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Strong-field molecular alignment mediated by nonadiabatic charge localization
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A different mode of effective interaction of molecular rotational degrees of freedom with an intense,
nonresonant, ultrashort laser pulse is explored. Transient nonadiabatic charge redistribution (TNCR) in larger
molecules or molecular ions causes impulsive-torque interaction that replaces the traditional mechanism of
molecular alignment based on perturbative interaction of the laser field with electronic subsystem as manifested
in linear anisotropic polarizability or hyperpolarizability. We explore this alignment mechanism on a popular
generic model of a tight-binding diatomic molecule. We consider the case of rotational wave-packet formation
when a molecule is initially in the ground rotational state. The rotational wave packet emerging from the TNCR
interaction consists of states with higher rotational quantum numbers, in comparison with the anisotropic-
polarizability case, and the after-pulse alignment oscillations are out-of-phase with those resulting from the
traditional interaction. The TNCR interaction mode is expected to play a major role when a strong laser field
actually causes extensive nonresonant excitation and/or ionization of a molecule.
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I. INTRODUCTION

Laser-induced molecular alignment occurs when non-
spherical molecules are exposed to a short, intense, linearly
polarized laser pulse [1]. Of particular interest is nonadiabatic
alignment, caused by a nonresonant interaction with a pulse
of duration much shorter than the rotational period of the
molecule. In this case, the rotational kick received by the
molecules leads to alignment of the molecular ensemble and
a series of periodic rotational revivals in the wake of the
laser pulse, which are attenuated by coherence-loss mecha-
nisms [2]. This field-free alignment phenomenon has found
extensive use in various experiments addressing anisotropic
characteristics of individual molecules, such as photoelectron
angular distribution [3–5], Coulomb explosion imaging [6],
control of molecular scattering [7], and high-harmonic gen-
eration with applications to attosecond physics [8–10] and
molecular tomography [11,12].

Laser-induced molecular alignment is a powerful method
for controlling the physical and optical properties of a gas-
phase molecular medium, which has been used for modifying
the propagation dynamics of subsequent laser pulses [13–15].
Molecular alignment has been applied to phase modulation of
an optical pulse [16,17], spectral interferometry [18], spatial
focusing/defocusing [19,20], transient birefringence [21–23],
optical wave-guiding [24], and even control of unimolecular
chemical reactions [25,26].

In a classical picture, the linearly polarized laser pulse
gives the molecule an impulsive torque that drives the molec-
ular axis of maximum polarizability towards the laser po-
larization axis. The magnitude of this torque depends on
the angle between these two axes, and thus the after-pulse
evolution results in alignment of the molecular ensemble.
In a quantum-mechanical picture, the interaction prepares a

coherent superposition of rotational states (the rotational wave
packet) that undergoes field-free evolution after the pulse. The
components of the wave packet are at first in phase and then
experience dephasing due to the spread in rotational energies,
followed by repeated rephasing at integer and possibly frac-
tional multiples of the mean rotational period. The condition
for effective excitation of the rotational wave packet is that
the exciting laser pulse should be shorter than the rotational
period, π h̄/Be where h̄ is Planck’s constant and Be is the
rotational constant in energy units (typically, Be ∼ 10−4 eV).
The alignment will recur periodically as long as the excited
states in the rotational wave packet remain phase-locked, that
is, until loss of rotational coherence due to collisions.

In all the mentioned applications of impulsive alignment,
the action of the laser pulse on the rotational degrees of
freedom of a molecule is mediated by nonresonant inter-
action with the molecular electronic system, and the lat-
ter is treated perturbatively based on the assumption that
(μE0/|h̄ωc − �E |) � 1 where μ is the characteristic dipole
matrix element between the ground and excited electronic
states, �E is the energy distance between those states, ωc

is the laser carrier frequency, and E0 is the laser field mag-
nitude (we will confine ourselves with cases of symmetric-
top molecules carrying no permanent dipole). In the tradi-
tional approach, only the lowest, second-order perturbation
is taken into account, and then the alignment-causing ef-
fective interaction Hamiltonian takes the form, Ĥint (θ, t ) =
−(1/4)(α‖ − α⊥)E0

2 f 2(t )cos2θ , where α‖ and α⊥ are the
longitudinal and transverse components of the polarizability
tensor, θ is the angle between the molecular axis and the
direction of the laser polarization, while E0 and f (t ) are
the electric field magnitude and the envelope function of
the linearly-polarized laser pulse with carrier frequency ωc

satisfying the criterion, ωc � |α‖ − α⊥|E0
2/h̄. At relatively

2469-9926/2019/100(6)/063423(8) 063423-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.063423&domain=pdf&date_stamp=2019-12-23
https://doi.org/10.1103/PhysRevA.100.063423


D. A. ROMANOV AND R. J. LEVIS PHYSICAL REVIEW A 100, 063423 (2019)

weak electric fields, when |α‖ − α⊥|E0
2 < h̄2/2I , where I is

the molecular moment of inertia, the action of Ĥint (θ, t ) on
the rotational degrees of freedom can also be considered as a
perturbation, and then it causes transitions between the angu-
lar momentum eigenstates with �l = ±2 and �m = 0. For
stronger electric fields, the rotational Schrödinger equation
with the interaction Hamiltonian Ĥint (θ, t ) needs to be solved
numerically [27]. In this situation, the mediated action of the
laser pulse on the molecular rotational degrees of freedom is
treated nonperturbatively, while the response of the electronic
degrees of freedom still allows for a perturbative treatment.
For yet stronger values of E0, higher-order perturbations to the
electronic system may be taken into account, resulting in quar-
tic (in E0) corrections to Ĥint (θ, t ), related to the components
of second-hyperpolarizability tensor γi jkl (these higher-order
perturbations are apparently more important in the case of
asymmetric molecules where first hyperpolarizability βikl is
engaged) [28–33].

However, when the laser electric field becomes so strong
that μE0 ∼ �E , the perturbation series for the electronic
response does not converge any more, and thus incorporating
higher-order perturbations in Ĥint (θ, t ) will not provide a
reliable description of the effective interaction of the laser
pulse with the rotational degrees of freedom. Physically, this
means that the strong laser field causes essential restructur-
ing of the electron system, which cannot be addressed via
successive perturbative approximations. This situation may
occur in larger molecules or molecular ions, where distances
between electronic energy levels are relatively small. Another
likely possibility is the situation when a molecule is driven
by the laser field into the excited state manifold on the way
to ionization [34,35]. For instance, when �E ∼ 2 eV and
μ ∼ 1 eÅ, the laser intensity of ∼5×1013 W/cm2 makes it
already for μE0 ∼ �E . When the strong field thus becomes
capable of essentially modifying the electronic system during
the laser pulse, it remains an open question what happens with
the effective interaction of this laser pulse with the rotational
degrees of freedom of the molecule. In this publication, we
address one important aspect of such engagement.

Strong oscillating fields are known to cause nonadiabatic
redistribution of the electron charge in the molecule and even
induce transient charge localization [36–38]. (Note that in
this context the term “nonadiabatic” relates to the electronic
response and should not be confused with the term “nonadia-
batic alignment,” which means molecular alignment following
a laser pulse of a duration much shorter than the molecular
rotational period and which is called here “impulsive align-
ment” to avoid possible confusion.) This effect has a long
and venerable history. It was first predicted theoretically for
an archetypical model of a particle in a symmetric double
well, driven by a monochromatic classical force [39], and
for a more general driven two-level system [40], and termed
coherent destruction of tunneling. Later, effects of this kind
were found and utilized in a vast multitude of molecular and
solid-state systems [41–43], ranging from individual atoms
in external potentials [42,44], to strongly driven qubits in
Josephson circuits [45] and optical traps [46], to strongly-
driven spin control for spintronics applications [47], and even
to coupled optical waveguides [48]. The nonadiabatic charge-
redistribution effects under strong laser driving were found to

FIG. 1. Potential energy curves for molecular rotation as depend-
ing on the strength of the external electric field. The energy is in
the units of |V |, the electric field in the units of 2|V |/eR. The lower
surface corresponds to the ground electronic state; the upper surface,
to the excited electronic state. The surfaces are shifted away from
each other for clarity.

be especially pronounced in larger molecules and in molecular
ions [49,50]. As these effects depend critically on the am-
plitude of the electric potential variation across the molecule
placed in the laser field, they should be sensitive to the molec-
ular orientation with respect to the laser polarization. The goal
of this paper is to reveal manifestations of nonadiabatic effects
on the rotational degrees of freedom, modifications of the
torque exerted on the molecule, and substantial changes in the
composition of the resulting rotational wave packet and the
dynamics of field-free alignment.

Keeping in line with the general approach to nonadibatic
localization, we use the conceptual two-site model [41], which
in our context represents a homonuclear diatomic molecule
with a single active electron in the tight-binding approxima-
tion [51]. The electron energy in an isolated atom is taken
as a reference point, and the electron tunneling between
the two sites leads to the level splitting, so that the energy
of the ground molecular state is Eg = −|V | and the energy
of the excited state is Ee = |V |, where V is the tunneling
matrix element. When an electric field E0 is applied along
the molecular axis, these two energy levels are shifted as
Eg,e(E0) = ∓

√
V 2 + (eE0R/2)2, where R is the internuclear

distance. If the electric field is weak, |E0| � |2V /eR|, then the
expansion of Eg,e(E0) over the small parameter |eE0R/2V |�1
produces the longitudinal polarizabilities of these two states
as (α‖)g,e = ∓(eR/2)2/|V | (assuming |α⊥|g,e � |α‖|g,e, the
transverse polarizabilities are henceforth neglected). If the
electric field is applied at an angle θ with respect to the molec-
ular axis, then the energy levels are shifted by the longitudinal
component of this field: Eg,e = ∓

√
V 2 + (eR/2)2E0

2cos2θ .
The two electronic energy levels as functions of the electric
field strength and the angle θ are presented in Fig. 1, where
the energy is in the units of |V | and the electric field in
the units of 2|V |/eR. The angular dependence of the en-
ergy levels forms the effective potential energy curves for
rotational motion of the molecule. As seen, at any given
value of E0, the effective potential energy for the ground
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electronic state has its minimum at θ = 0(π ), while the ef-
fective potential energy for the excited electronic state has
its minimum at θ = ±π/2. For the weak-field laser pulse,
E(t ) = E0 f (t ) cos(ωct ), using the above-mentioned polariz-
ability values (α‖)g,e and averaging over the laser cycle leads
to the effective time-dependent rotational interaction Hamilto-
nians, (Ĥint )g,e = ∓(1/4)[(eR/2)2/|V |]E0

2 f 2(t )cos2θ , which
provide the alignment rotational kick for a molecule in the
ground state and the antialignment kick for a molecule in the
excited state. One might expect that when the laser field is
no longer weak (|eE0R/V | ∼ 1) and thus the polarizability-
based approach is no longer valid, the strong-field ver-
sion of the effective Hamiltonian will become (Ĥint )g,e =
∓

√
V 2 + (eR/2)2E0

2 f 2(t )cos2θ .
However, this weak-field interaction Hamiltonian and its

strong-field generalization are both based on the implicit
assumption that the molecular electronic system responds
instantaneously to the oscillations of the laser field. If this is
not the case, that is, if either of the conditions, ωc � |V |/h̄ and
eR E0ωc � V 2/h̄, is not satisfied, then the averaging over the
carrier-frequency oscillations of the laser field produces a dif-
ferent effective rotational Hamiltonian, which determines an
alternative dependence of the alignment kick on the molecular
parameters and the laser pulse characteristics. We will explore
the transition from the anisotropic-molecular-polarizability
alignment mechanism to a different mode of the effective-
torque interaction, which is related to nonadiabatic electron
localization.

II. THE MODEL

To concentrate on general aspects of the effects the
nonadiabatic electron dynamics can have on the molecular
rotation, we consider a generic model of a homonuclear
diatomic molecule in the single active electron approximation
(each of the two nuclear cores carries positive charge of
e/2, thus maintaining electric neutrality of the system). The
molecule is subjected to a linearly polarized laser pulse
with the electric field êE(t ) = êE0 f (t ) cos(ωct ), where ê
is the unit vector in the polarization direction, E0 is the
pulse amplitude, ωc is the carrier frequency, and f (t ) is
the slow-varying envelope function, normalized to unity.
The pulse-duration time, τ , as determined by f (t ), is much
larger than the laser cycle period, 2π/ωc. The total molecular
Hamiltonian is a function of the nuclear coordinates, R1 and
R2, and the electronic coordinate, r. The Hamiltonian
is composed of the electronic part, Ĥe(R1, R2, r) =
−[h̄2/(2me)]∇2

r + V (|r − R1|) + V (|r − R2|), the
nuclear part, Ĥn(R1, R2, r) = −[h̄2/(2M )](∇2

R1
+ ∇2

R2
) +

Vn(|R1 − R2|), and the interaction part, Ĥint (r, t ) =
−e(r · ê)E(t ) + eE (t )(1/2)[(R1 · ê) + (R2 · ê)]. Within
the Born-Oppenheimer approximation, the tight-
binding molecular wavefunction is represented as,

(R1, R2, r, t ) = a1(R1, R2, t )ψe(r − R1) exp(−itE0/h̄) +
a2(R1, R2, t )ψe(r − R2) exp(−itE0/h̄), where the site-wise
electron functions ψe(r) are the ground-state solutions of
the local stationary Schrödinger equations with the potential
V (r), while the coefficients a1(R1, R2, t ) and a2(R1, R2, t )
constitute the effective two-component nuclear wavefunction,

a(R1, R2, t ), which satisfies the equations

ih̄
∂

∂t
a(R1, R2, t )

= (Ĥn(R1, R2) + V2(|R2 − R1|))σ̂0a(R1, R2, t )

+V1(|R2 − R1|)σ̂xa(R1, R2, t )

− eE(t )

2
(ê · (R1 − R2))σ̂za(R1, R2, t ). (1)

Here, σ̂x, σ̂z, and σ̂0 are the Pauli ma-
trices, and the effective potentials are deter-
mined by the overlap integrals, V1(|R2 − R1|) =∫

d3r ψe
∗(r − R1)ψe(r−R2)V (|r − R1|) and V2(|R2−R1|)=∫

d3r ψe
∗(r − R1)ψe(r − R1)V (|r − R2|). (We assume

that the ψe(r) state of an isolated atom has no permanent
dipole moment.) We separate the nuclear center-of-mass
motion in Eq. (1) by introducing new variables,
R = R1 − R2 and R+ = (R1 + R2)/2, and representing
the expected solution to Eq. (1) in the following form:
a(R+, R, t ) = exp[(i/h̄){P · R+ − [P2/(4M )]t}] ã(R, t ),
where P is the center-of-mass momentum. Then, the equations
for ã(R, t ) read

ih̄
∂

∂t
ã(R, t ) =

(
− h̄2

M
∇2

R + Vc(R)

)
ã(R, t )

− eE(t )

2
(ê · R)σ̂zã(R, t ) + V1(R)σ̂xã(R, t ),

(2)

where Vc(R) = Vn(R) + V2(R).
For the sake of simplicity, we assume that the first term

on the right-hand side of Eq. (2) provides a rigid-rotor-type
configuration with some equilibrium internuclear distance
Rg. Then, the effect of the laser-molecule interaction
is determined by three competing energy scales: the
rotational quantum, h̄2/MR2

g, the tunneling level splitting,
V1(Rg), and the level mismatch amplitude, eE0Rg. In
the absence of the laser field (E0 = 0) the system of
equations is readily diagonalized by the transformation
b̃(x, t ′) = (σ̂z + σ̂x )ã(x, t ′), Then, if eE0Rg � V1(Rg),
the second term on the right-hand side of Eq. (2) is
treated as a perturbation, which leads to the effective
rotational interaction Hamiltonians in the above-mentioned
form (Ĥint )g,e = ∓(1/4)[(eRg/2)2/|V (Rg)|)×E0

2 f 2(t )cos2θ ,
provided ωc � |V |/h̄. We are, however, concerned with
the opposite extreme, eE0Rg � V1(Rg), and thus take a
different way to extract an effective rotational Hamiltonian,
based on the general method of separating fast time scale
from slow time scale in differential equations [52,53].
Following the approach developed for nonadiabatic
localization in one-dimensional two-site systems [41],
we look for the solutions to Eq. (2) in the form: ã(R, t ) =
exp(i[eE0/(2h̄ωc)]s(t )(ê · R)σ̂z )ā(R, t ), where s(t ) is a
fast-oscillating function: s(t ) = ωc

∫ t
−∞ dt ′ f (t ′) cos(ωct ′) ≈

sin(ωct ) f (t ), assuming |d[ln f (t )]/dt | � ωc, while ā1(R, t )
and ā2(R, t ) are supposed to be slower functions of t .
Substitution of this expression in Eq. (2) leads, after some
transformations, to the following system of equations in
the spherical coordinates, whose polar axis is aligned with
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vector ê:

ih̄
∂ ā
∂t

= − h̄2

M

[
1

R2

∂

∂R

(
R2 ∂

∂R

)
+ 1

R2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

R2sin2θ

∂2

∂ϕ2

]
ā + Vc(R)ā

+ h̄2

M

[
1

4

(
eE0

h̄ωc

)2

s2 − is
eE0

h̄ωc

(
cos (θ )

∂

∂R
− sin (θ )

R

∂

∂θ

)]
ā + V1(R)σ̂x exp

(
is

eE0R

h̄ωc
cos (θ )σ̂z

)
ā. (3)

In this equation, the second line concerns the time-dependent action of the laser field as manifested by the function s(t ). For
the sake of simplicity, we assume at this point the strong rigid rotator approximation, in which the radial motion of nuclei is
decoupled from the rotational degrees of freedom and is virtually unaffected by the single active electron, so that the ground and
excited electronic states have the same radial nuclear wavefuncion. Consequently, we look for the solution of Eq. (3) in the form

ā(R, t ) = ψR(R) exp

(
−i

ER

h̄
t − ie2E0

2

4h̄Mωc
2

∫ t

−∞
dt ′s2(t ′) + imϕ

)
¯̄a(θ, t ), (4)

where ψR(R) is the ground-state solution to the
stationary radial Schrödinger equation, ERψR =
−(h̄2/M )[∂2ψR/∂R2 + (2/R)∂ψR/∂R] + Vc(R)ψR. (Note
that the second term in the argument of the exponential in
Eq. (4) merely represents the very small ponderomotive
energy shift of the heavy nuclei in the oscillating laser field.)
Upon substitution of this ā(R, t ) in Eqs. (3), radial averaging,
and averaging with respect to t over the laser cycle period
2π/ωc while neglecting the smaller terms of the order of
[eE0Rg/(h̄ωc)](1/(ωcτ )) � 1, we come to the following
equation for the rotational motion, in which we use the
conventional angular variable, x = cos(θ ):

ih̄
∂ ¯̄a
∂t

= − h̄2

MR2
g

(
(1 − x2)

∂2

∂x2
+ 2x

∂

∂x
+ m2

1 − x2

)
¯̄a(θ, t )

+V1(Rg)J0

(
eE0Rg

h̄ωc
f (t )x

)
σ̂x ¯̄a(θ, t ), (5)

where Rg is the average value of R in the ground state. [Strictly
speaking, when applied to the terms on the right-hand side
of Eq. (3) the angular averaging results in expressions, in
which R is replaced by an effective Rg, but these effective
Rgs are slightly different for different terms. We disregard
those small differences for the sake of notational simplicity.]
The emergence of the Bessel function of zeroth order in the
effective potential-energy term [the last term on the right-hand
side of Eq. (5)] is typical in two-site tunneling suppression
situations [41], and it physically means that the electron
charge becomes stuck in one of the sites. As seen in this term,
now this nonadiabatic charge localization depends explicitly
the molecular orientation through the x variable. As the cycle-
averaging of the terms with exp[is(eE0R/h̄ωc) cos(θ )σ̂z] in
Eqs. (3) results in the same Bessel function of zeroth order in
both of Eqs. (5), these latter equations are readily decoupled
by the transformation b(x, t ′) = (σ̂z + σ̂x ) ¯̄a(x, t ′), so that the
functions b(x, t ′) are determined by the dimensionless equa-
tions,

i
∂

∂t ′ b(x, t ′) = −
(

(1 − x2)
∂2

∂x2
+ 2x

∂

∂x
+ m2

1 − x2

)
b(x, t ′)

− vJ0(α f (t ′)x)σ̂zb(x, t ′), (6)

where the dimensionless time variable is scaled by
the characteristic rotational time, t ′ = t (MR2

g/h̄), v =

−V1(Rg)(MR2
g/h̄

2) > 0 determines the relative magnitude
of the effective time-dependent potential, and α =
(eE0Rg)/(h̄ωc) serves as the strong-field criterion parameter.

III. RESULTS AND DISCUSSION

In the case of a CW laser field [ f (t ′) = 1], the potential
energy curves for the modified wavefunctions b1(x, t ) and
b2(x, t ) in Eq. (6) depend on the field amplitude (through
parameter α), thus forming the surfaces presented in Fig. 2.
In this Figure, the energy is in the units of MR2

g|V1(Rg)|/h̄2

and the electric field in the units of h̄ωc/eR. The lower surface
corresponds to the effective potential energy for b1(x, t ); the
upper surface corresponds to the effective potential energy
for b2(x, t ). It is instructive to compare these surfaces with
those of Fig. 1. As seen, the surfaces in Fig. 2 have become
corrugated, having additional extrema at intermediate values
of the polar angle and the electric field strength. Moreover,
even for moderately weak electric field, when the corrugation
is not yet pronounced, the character of the extrema at θ = 0 is
reversed with respect to that in Fig. 1. When the argument
of the Bessel functions in Eqs. (6) is small, the effective

FIG. 2. The effective potential energy curves of the cycle-
averaged equations [Eq. (6) in the text], as depending on the
strength of the external electric field. The energy is in the units of
MR2

g|V1(Rg)|/h̄2, the electric field in the units of h̄ωc/eR. The surfaces
are shifted away from each other for clarity. Note the qualitative
differences from the adiabatic case presented in Fig. 1.
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potential energy in the first and the second equation behaves as
−v + (v/4)x2α2 f 2(t ′) and v − (v/4)x2α2 f 2(t ′), respectively.
This means that the effective polarizability of the molecule in
the ground state is positive, and in the excited state is negative,
in contrast to the case of a static electric field. The obvious
physical reason for this weak-field reversal is that when
eE0Rg � |V1(Rg)|, the time-averaging procedure leading to
Eqs. (6) is conditioned on assumption h̄ωc > |V1(Rg)|, which
implies the electronic response being out-of-phase with the
driving laser field. As a result of this polarizability reversal,
the equations do not revert to those for pendular states [54]
even in the case of α � 1. For instance, the action of the laser
pulse on the ground-state molecule leads to antialignment

rather than alignment of the molecular ensemble. Conversely,
the action of the laser field on the excited-state molecules will
result in alignment of the ensemble.

In the case of an arbitrary pulse envelope f (t ′), we
look for the solutions of Eqs. (6) in the form of a
series over normalized associated Legendre polynomials,
P̃m

l (x, t ) = Pm
l (x)

√
(2l + 1)/2

√
(l − m)!/(l + m)!, as

b1(x, t ′) = ∑
l A(1)

l (t ′)e−il (l+1)t ′−ivt ′
P̃m

l (x), b2(x, t ′) =∑
n A(2)

n (t ′)e−in(n+1)t ′+ivt ′
P̃m

n (x) (here, l is the molecular
angular momentum quantum number, the angular momentum
being L = h̄l). As Eqs. (6) are decoupled, they can be
considered separately. Then, for instance, the equation for
A(1)

l is obtained as

∂A(1)
k

∂t ′ = −iv
∑

l

A(1)
l (t ′) eit ′(k−l )(k+l+1)

∫ 1

−1
dx(J0[αx f (t ′)] − 1)P̃m

k (x)P̃m
l (x)

= −iv
∑

l

A(1)
l (t ′) eit ′(k−l )(k+l+1)

∞∑
n=1

(−1)n

(n!)2

(
α

2

)2n

[ f (t ′′)]2nIm
n (k, l ), (7)

where in the second line we use the series representation for the Bessel function and introduce the coefficients, Im
n (k, l ) =

Im
n (l, k) = ∫ 1

−1 dx x2nP̃m
k (x)P̃m

l (x). These latter integrals can be calculated recursively, using the relation,

Im
n (k, l ) = 1

2k + 3

(
1 + 2

k2 − m2

2k − 1

)
Im
n−1(k, l ) + 1

2k + 3

√
[(k + 1)2 − m2][(k + 2)2 − m2]

(2k + 1)(2k + 5)
Im
n−1(k + 2, l )

+ 1

2k − 1

√
(k2 − m2)[(k − 1)2 − m2]

(2k + 1)(2k − 1)
Im
n−1(k − 2, l ), (8)

obtained from the recurrence formula for the associated Legendre polynomials [55], with Im
0 (k, l ) = δk,l .

As a proof-of-concept scenario, we consider how the rotational wave packet is formed if the molecule is initially in the
ground rotational state, A(1)

k in = δk0. In the case of a short laser pulse (vτ � 1), the solution to Eq. (7) can be obtained iteratively.
In particular, for a Gaussian laser pulse, f (t ′) = (1/

√
2πτ 2) exp[−t ′2/(2τ 2)], the composition of the resulting rotational wave

packet by the end of the pulse is found in the first approximation as

A(1)
k fin = δk0 − ivτ

√
π

∞∑
n=1

(−1)n

√
n(n!)2(2π )n

(
α

2τ

)2n

e− τ2

4n k2(k+1)2

I0
n (k, 0). (9)

In this expression, the series converges very fast. As seen,
the composition of the emerging wave packet is mainly deter-
mined by the coefficients Im

n (k, l ). Notably, these coefficients
have nonzero albeit decreasing values for the values of |k − l|
ranging from 2 to 2n, in a marked contrast with the traditional
interaction, where only |k − l| = 2 is allowed and thus the
resulting wave packet consists only of two states: l = 0 and
l = 2. In contrast, the expression of Eq. (9) produces a rich
wave packet consisting of many states. For instance, for the
parameters: ν = 103, τ = 10−2, and α = 10−2, corresponding
to the laser pulse of 800 nm carrier wavelength, ∼65 fs
duration, and ∼109 W/cm2 intensity the resulting amplitudes
are A(1)

2 fin = −0.4696 i, A(1)
4 fin = 0.2615 i, A(1)

6 fin = −0.1126 i,
A(1)

8 fin = 0.0284 i, and A(1)
10 fin = −0.0045 i. As seen, the total

contribution of states with l = 4, l = 6, and l = 8 is almost
as big as that of state with l = 2, whereas only the lat-
ter state would emerge from the interaction in the case of
polarizability-based rotational excitation, as was noted above.
Note also that the sign of the l = 2 contribution is flipped with

respect to that in the polarizability-based case. This wave-
packet enrichment, as well as the alignment-to-antialignment
flip offers a direct means for experimental verification of the
predicted TNCR alignment regime.

The difference between the rotational wave packets result-
ing from the traditional and the TNCR impulse interactions
becomes even more pronounced when the electric field is
strong enough to require nonperturbative treatment. In this
situation, Eq. (7) was solved numerically, using variable-
step fourth and fifth order Runge-Kutta method as imple-
mented in the ode45 integrator in MATLAB. The system
was initially in the ground rotational state, and the values
of the dimensionless parameters were ν = 103, τ = 10−2,
and α = 2.4, corresponding to the pulse of 800 nm car-
rier wavelength, 65 fs duration, and 1013 W/cm2 intensity.
Using the same procedure, a numerical solution was ob-
tained for the time-dependent rotational Schrödinger equa-
tion with the traditional interaction Hamiltonian, Ĥint =
−[1/(4v)](Me2Rg

4E0
2/h̄2) f 2(t )cos2θ , formally extended to

063423-5



D. A. ROMANOV AND R. J. LEVIS PHYSICAL REVIEW A 100, 063423 (2019)

FIG. 3. Evolution of the degree of molecular alignment
(i.e., 〈cos2θ〉) after the laser pulse. Gray dashed line: traditional
interaction, perturbational regime; cyan dash-dotted line: traditional
interaction, strong-field regime; red, solid line: TNCR interaction,
strong-field regime [the dimensionless parameters in Eq. (6) being
ν = 103 and α = 2.4, and the dimensionless pulse duration being
τ = 0.01].

the same values of parameters. The comparison of the after-
pulse evolution of the resulting rotational wave packets is
presented in Fig. 3. The presented curves trace the time
dependence of the degree of alignment quantified as usual as
〈cos2θ〉 [1]. The gray dashed curve corresponds to the pertur-
bational wave packet produced by the traditional interaction.
As was noted, in this case the wave packet consists of just two
states, l = 0 and l = 2, and the degree of alignment oscillates
sinusoidally, with a small amplitude, around the isotropic
value of 1/3. The cyan dash-dotted curve corresponds to
the nonperturbative wave packet resulting from the formally
traditional interaction. As expected [27], the shape of this
curve substantially deviates from sinusoidal, and the average
value is shifted upward of the baseline value of 1/3, indicating
population transfer to higher rotational states. Finally, the red
solid curve corresponds to TNCR interaction. This red curve
is out-of-phase with the cyan curve (in the same manner as
it was in the perturbational situation discussed in the previous
paragraph), and the shape of this red curve is much richer than
that of the cyan curve, indicating greater contribution of the
states with higher rotational quantum numbers.

Finally, a few words are in order regarding experimental
manifestations of the described effects. Although the con-
sidered conceptual model captures the essence of the phe-
nomenon, one may expect the TNCR interaction mode to
be manifested in real molecular systems in various degrees
and with various complicating modifications. As seen from
the foregoing discussion, the smaller the relative value of
V1(Rg) in the model (that is, the smaller the interlevel energy
distance in a real molecule), and the larger the value of the
parameter α = (eE0Rg)/(h̄ωc) (that is, the larger the length of
the molecule), the more likely the TNCR mode of interaction
to be initiated. Using this as a guiding principle in choosing
systems more suitable for experimental observation of TNCR

effects, symmetric organic molecules of moderately small
size may be likely candidates, such as polyenes (butadiene,
hexatriene, and octatetraene) and polyacenes (naphthalene,
anthracene, and tetracene), the upper size limitation dictated
by the necessity to have the molecules in the gas phase.
The length of these molecules ranges from ∼5 Å to ∼
10 Å, and this makes for the value of eE0Rg ∼ 5−9 eV at
the laser intensity of 1013 W/cm2, which is already greater
than the energy gap separating the ground state from the
excited states (typically, ∼3−5 eV). In fact, however, mush
lower laser intensities may suffice, based on the structure
of excited state manifolds in these molecules. Although the
ground state is separated from the excited state manifold by
a sizable energy gap ∼3–5 eV, the typical energy separation
between the excited states is much smaller, of the order of
0.1 eV [34,35,56,57]. Thus, the excited molecules are going
to favor TNCR mode of interaction with a typical near-IR
laser pulse of 800 nm carrier wavelength (h̄ωc ≈ 1.55 eV)
and moderate h̄ intensity (∼5×1011 W/cm2). Moreover, when
these molecules interact with a strong near-IR laser pulse,
the nonresonant excitation proceeds through the so-called
doorway state, the excited state for which the parameter
� = |μgeE0h̄ωc|/(Ee − Eg)2 has maximum value (where μge

is the transition dipole matrix element from the ground state
to the candidate excited state; Eg and Ee are the energies of
these states). The calculations revealed that the doorway state
is typically the lowest charge-transfer state [34,35]. When a
molecule finds itself in this latter state, its interaction with the
laser pulse and the resulting effective TNCR rotational kick
can be well described by the model considered here. In this
scenario, however, two factors are likely to complicate the
expected results. First, the described nonresonant excitation
by a linearly polarized laser pulse has naturally an angular de-
pendence on its own. Second, the excited molecule is likely to
continue gaining energy from during the laser pulse, resulting
in ionization. Thus, for a proof-of-concept experiment, one
might consider excitation of the molecule with UV pulse and
interaction of the excited molecule with a moderate-intensity,
nonionizing near-IR pulse.

In a different setting, ionization of the molecule may
pave the way for engaging THCR mechanism in the pro-
duced molecular ion. Indeed, the electron dynamics of large
molecular ions in intense laser fields is different from that of
neutral molecules, because in a ion there is a number of low-
energy electronic transitions, corresponding to an electron
hole migrating through the orbitals below the highest occu-
pied molecular orbital (HOMO). Such nominally ππ , σπ , and
πσ transitions typically belong to the visible of near-IR range
of the spectrum [34,35]. As a result, one can expect the TNCR
kick mechanism to be engaged in a ground-state molecular
ion. Then, the effective interaction of the intense laser pulse
with the rotational degrees of freedom will comprise two
TNCR stages, the first operating in the excited molecule and
the second in the molecular ion.

IV. CONCLUSIONS

A different mechanism for strong-field molecular align-
ment induced by impulsive interaction with an intense, lin-
early polarized laser pulse is based on transient nonadiabatic
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charge redistribution in the electronic system of a molecule
or molecular ion. This mode of electronic coupling with the
oscillating laser field results in an effective interaction of the
field with the molecular rotational degrees of freedom that is
different from the traditional interaction Hamiltonian based on
anisotropic polarizability. In turn, this alters the mechanism
of rotational wave-packet formation and the patterns of sub-
sequent alignment revivals in the molecular ensemble. This
difference is clearly demonstrated in a simple case when the
molecule is initially in the ground rotational state and interacts
with a single short laser pulse. In this case, the rotational wave
packets that emerge from TNCR laser-molecule interaction
are shown to contain much higher proportion of states with
higher rotational quantum numbers, as compared to the wave
packets that would be produced via the traditional interaction
mode based on anisotropic polarizability.

The proposed effects are modeled on a single-active-
electron diatomic molecule in a tight-binding approximation.

The effective rotational Hamiltonian is obtained by laser-cycle
averaging and diagonalizing the time-dependent Schrödinger
equation for the electronic and nuclear degrees of freedom.
The electronically-nonadiabatic mode of effective interaction
of strong-field laser pulses with the rotational degrees of free-
dom opens new ways for molecular alignment control based
on different dependence of the nonadiabatic alignment kicks
on the parameters of the molecular electronic system and
on the laser pulse characteristics. The TCNR-type alignment
kick mechanisms may be expected in cases when the strong
laser field also causes considerable nonresonant excitation or
ionization of a molecule.
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