfer can be achieved
between the two spins by using a multilevel stimulated Raman adiabatic passage (STIRAP) across the continuum,
which we refer to as straddle STIRAP via continuum. We also consider the stability of this model against different
control parameters and show that efficient population transfer can be achieved even in the presence of a moderate
dissipation.
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I. INTRODUCTION

Complete population transfer serves a transition population
of quantum states from initial state to target state, and this
plays an important role in quantum physics. Many research
efforts have been devoted to studying complete population
transfer in various situations. For instance, complete popula-
tion transfer among quantum states of atoms and molecules
is a very active research area in quantum optics and atom
optics [1–3]. Furthermore, it is also a fundamental technique
in quantum computation and quantum information process-
ing, including superconducting qubits [4–6], Bose-Einstein
condensates [7], NV centers in diamonds [8], and quantum
dots and quantum wells in semiconductors [9]. Another very
important application of complete population transfer is to
achieve power or intensity inversion in classical systems,
which is widely used in waveguide couplers [10], wireless
energy transfer [11], polarization optics [12], and electrons
and surface plasmon polaritons in graphene systems [13,14].
For a recent review see Ref. [15].

A standard approach for population transfer is stimulated
Raman adiabatic passage (STIRAP), which was originally
proposed in three-level systems, two of which are coupled
to an intermediate energy level by two spatially overlapping
pulses in counterintuitive order. The remarkable dominance
of STIRAP lies in that (1) it is extremely robust against
fluctuations of the control parameters of the laser pulses and
(2) the intermediate energy level is not populated, which
makes the scheme robust against the decay [16,17].

Various generalizations have made to apply STIRAP tech-
nique to special situations. STIRAP via multi-intermediate
levels or a continuum (multilevel STIRAP, also called straddle
STIRAP [18]) has been considered in atomic systems [19–21]
and waveguide coupler systems [22,23]. STIRAP into a
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continuum, where the third energy level is replaced by con-
tinuous energy levels, has also been considered [21].

In this paper, we propose a model to study population
transfer via a continuum. The model contains two spins
which are coupled to two bosonic modes separately by two
controlled laser pulses, while the two bosonic modes are
indirectly coupled via a structured continuum (see Fig. 1).
Compared to previous literature, our model differs in that (1)
the two energy levels are replaced by two spins, and as a
result, the population transfer becomes state transfer between
the two spins; (2) instead of directly coupling the two energy
levels with the continuum, in our approach the laser pulses
directly couple the two spins with two bosonic modes, which
could be single-mode cavities or phonons, and then the two
bosonic modes are coupled to a continuum with constant
coupling strengths; and (3) a dissipative continuum has been
considered. This model has potential applications in chemical
physics [24] and quantum information [25]. In addition, this
model allows us to study state transfer between two qubits via
a dissipative environment, which could play an important role
in quantum computation and quantum information process-
ing. We demonstrate that straddle STIRAP can be utilized to
perform efficient population transfer in our model (see Fig. 2
and Fig. 3). We show the robustness of our approach with
respect to parameters of controlling laser pulses (see Fig. 4)
and the dissipation rate (see Fig. 5).

Our paper is organized as follows. In Sec. II we introduce
our model and the equation of motion for the straddle STIRAP
via a continuum. In Sec. III we numerically solve the quantum
master equation for our model and show the effectiveness of
the popular transfer against changing the parameters of the
model. We conclude in Sec. IV.

II. MODEL

Our model consists of two spins which are coupled to
two bosonic modes by two controlled laser pulses. The
two bosonic modes are both coupled to a bosonic contin-
uum with phenomenological spectrum functions. The bosonic
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FIG. 1. Population transfer between two qubits q1 and q2. The
two qubits are coupled to two bosonic modes â1 and â2 respectively
by two controled laser pulses �P(t ), �S (t ). The bosonic modes â1

and â2 are indirectly coupled through a bosonic structural continuum,
with a particle loss rate γ .

continuum is initially in the vacuum state and is subjected to
a particle loss rate of γ . The Hamiltonian of the whole system
can be written as

Ĥ (t ) = ωq,1
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σ̂ z

1 + ωq,2

2
σ̂ z

2 + ωa,1â†
1â1 + ωa,2â†

2â2

+ �P(t )(â†
1σ̂

−
1 + â1σ̂

+
1 ) + �S (t )(â†

2σ̂
−
2 + â2σ̂

+
2 )

+
∫

ω

dωωb̂†(ω)b̂(ω)

+
∫

ω

dω
√

J1(ω)[â1b̂†(ω) + â†
1b̂(ω)]

+
∫

ω

dω
√

J2(ω)[â2b̂†(ω) + â†
2b̂(ω)], (1)

where we have set h̄ = 1. Here ωq,1 and ωq,2 are the energy
differences of qubit 1 and qubit 2. ωa,1 and ωa,2 denote the
oscillation frequencies of the two bosonic modes â1 and â2.
J1(ω) and J2(ω) are the spectral densities for the coupling
between the two modes â1, â2 and the bosonic continuum.
We have used a linear density of states assumption for the
continuum without loss of generality since the density of
states can be absorbed into the spectral densities [26]. In this
work we consider the phenomenological spectral densities,
which are defined as follows:

J1(ω) = gωη1 , J2(ω) = gωη2 , (2)

with a threshold ωc such that J1(ω) = J2(ω) = 0,∀ω > ωc.
The exponent η < 1, η = 1, and η > 1 correspond to the
subohmic, ohmic, and superohmic couplings, respectively. We
also consider the situation where the bosonic continuum loses
particles with a rate γ , which can be modeled by the Lindblad
form of dissipation D,

D(ρ̂) = γ

∫
ω

dω[2b̂(ω)ρ̂b̂†(ω) − {b̂†(ω)b̂(ω), ρ̂}]. (3)

The dynamics of the system is thus described by the following
quantum master equation:

d ρ̂(t )

dt
= −i[Ĥ (t ), ρ̂(t )] + D[ρ̂(t )]. (4)

Throughout this paper, we assume that ωq,1 = ωq,2 = ωa,1 =
ωa,2 = �. The initial state of the dynamical evolution is

FIG. 2. (a) �P(t ) and �S (t ) as functions of time t . In (b), (c),
and (d) the evolution of F1(t ) (blue lines) and F2(t ) (red lines),
as well as the population left in the two bosonic modes (black
lines) and in the continuum (green lines) are plotted as a function
of time. (b) We fix γ = 0, � = 0, η1 = 1.5. The solid, dashed,
and dotted lines correspond to η2 = 1.5, 1, and 0.5 respectively.
(c) We fix γ = 0, η1 = η2 = 1.5. The solid, dashed, and dotted lines
correspond to � = 0, 5, and 10, respectively. (d) We fix � = 0,
η1 = η2 = 1.5. The solid, dashed, and dotted lines correspond to
γ = 0, 0.5, and 1.5 respectively. The other parameters used are
g = 10, � = 2, ωc = 2, T = 2.

denoted as

ρ̂i = ρ̂(−∞) = |ψi〉〈ψi|, (5)

with

|ψi〉 = |1q1 , 0a1 , �0b, 0a2 , 0q2〉, (6)

where we have use 1qi , i = 1, 2 to denote the spin up state for
the two spins q1 and q2, 0ai , i = 1, 2 to denote the vacuum
state for the two bosonic modes â1 and â2, and �0b to denote
the vacuum state for the bosonic continuum b̂(ω). The final
state after the evolution is denoted as ρ̂ f = ρ̂(∞), while the
targeting final state is written as

¯̂ρ f = |ψ f 〉〈ψ f |, (7)

with

|ψ f 〉 = |0q1 , 0a1 , �0b, 0a2 , 1q2〉. (8)

We define F1(t ) to be the fidelity between ρ̂(t ) and ρ̂i:

F1(t ) = 〈ψi|ρ̂(t )|ψi〉, (9)

which is the population of the density operator on on first spin
q1. We define F2(t ) to be the fidelity between ρ̂(t ) and ¯̂ρ f ,

F2(t ) = 〈ψ f |ρ̂(t )|ψ f 〉, (10)
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FIG. 3. (a) F as a function of � and g. (b) Horizontal cuts
of (a) for � = 1, 2, 5, 10 respectively. Other parameters used are
� = 0, η1 = η2 = 1.5, γ = 0, T = 2, τ = 1, ωc = 2.

which is the population of the density operator on the second
q2. We denote F = F2(∞). F = 1 corresponds to complete
population transfer, and F < 1 corresponds to partial popula-
tion transfer.

III. RESULTS

We numerically study the quantum master equation (4).
To numerically treat the bosonic continuum, we discretize it
linearly with a discretization step size δ, following Ref. [27].
The continuum becomes a discrete set of harmonic oscillators,

∫
ω

dωωb̂†(ω)b̂(ω) →
N∑

j=1

ω j b̂
†
j b̂ j, (11)

where N = ωc/δ, ω j = jδ, b̂ j = b̂( jδ), and b̂†
j = b̂†( jδ). The

coupling between the bosonic modes and the continuum be-
comes

∫
ω

dω
√

J1(ω)[â1b̂†(ω) + â†
1b̂(ω)] →

N∑
j=1

g1, j (â1b̂†
j + â†
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(12)∫
ω

dω
√

J2(ω)[â2b̂†(ω) + â†
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N∑
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g2, j (â2b̂†
j + â†

2b̂ j ),

(13)

where the discretized coupling g1, j = √
J1( jδ)δ, g2, j =√

J2( jδ)δ. Combining the above equations, the discretized
Hamiltonian is

Ĥdis(t ) = �

2
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1 + �
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2 + �â†
1â1 + �â†

2â2

+ �P(t )(â†
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+
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+
N∑
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1b̂ j )

+
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g2, j (â2b̂†
j + â†

2b̂ j ). (14)

FIG. 4. (a) F as a function of � and τ , with maximum coupling
strengths of laser pulses � from 1 T −1 to 10 T −1 and τ from 0.5 T
to 4 T , at fixed time 2 T . (b) F as a function of τ and T , with τ

from 0.5 T to 4 T and total control time from 1 T to 5 T , at fixed
� = 2 T −1.

In the limit N → ∞, Ĥdis(t ) is equivalent to Ĥ (t ) [27,28]. The
discretized dissipator can be simply written as

Ddis[ρ̂(t )] = γ

N∑
j=1

[2b̂ j ρ̂b̂†
j − {b̂†

j b̂ j, ρ̂}]. (15)

We note that F1(t ) and F2(t ) should be independent of δ as
long as δ is small enough. When γ = 0, we directly solve the
unitary dynamics with the time-dependent Hamiltonian as in
Eq. (14). In the case γ > 0, we solve the quantum master
equation in Eq. (4) with the discretized Hamiltonian as in
Eq. (14) and the discretized dissipator as in Eq. (15). Although
our model contains a large number of modes due to the
continuum, it can be efficiently solved by taking into account
the fact that the model contains at most only one excitation as
can be seen from Eq. (6); thus we need to consider only the
vacuum sector together with the single excitation sector.

We consider that the two couplings of laser pulses (�P and
�S) have Gaussian shapes as follows:

�P(t ) = � exp

[−(t − τ/2)2

T 2

]
,

�S (t ) = � exp

[−(t + τ/2)2

T 2

]
, (16)

where the T is the total time for the control process, � is the
maximum strength of the coupling, and τ is the time delay
between two pulses. �P(t ) and �S (t ) are shown in Fig. 2(a).

In Fig. 2(b) we consider the effect of asymmetric couplings
between the two modes â1, â2 and the continuum, namely,
J1(ω) 	= J2(ω). We fix η1 = 1.5 and tune η2 to be 1.5, 1, 0.5.
We can see that F is the largest when η1 = η2 and decreases
substantially when η2 = 0.5, where J1(ω) is superohmic while
J2(ω) is subohmic, with a large portion of the population left
in the continuum. It is shown in Ref. [20] that when J1(ω)
and J2(ω) are proportional to each other, complete population
transfer could be achieved. Here we show numerically that
when the couplings are asymmetric, the efficiency of popu-
lation transfer could be greatly reduced. In Fig. 2(c) we plot
the evolution of the population of the two spins with t against
different values of �, namely, � = 0, 5, 10. We can see that F
greatly decreases when � is much larger than ωc, and a large
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FIG. 5. The F as a function of g (coupling strengths between two
qubits and spin bath) and dissipation loss γ .

portion of the population is left in the bosonic modes instead
of the continuum in comparison with the previous case. This
is because the spins are off resonant with the continuum, and
the population transfer is much harder (population transfer is
still possible when � > ωc because of the strong coupling
between the bosonic modes and the continuum). In Fig. 2(d)
we show F against different particle loss rates, namely, γ = 0
(solid line), γ = 0.5 (dashed line), and γ = 1 (dotted line).
As expected, population transfer becomes less efficient as γ

increases.
In Fig. 3 we study the effect of the competition between

the two coupling strengths � and g on the efficiency of the
population transfer. In Fig. 3(a) we plot F as a function of the
� and g. We can see that when � 
 g, efficient population
transfer could be achieved, namely, F ≈ 1. To see this more
clearly, in Fig. 3(b) we plot horizontal cuts of Fig. 3(a) at
different values of �, namely, � = 1, 2, 5, 10.

Now we consider the robustness of our straddle STIRAP
against the control parameters T , � and τ of laser pulses
�P(t ), �S (t ), which is shown in Fig. 4. In Fig. 4(a) we show
the dependency of F as a function of � and τ , where we can
see that population transfer can still be achieved with high
efficiency if the values of � and τ have small fluctuations.
In Fig. 4(b) we can see that for fixed � = 2, and τ ≈ 1,
population transfer is highly efficient for a very wide range of
T . We also notice that for small values of τ , namely, τ ≈ 0.5,

there are some oscillations for certain values of � and T . A
possible reason for these oscillations is that when τ is small,
the evolution is nonadiabatic, and for certain special values of
� and T , some nonadiabatic shortcuts lead to similar results
as the adiabatic evolution.

Finally, we study the effect of dissipation on the straddle
STIRAP. We assume the bosonic continuum has a constant
particle loss rate γ . In Fig. 5 we plot the dependency of F
as a function of the particle loss rate γ and the coupling
strength g between the modes â1, â2 with the continuum. We
can see that as long as the coupling strength g is large enough
g � 10, efficient population transfer can still be achieved with
moderate dissipation γ � 1.

IV. CONCLUSION

We propose a model to study population transfer where
the intermediate states are a bosonic continuum. The model
consists of two spins which are coupled to two bosonic modes
with a dynamical coupling strength �P(t ) and �S (t ), and the
two bosonic modes are indirectly coupled through a bosonic
continuum. We show the effects on the efficiency of popula-
tion transfer when tuning the the coupling strength between
the bosonic modes with the continuum, as well as the various
control parameters of the laser pulses. We also consider the
case when the continuum is subject to a constant particle
loss rate, and we show that efficient population transfer can
still be achieved with a moderate dissipation. We believe
that this finding will improve the highly efficient transfer of
information in quantum information processing in the future.
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