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Sunil Upadhyay,1 Ugne Dargyte,1 Vsevolod D. Dergachev,2 Robert P. Prater,1 Sergey A. Varganov,2

Timur V. Tscherbul,1 David Patterson,3 and Jonathan D. Weinstein 1,*

1Department of Physics, University of Nevada, Reno, Nevada 89557, USA
2Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA

3Broida Hall, University of California, Santa Barbara, California 93106, USA

(Received 14 October 2019; published 16 December 2019)

We present a joint experimental and theoretical study of spin coherence properties of 39K, 85Rb, 87Rb,
and 133Cs atoms trapped in a solid parahydrogen matrix. We use optical pumping to prepare the spin states
of the implanted atoms and circular dichroism to measure their spin states. Optical-pumping signals show
order-of-magnitude differences depending on both matrix growth conditions and atomic species. We measure the
ensemble transverse relaxation times (T ∗

2 ) of the spin states of the alkali-metal atoms. Different alkali species
exhibit dramatically different T ∗

2 times, ranging from submicrosecond coherence times for high-mF states of
87Rb to ∼102 microseconds for 39K. These are the longest ensemble T ∗

2 times reported for an electron spin
system at high densities (n � 1016 cm−3). To interpret these observations, we develop a theory of inhomogeneous
broadening of hyperfine transitions of 2S atoms in weakly interacting solid matrices. Our calculated ensemble
transverse relaxation times agree well with experiment, and suggest ways to longer coherence times in future
work.
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I. INTRODUCTION

Addressable solid-state electron spin systems are of inter-
est for many physics applications, including quantum com-
puting and quantum information [1–6], magnetometry [7–9],
nanoscale magnetic resonance imaging [10–13], and tests of
fundamental physics [14–17].

Atoms trapped in inert matrices—such as hydrogen or
noble-gas solids—are promising for these applications. The
transparent matrix allows for optical pumping and probing of
the electron spin state of the implanted atom, and the weak
interaction of the trapped atom with the host matrix should
only minimally perturb the atomic properties. The hope is to
combine the high densities of solid-state electron spin systems
with the (marginally perturbed) excellent properties of gas-
phase atoms.

Cesium atoms in the bcc phase of solid helium (at pressures
of ∼26 bars and temperatures of ∼1.5 K) exhibit good optical
pumping and readout of spin states and excellent ensemble
spin coherence times, but to date have been limited to low
cesium densities (�109 cm−3) [18–20]. On the other hand,
atoms can be trapped in argon and neon matrices at high
densities (�1017 cm−3) [21–23], but to date optical pumping
and readout of the electron spin state has been significantly
less efficient than the best solid-state spin systems [24,25].

Parahydrogen is a promising cryogenic host matrix [26]
which combines the respective advantages of solid argon and
solid helium. Previously it was demonstrated that the spin
state of rubidium in solid parahydrogen could be optically
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pumped and probed more efficiently than in solid argon [27].
Moreover, demonstrated ensemble electron spin coherence
times for Rb atoms in solid parahydrogen are longer than any
other solid-state system capable of comparable electron spin
density [28].

In this work, we compare the optical-pumping proper-
ties and ensemble transverse spin relaxation time (T ∗

2 ) for
potassium, rubidium, and cesium in solid H2. The dramatic
differences between these alkali-atom species reveal the un-
derlying physical mechanisms affecting optical-pumping and
spin coherence times.

We further develop a first-principles theoretical model to
describe the coherence properties of matrix-isolated alkali-
metal atoms, which shows that the measured T ∗

2 times are due
to the anisotropic hyperfine interaction of the atoms with the
host matrix. Our theoretical results are in good agreement with
experiment, opening up the possibility of systematic ab initio
modeling of coherence properties of atomic and molecular
guest species in inert matrices.

II. EXPERIMENT

The apparatus is as described in references [27,29,30]; the
key components are shown in Fig. 1. Parahydrogen and alkali
atoms (from high-purity, natural isotopic abundance sam-
ples) are co-deposited onto a cryogenically cooled sapphire
substrate in vacuum. Before deposition, normal hydrogen is
converted to parahydrogen using a cryogenic catalyst [27,31].
In our current apparatus the remaining orthohydrogen fraction
can be varied from 3 × 10−5 to 1 × 10−2. After deposition,
the atoms are optically pumped and probed with both broad-
band and laser light at near-normal angles of incidence to the
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FIG. 1. Schematic of apparatus. The copper plate and parahydro-
gen gas line are cooled by a closed-cycle pulse tube refrigerator.
In our experiments, the pump and probe light are of the same
frequency, and generated from the same laser. The vacuum chamber,
its windows, and other optics are omitted for simplicity.

surface. A homogeneous magnetic bias field is applied to the
crystal, and RF magnetic fields can be applied perpendicular
to the bias field.

III. OPTICAL-ABSORPTION SPECTRA

Sample spectra of K, Rb, and Cs are shown in Fig. 2. The
transmission T of the crystal is determined by comparing a
spectrum of the light transmitted through the apparatus—as
measured by a fiber-coupled grating spectrometer—before
and after crystal deposition. The optical depth (OD) is de-
termined from T ≡ e−OD. For ease of comparing spectra
the baseline of the spectra has been shifted so that the off-
resonance OD = 0; the amplitudes have been normalized so
that the peak OD = 1.

All spectra shown were taken at the 3 K base temperature
of the cryostat. We note that thermal annealing of the crystal
at temperatures of up to 4.2 K and times of up to 24 hours
causes negligible changes in the absorption spectrum.
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FIG. 2. Optical spectra of alkali-doped parahydrogen crystals.
The spectra are normalized as discussed in the text. In each spectrum,
the frequencies of the gas-phase atom transitions [32] are shown for
comparison.

3.0

2.5

2.0

1.5

1.0

O
D

900800700600500
Wavelength (nm)

 Before exposure
 After exposure

FIG. 3. Spectra of potassium-doped parahydrogen showing
bleaching. Spectra are taken before and after illuminating the matrix
with laser light at 757 nm. The light causes a significant reduction in
the absorption of the peak it is on resonance with.

In all spectra, we see large spectral shifts, large broaden-
ings, and the splitting of the s → p transition into multiple
lines. Similar behavior was observed for alkali atoms in noble-
gas matrices and superfluid helium [18,20,21,33,34].

A. Optical annealing

The spectra of the implanted alkali atoms—if grown in the
absence of light—are significantly affected by the application
of broadband light to the crystal. This phenomenon, which
we call “optical annealing,” has been previously reported for
Rb atoms [27]. Similar effects were observed for Cs and K.
Typically during optical annealing the number of spectral
peaks is reduced, and the optical depth of the remaining
peaks increases correspondingly. As far as we know, these
changes are irreversible; in our observations we have not
observed the spectrum returning to its original form, even over
timescales of weeks. We attribute the spectral changes to the
reconfiguration of trapping sites due to optical excitation.

The data shown in Fig. 2 are after optical annealing. We
have not studied optical pumping of atoms prior to optical an-
nealing (nor have we studied the spectral peaks that disappear
in the process), as we expect those sites not to be stable under
optical excitation. For the remainder of this paper, we only
discuss the properties of samples in this state reached after
optical annealing.

B. Bleaching and broadening mechanisms

Much as the optical spectrum is changed by the application
of broadband light; we observe that it is also altered by the
application of narrowband light.

For potassium atoms trapped in parahydrogen, we see
“bleaching” effects due to the application of narrowband light,
as seen in Fig. 3. We attribute the changes in the spectrum to
changes in the trapping sites induced by the light, similar to
what occurs during optical annealing with broadband light.
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The changes to the spectrum indicate that broadening is
homogeneous within each peak: application of light with a
linewidth � the absorption linewidth effectively bleaches the
entire line. The changes also indicate that the different lines
originate from different trapping sites, as absorption at other
frequencies is not diminished. In fact, absorption at 610 nm
increases, indicating that during bleaching the trapping sites
that give rise to absorption at 735 nm are changed into
trapping sites that absorb at a different frequency.

Similar bleaching effects were observed for Rb atoms
trapped in solid argon. We note that in argon, ∼101 photon
scattering events would cause reconfiguration of the trapping
sites [25]. Alkali atoms in parahydrogen are significantly
more resistant to bleaching. From the atomic density, the
intensity of light, and the timescale of bleaching, we estimate
that potassium absorbs on the order of 104 photons before
bleaching.

Such bleaching effects can be problematic for use of these
matrix-trapped atoms for applications. For Rb atoms in argon
we found that application of light at other wavelengths would
reverse the bleaching effects and return the trapping sites to
their “unbleached” states [25]. We have not yet demonstrated
similar unbleaching with alkali atoms in parahydrogen; it is
not yet known whether this is possible.

C. Effects of crystal growth conditions

The spectra of alkali atoms in parahydrogen can vary
significantly with crystal growth conditions.

We did not observe a significant dependence of the spectra
on alkali density or orthohydrogen density over the ranges we
explored. We saw no noticeable change with ortho fraction
over the range from 4 × 10−5 to 3 × 10−3. Similarly, the
spectra show only minor changes with Rb atom density from
1 × 1017 cm−3 to 1 × 1018 cm−3. However, the spectra do
depend sensitively on the substrate temperature at the time of
matrix growth.

Figure 4 shows the optical spectra of Rb-doped parahy-
drogen crystals grown at different substrate temperatures.
The temperatures specified in the figure—and throughout
this paper—are of the copper plate upon which the sapphire
window is mounted.

We measure the temperature of the front surface of the
window (onto which the parahydrogen matrix is grown) with a
silicon diode temperature sensor attached to the window with
varnish. We monitor its temperature during crystal growth
as the sensor is embedded in solid hydrogen. From these
measurements we conclude that the temperature of the front
surface of the window is within 0.4 K of the copper plate
temperature during growth. While the crystals in Fig. 4 were
grown at different substrate temperatures, the spectra shown
were measured under identical conditions at our base tem-
perature of 3 K. The crystals of Fig. 4 have Rb densities
of 1 × 1017 cm−3, with variations within ±15%, and ortho
fractions of 3 × 10−5, with variations of ±25%. We believe
that the spectral differences are primarily due to the substrate
temperature.

As the substrate temperature increases, the blueshifted
peaks become larger in amplitude and the redmost peak be-
comes smaller and shifts. Qualitatively similar behavior was
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FIG. 4. Optical spectra of Rb-doped parahydrogen crystals,
grown at different substrate temperatures, as labeled. The spectra are
normalized in the same manner as in Fig. 2.

observed for Cs atoms. (Potassium-doped matrices were only
grown at the base temperature.)

Subsequent annealing at temperatures up to 4 K for dura-
tions up to ∼10 hours can change the background scattering
from the crystal (depending on crystal conditions, annealing
has been observed to either increase or decrease background
scattering). However, annealing has little observable effect on
the alkali atom absorption peaks.

The optical spectrum is also affected by the matrix growth
rate. Rubidium-doped crystals grown at our base temperature
(3 K) with low hydrogen deposition rates (∼1 μm per minute)
have optical spectra similar to samples grown at normal
deposition rates (∼3 μm per minute) and higher substrate
temperatures (similar to the 3.3 K spectrum shown in Fig. 4).
However, we have not explored flow rates as comprehensively
as substrate temperatures.

As discussed in Sec. IV, these changes in the optical spec-
trum have significant consequences for our ability to optically
pump and measure the spin states of the alkali atoms.

IV. SPIN POLARIZATION SIGNAL

We optically pump the implanted atoms using right-hand
circular (RHC) laser light, as shown in Fig. 1. We monitor the
spin polarization produced using a linearly polarized probe
beam at the same frequency. After passing through the sample,
the probe beam is sent through wave plates and a Wollaston
prism to separate it into its RHC and left-hand circular (LHC)
components, which are measured on two photodetectors. Dif-
ferential absorption between the RHC and LHC components
(circular dichroism) indicates spin polarization. Due to the
large broadening of the optical spectrum, the different iso-
topes and their hyperfine levels cannot be optically distin-
guished, and the spin polarization signal measured for each
species is an average of the naturally occurring isotopes.

To quantify the spin polarization obtained, we measure the
ratio of RHC and LHC signals on the two photodiodes and
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FIG. 5. Polarization signal amplitude, plotted alongside the opti-
cal spectra of a Cs-doped parahydrogen crystal. Crystal grown with a
substrate temperature of 3 K, orthohydrogen fraction 3 × 10−5, and
Cs density 6 × 1016 cm−3. Polarization was measured with an 80 G
on-axis bias field.

normalize the ratio to a level of 1 before optical pumping. The
ratio changes after optical pumping. To ensure that the change
is not due to systematic effects, it is measured both with
an applied longitudinal magnetic field and with a transverse
field (the ambient earth magnetic field); the latter prevents
the accumulation of spin polarization during optical pumping.
With a transverse field, the change in the ratio due to optical
pumping is typically very small compared to the longitudinal
field, as expected [27]. To calculate the polarization signal
amplitude, one ratio is subtracted from the other. This is the
polarization signal P shown below in Figs. 5, 6, and 7.

We relate this signal to atomic properties by the follow-
ing model. Optical pumping changes the hyperfine and spin
state of the implanted atoms. This changes the atoms’ cross
section for scattering RHC and LHC light. We quantify the
change with a single parameter �, and model the cross-section
changes as σRHC = σ0(1 − �) and σLHC = σ0(1 + �), con-
sistent with our observations [27]. Before pumping (or after
pumping with a transverse magnetic field) we assume � = 0,
giving identical optical depths for both polarizations of light;
we refer to this optical depth as OD0. Thus, when we measure
the ratio R of transmissions of LHC and RHC light, we obtain
R = e−2�×OD0 . The polarization signal P we measure is then
P = 1 − R. In the limit P � 1, P = 2� × OD0. For vapor-
phase atoms, it is possible to obtain � → 1, as the atoms can
be pumped into a spin state that is dark to one of the circular
polarizations of light. As presented below, the largest values
of � observed for alkali atoms in parahydrogen are ∼0.065,
significantly lower than vapor-phase atoms. Whether this is
due to limitations in optical pumping or optical detection is
not known; we expect that it is a combination of both.

A. Wavelength dependence

We examine the polarization signal as a function of the
wavelength of the pump and probe (the two wavelengths
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FIG. 6. Polarization signal amplitude for Cs-doped parahydro-
gen crystals of optical depth OD0 ∼ 1 grown at different substrate
temperatures. The optical depths of the different crystals differed
by ±25%, and their densities varied by ±30%. As these variations
are small compared to the polarization effects observed, we did
not correct for them. The change in ortho fraction was small, and
separate measurements indicate that ortho fraction has little effect on
the size of the polarization signal.

are identical in all data presented here). For the cesium data
presented in Fig. 5, typical pump and probe beams have
waists of 200 μm and 125 μm, respectively, and intensities
5 × 103 mW/cm2 and 50 mW/cm2, respectively. We note
that while these intensities are above the saturation intensity
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FIG. 7. Polarization signal P for Cs and Rb as a function of the
bias magnetic field. The bias field is roughly normal to the matrix
surface and roughly parallel to the pump and probe beams. The
difference in the high-field value of P is partially due to different
growth conditions: the cesium-doped sample was grown at a higher
substrate temperature; the ODs of Rb and Cs were 1.4 and 1.1,
respectively. Both crystals exhibit the same qualitative behavior.
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of a gas-phase alkali atom, they are far below the saturation
intensity of alkali atoms in parahydrogen (due to the large
spectral broadening of the optical transition). Typical pump
durations are ∼100 ms; the pumping rate is limited by laser
intensity.

While the optical spectrum shows multiple peaks, we only
see a significant polarization signal when pumping and prob-
ing near the redmost peak.

For Rb polarization, we were not able to scan the entire
Rb spectra, and were only able to cover the ranges 655 nm,
680–700 nm, and 730–810 nm (limited by the light sources
available to us). Over this range, we saw negligible polar-
ization signal except in the region from 730–760 nm, with
maximum signal near 750 nm. Similarly to Cs, the largest po-
larization signal was seen near the redmost peak (for crystals
grown at low temperature).

For potassium, we likewise were unable to cover the entire
spectral range, but were able to compare pumping and probing
on the redmost line (at 735 nm) to the line at 660 nm. We were
unable to observe spin polarization at 660 nm, but observed a
signal when slightly red-detuned from the redmost line.

This behavior is similar to what was previously observed
for thermally spin-polarized rubidium atoms in argon, which
gave the strongest circular dichroism signal on the redmost
line [24]. We do not know whether this is due to similar
physics or is simply a coincidence.

Surprisingly, for Rb spectra grown at elevated temperatures
(as shown in Fig. 4), the peak polarization response remains
near 750 nm despite the nearly complete “disappearance” of
that peak in the absorption spectrum. However, the size of the
polarization signal decreases, as discussed below in Sec. IV B.

Much as the optical spectrum has little dependence on
the ortho fraction or alkali density over the ranges we ex-
plored, we observed little change in the polarization signal.
For rubidium densities from 6 × 1016 to 3 × 1017 cm−3 in
matrices grown under similar conditions, we see no change in
� to within ±15%. We note that at higher rubidium densities
(�1018 cm−3) the polarization signal appeared to decrease,
but we did not extensively explore this density region. In-
creasing the ortho fraction from 5 × 10−3 to 3 × 10−2 resulted
in a decrease in the Rb polarization signal of a factor of
2. However, the higher ortho fraction crystal was grown at
a substrate temperature 0.16 K higher than the low ortho
fraction crystal (due to the extra heat load on the cryostat from
heating the ortho-para catalyst), and we suspect the majority
of the difference in polarization signal is due to the substrate
temperature change (as discussed below in Sec. IV B). We
did not investigate this behavior for Cs and K in a controlled
manner.

B. Effects of crystal growth conditions

Because the crystal growth temperature strongly affects the
optical spectrum (as discussed in Sec. III C), one might expect
the polarization signal to be affected as well. This is indeed
true: the size of the polarization signal varies strongly with the
temperature of the substrate during crystal growth. Figure 6
shows this effect for the case of cesium atoms.

We note that the optical-pumping data in Fig. 6 were all
obtained at our base temperature, having cooled down the

TABLE I. The optical spin polarization signal �, as defined in
Sec. IV, for the atomic species measured. All crystals had an optical
depth of 1.1 at the pump-probe wavelength. The excited-state fine-
structure splittings are from Ref. [32].

Species B (G) � FS splitting (cm−1)

K 80 4 × 10−3 57
Rb 33 5 × 10−2 237
Cs 33 4 × 10−2 554

crystal after growth. Much as the optical spectrum maintains
a “memory” of the temperature at which it was grown, so
does the optical pumping and readout. Similar behavior was
observed for Rb, with smaller polarization signals for crystals
grown at elevated substrate temperatures.

For cesium, some data suggest that matrices grown at
higher hydrogen deposition rates give larger polarization sig-
nals than samples grown at lower flow. This is consistent with
the results of Sec. III C, indicating that higher hydrogen flow
has a similar effect on the optical behavior as lower tem-
peratures. The maximum flow rate is limited by our current
ortho-para converter.

Based on these results and those of Secs. III and IV A,
we speculate that some trapping sites in the lattice are more
favorable for optical pumping and readout. The different
growth conditions change the fraction of atoms trapped in
such favorable sites, which is reflected in both the optical
spectrum and the polarization signal.

We note that these data suggest that it is very likely that
significant improvements in the ability to optically pump and
read out the spin states of alkali atoms in parahydrogen are
possible with an apparatus capable of colder temperatures and
faster parahydrogen deposition rates during crystal growth.

C. Magnetic-field dependence

As seen in Fig. 7, the amplitude of the spin polarization
signal has a strong dependence on the applied magnetic field.
At fields �10 G, the optical-polarization signal is quite small.
The signal size increases with increasing magnetic field, and
appears to saturate at fields �10 G.

As discussed below in Sec. VIII (and touched upon previ-
ously in Refs. [18,27]) we attribute these effects to coupling
to the crystal field in our polycrystalline sample. At magnetic
fields �10 G, the Zeeman splitting is much larger than the
coupling of the spin to the crystal field, and the m levels are
only slightly perturbed by the matrix. At low magnetic fields,
the perturbation from the matrix mixes the m eigenstates and
interferes with the ability to optically control and probe the
spin state with polarized light.

D. Species dependence

Potassium produces significantly smaller polarization sig-
nals than Rb- and Cs-doped crystals produced and measured
under similar conditions.

Table I compares the spin polarization signals obtained for
potassium, rubidium, and cesium. All crystals were grown
on the identical cryogenic substrate setup and under similar
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growth conditions. The potassium datum is the largest po-
larization signal observed for potassium in our laboratory,
and was measured before significant bleaching of the spot
occurred (see Sec. III B). Larger signals were seen for rubid-
ium and cesium crystals grown under different conditions (an
improved window mount that was able to reach slightly colder
temperatures, and higher parahydrogen flow rates). While the
data were taken at different bias fields, rubidium and cesium
polarizations do not have a significant dependence on the
magnetic field over the range from 30 to 80 G (as seen in
Fig. 7).

Interpretation

As discussed below in Sec. VII B, all three species have
similar ground-state interaction potentials with hydrogen. Our
interpretation is that the order-of-magnitude differences in
polarization are due to the different fine-structure splittings
of their excited states.

First, optical pumping and detection of spin polarization
on the s → p transition in an alkali atom relies on the fine-
structure coupling between orbital angular momentum (L) and
spin (S). Inside the matrix, the excited p orbital is coupled to
the crystal field of the local-trapping site, which (neglecting
spin and fine structure) can split its threefold orbital degener-
acy [24]. If the coupling of L to the crystal is large compared
to the fine-structure splitting, it can potentially “decouple”
L and S and impede the ability to both optically pump and
detect the electron spin state [24]. Hence, if the crystal-field
interaction is much larger than the fine-structure splitting, we
expect poor optical pumping and detection.

Second, if the fine-structure splitting of the excited state is
not optically resolved, it will suppress the ability to optically
detect spin polarization. However, we note that in the case
of repopulation pumping, optical pumping would still be
possible in this limit, as discussed in Sec. IV E.

As expected from both these effects, for Rb and Cs—
with large fine-structure splittings—we see large polariza-
tion signals; for potassium—with a significantly smaller
fine-structure splitting—we see a smaller polarization
signal.

E. Nature of optical pumping

Optical pumping of spin is characterized as “depopulation”
or “repopulation” pumping [35]. In the depopulation limit,
the excited-state polarization state is completely randomized
prior to decay to the ground state. In the repopulation limit
the atomic polarization is conserved in the excited state.
These two limits will lead to different spin-state distributions,
as shown in Fig. 8. For a free 85Rb atom driven on the
2S1/2 → 2P1/2 transition, depopulation pumping will result
in (semi)dark states for both the F = 2 and F = 3 manifold.
Repopulation pumping will produce a dark state in the F = 3
but a bright state in the F = 2 manifold.

After optical pumping we can sweep an RF field to depolar-
ize the ground-state population. By monitoring the resulting
changes in the optical signal we can distinguish between the
two cases shown in Fig. 8. As previously reported in Ref. [28],
the polarization signal P of 85Rb shifts in opposite directions
for RF depolarization of the F = 2 and F = 3 levels. This

2S1
2

2P1
2

F = 2
F = 3

F = 2
F = 3

complete depolarization

1 2 3 4 5

6 5 4 3 2 1 0

(a)

(b) (c)

FIG. 8. Schematic of 85Rb optical pumping. Panel (a) shows
the relative line strengths of σ+ transitions of the 2S1/2 → 2P1/2

transition in the limit that the upper level hyperfine structure is
unresolved [36]. Panels (b) and (c) show the expected populations
in the cases of repopulation and depopulation pumping, respectively,
as discussed in the text.

indicates that the pumping is predominantly repopulation
pumping. Similar behavior was seen for 87Rb, indicating that
it also undergoes repopulation pumping. Cs and K were not
measured in this manner.

For comparison, it was previously reported that optical
pumping of the spin of cesium atoms in solid helium was
predominantly repopulation pumping [18]; however, rubid-
ium atoms in solid helium underwent depopulation pumping
[37].

F. Comparison to argon

In prior work, the spectra of alkali atoms trapped in argon
matrices exhibited multiple absorption peaks, in groups of
“triplets” [21,24,25]. In those experiments each triplet was
attributed to the crystal-field interaction splitting the threefold
degeneracy of the excited-state p orbital.

The bleaching results presented in Sec. III B suggest
that the crystal-field splitting of the excited p orbital in
parahydrogen is too small to resolve. Our interpretation is
that excited-state alkali atoms in parahydrogen experience a
smaller crystal-field interaction than in argon. This may be the
reason why the spin polarization signals seen for rubidium in
parahydrogen are an order of magnitude larger than the largest
signals reported for rubidium in argon [25].

V. LONGITUDINAL SPIN RELAXATION

We can measure the longitudinal relaxation time, T1, by
observing the decay of the polarization P over time. The T1 of
rubidium atoms in parahydrogen was previously reported in
Ref. [27]. It depends strongly on the orthohydrogen fraction
in the crystal, with longer T1 times at lower orthohydrogen
fractions. T1 is on the order of 1 s at ortho fractions �10−2

and magnetic fields �10 G. At lower magnetic fields, T1 is
considerably shorter. We did not systematically measure the
T1 of Cs and K at high ortho fractions, but observed T1 times
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FIG. 9. 133Cs FID signal, taken at a bias field of 21 G, as
described in the text. The FID is excited by a 1 μs pulse, as shown
in the figure. A fit to an exponentially decaying sinusoid gives a
3 μs T ∗

2 .

on the order of 1 s at low ortho fractions. Cs showed a similar
strong dependence on the magnetic field, with T1 shorter at
magnetic fields �10 G, and saturating at higher fields.

What processes limit T1 and whether longer times might be
achieved is not understood at this time. Our primary interest
at present is in the ensemble transverse relaxation time T ∗

2 . As
the measured T1 � T∗

2, longitudinal relaxation does not play
a significant role in limiting T ∗

2 .

VI. ENSEMBLE TRANSVERSE SPIN RELAXATION

We measure the ensemble transverse spin relaxation time
(T ∗

2 ) with free-induction-decay (FID) measurements, as well
as other methods detailed in Ref. [28]. After optically pump-
ing the spin state of the atoms, we apply a short RF pulse
to induce Larmor precession and observe the resulting oscil-
lations in the polarization signal. Because different isotopes
typically have different g factors, we can frequency-select a
single isotope with the RF pulse, allowing us to measure the
FID signals of the different isotopes separately.

For the case of Cs, we use a mostly RHC pump-probe beam
at 846 nm whose intensity and waist are about 103 mW/cm2

and 200 μm, respectively. This beam passes through the
center of the crystal just above the RF coil and is subsequently
focused onto a fast photodiode. The RF coil is about 0.5 cm
away from the front surface of the crystal. DC bias magnetic
fields ranging from a few gauss to ∼80 G are applied at ∼45
degrees relative to the pump beam direction. We pump the
atoms for ∼150 ms which creates magnetization along the
direction of the DC bias field. Then we apply a short (and
hence spectrally broadband) RF pulse, which induces Larmor
precession. We high-pass-filter the pump beam signal from the
photodiode to obtain the time-varying free-induction-decay
signal as shown in Fig. 9. Rubidium and potassium are mea-
sured in a similar manner.
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FIG. 10. 39K Zeeman structure, calculated from Ref. [39]. The
energy levels are labeled by their low-field quantum numbers. Super-
position states of levels differing by �mF = 1 (indicated by arrows)
give rise to Larmor precession.

In the case of Cs, we have made FID measurements over a
range of Larmor frequencies from 0.7 to 8 MHz. All return
similar values of T ∗

2 ≈ 3 μs. At these fields, the nonlinear
Zeeman effect is sufficiently small that the different Larmor
precession superposition states are unresolved [38].

This is not the case for 39K, whose much smaller hyperfine
splitting [38] results in a much larger splitting between the
different Zeeman states. The Zeeman structure of 39K is
shown in Fig. 10. A typical FID signal for potassium is shown
in Fig. 11. The beating of the different Larmor superposition
states makes fitting the decay to a damped sinusoid imprac-
tical. Instead, we Fourier-transform the FID signal and fit
the resulting spectral peaks. From their full width at half
maximum (FWHM), we determine T ∗

2 from the relationship
T ∗

2 = (π × FWHM)−1, where FWHM is expressed in cycles
per unit time (e.g., Hz). From the spectrum, we determine
that the four peaks observed are from the F = 2 hyperfine
manifold of 39K; the shifts of 40K, 41K, and the F = 1 mani-
fold of 39K are sufficiently large that their Larmor precession
transitions would be spectrally resolved [38].

We note that the measured T ∗
2 for 39K is over an

order of magnitude longer than for 133Cs. These differences
are discussed in Sec. VI A.

At sufficiently low magnetic fields (�2 G) Rb FID exhibits
a single line, similar to Cs. At “intermediate” fields, the
different Larmor superposition states cannot be fully resolved,
but their splitting leads to a decrease in the FID time. At
still higher fields (�40 G) beating is clearly observed (as in
the case of potassium data shown in Fig. 11). We present
the higher-field data below in Sec. VI B; for now we concern
ourselves with the low-field limit.

We measured the Rb FID time for Rb densities from 1017 to
1018 cm−3, and saw no variation to within ±15%. Similarly,
the Rb FID time showed no dependence on the ortho fraction
in the crystal over a range from 5 × 10−5 to 1 × 10−3, to
within ±10%.
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FIG. 11. 39K FID signal, taken at a bias field of 9 G, as described
in the text. On this scale, the individual oscillations of the RF
pulse and FID signal are not visible, but their overall envelopes can
be observed. The FID signal shows clear beating. The inset shows
the Fourier transform (magnitude squared) of the FID signal. Fitting
the largest peak to a Lorentzian line shape gives a 6 kHz full width
at half maximum, which corresponds to a 53 μs T ∗

2 . From left to
right, the four peaks correspond to superpositions of |mF = +2〉 and
|mF = +1〉; +1 and 0; 0 and −1; and −1 and −2.

Much like Rb, we did not see any dependence of Cs
FID decay on Cs density or ortho fraction. We observe
no dependence on the Cs density (to within ±15%) over
the range from 1 × 1016 to 1 × 1017 cm−3. We observe no
dependence on the ortho fraction (to within ±10%) over a
range from 3 × 10−5 to 1 × 10−3. For Cs, T ∗

2 showed little
dependence on the substrate temperature at the time of crystal
growth.

We note that for all species, the FID frequency is consistent
with the applied magnetic field and the free-atom g factor
[38]. However, because we do not know the applied magnetic
field accurately, all we can say is that the g factor in the
crystal matches the free-atom case to within ±20%. We have
verified that magnetic-field gradients do not play a significant
role in the T ∗

2 measurements presented here: we tested for
gradients by varying the size of the sample (by growing
thicker and thinner crystals, and by changing the probe beam
diameter).

A. T ∗
2 for different species

Figure 12 shows the measured T ∗
2 values, expressed as a

FWHM linewidth for our measured species.
The T ∗

2 times are limited by inhomogeneous broadening,
as we have measured spin-echo T2 times to be �1 ms for
rubidium and cesium (we have not measured spin-echo signals
in potassium due to its small polarization signal).

We expect that the inhomogeneous broadening which lim-
its T ∗

2 is primarily due to electrostatic-like interactions with
the host matrix [28]. As such, we would expect the energy
level shifts to resemble those of the Stark effect. Considering
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FIG. 12. T ∗
2 , expressed as a linewidth = 1

πT ∗
2

, for the species

measured. The linewidths are plotted as a function of the ground-
state hyperfine splitting of each species; we believe this is the key
parameter in explaining the differences in the observed linewidths,
as discussed in the text. Rb and Cs data were taken at sufficiently
low fields that the different Larmor precession frequencies were
unresolved; the 39K data were taken at similar fields but with resolved
structure; the number plotted is the linewidth of the F = 2, |mF = 0〉
and |mF = −1〉 Larmor superposition. All data points were taken
in the short-pulse limit. The unresolved splittings of the different
Larmor precession states may be artificially broadening the 85Rb
linewidth at the level of �10%; less for 87Rb and 133Cs.

the Stark effect for a ground-state alkali atom, there is a
scalar component which shifts all |F, mF 〉 levels the same,
and a tensor component which shifts different F and mF

levels differently. It is this tensor component which will
cause inhomogeneous broadening for Larmor precession. The
tensor component is zero in second-order perturbation theory,
and only appears in third-order perturbation theory including
two electric dipole couplings and one hyperfine interaction
[40–42]. Consequently, we would expect atoms with larger
hyperfine splittings to have larger shifts due to their interaction
with the matrix. In the case of a polycrystalline matrix with
inhomogeneous trapping sites, this would result in larger
inhomogeneous broadening. This is qualitatively consistent
with the observations presented in Fig. 12.

A more sophisticated and quantitative model based on
the rigorous electron spin resonance (ESR) Hamiltonian is
presented in Sec. VII A.

B. T ∗
2 for different Larmor superposition states

At sufficiently high magnetic fields, we can spectrally
resolve the different Larmor precession states of rubidium,
similarly to the case of potassium shown in Fig. 11. Figure 13
shows data for both the F = 3 manifold of 85Rb and the
F = 2 manifold of 87Rb. Larmor precession arises from all
superpositions of states that differ by �m = 1.

As observed in Sec. VI A at low fields, the 87Rb linewidths
are larger than those of the corresponding superpositions in
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superposition states at a magnetic field of 80 G, as discussed in the
text. The data are labeled by the mF states of their corresponding
Larmor superposition. Plotted alongside the data is the theory of
Sec. VII A, scaled by a factor of 1.35.

85Rb. For both isotopes, the linewidths are larger for superpo-
sition states of higher mF . Qualitatively, this is as one would
expect for inhomogeneous broadening from electrostatic in-
teractions: tensor Stark shifts scale as m2

F [41,43].
The data in Fig. 13 are presented alongside the quantitative

theory of Sec. VII A. The theory reproduces the dependence of
the linewidth on both isotope and mF . The significant isotope
effect is mainly due to the hyperfine anisotropy of 87Rb, which
is 3.4 times larger than that of 85Rb (see Table IV) owing to the
difference in the nuclear magnetic moments. The mF scaling
arises from the tensor nature of the anisotropic hyperfine
interaction, as presented in Sec. VII A.

More subtle features of the spectrum, such as why the
Larmor precession linewidth of the (−1, 0) superposition of
F = 3 85Rb is consistently narrower than the (+1, 0) super-
position, are not understood. The low signal-to-noise ratio
of the potassium polarization signal does not permit similar
comparisons of different Larmor precession states, and we
did not take Cs data at sufficiently high field to resolve the
different superpositions.

C. Temperature dependence

We measured rubidium T ∗
2 in the low-field limit at different

crystal temperatures. The Rb linewidth showed no depen-
dence on the crystal temperature over a range from 3 to 4.2 K,
to within ±30%.

We do, however, see a dependence of the FID decay
time on temperature for Cs. We warmed a Cs-doped crystal
(grown at 3.2 K substrate temperature, with our “base” ortho
fraction) crystal to 4 K and held it there overnight to allow
the crystal to anneal. This produced, surprisingly, longer free-
induction decay times by roughly 40%. Cooling back to our
base temperature of 3 K returned our original FID times.
Subsequent cycling between 3 and 4 K consistently showed
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 0.5 µs
 1.0 µs

FIG. 14. Cs FID T ∗
2 measured at different temperatures. Each

point is an average of multiple measurements over multiple tempera-
ture cycles of the same sample; the warmer temperatures consistently
gave longer FID decay times.

longer FID decay times at the elevated temperature. These
data are presented in Fig. 14.

The link between elevated matrix temperature and longer
T ∗

2 times is not understood, but we speculate that it may
be due to larger amplitude atomic motion (on a timescale
much shorter than T ∗

2 ) reducing the anisotropy of individual
trapping sites and/or reducing the inhomogeneities between
different trapping sites, similarly to “motional narrowing”
effects observed in NMR [44].

VII. THEORY

A. Inhomogeneous broadening due to hyperfine interactions

In this section, we present a theoretical analysis of inho-
mogeneous broadening of hyperfine transitions of 2S atoms
embedded in an inert matrix. The theory is based on the
hyperfine Hamiltonian commonly used to calculate powder
ESR spectra [45–47], which we extend to the low-field limit
of interest to the matrix isolation experiments described here.
The primary focus will be on alkali-metal atoms trapped in
solid p-H2, although our theory is sufficiently general to be
applicable to any S-state atom in an inert matrix.

To model the broadening of the hyperfine transitions
F, mF ↔ F ′, m′

F , we assume that it is due to the tensor matrix
shifts of the hyperfine levels caused by the interaction with the
host matrix. As shown below, the tensor matrix shifts depend
on the orientation of the principal axes of the hyperfine tensor
A with respect to the magnetic-field axis. We derive analytical
expressions for these shifts as a function of the orientation
angle and then calculate them for all possible orientations to
obtain the linewidth of the hyperfine transitions of an atom in a
polycrystalline (powder) matrix. Our results establish a direct
connection between the experimentally observable transition
linewidths and the elements of the hyperfine tensor, calculated
ab initio for a range of alkali-H2 complexes as described
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FIG. 15. (a) A schematic representation of our model for the
alkali-metal trapping site in a p-H2 matrix. The red circle represents
the central alkali-metal atom; the blue circles represent the axial
p-H2 molecules taken into account in the present calculations; the
gray circles are all other p-H2 molecules. The electron and nuclear
spins of the alkali-metal atom are indicated by arrows. (b) Space-
fixed (black) and principal-axes (magenta) coordinate systems. The
Z axis of the space-fixed system is defined by the direction of the
external magnetic field. The positions of the principal axes x, y, z in
the space-fixed coordinate system are defined by the Euler angles
� = φ, θ, χ .

in Sec. VII B. At the end of this section, we compare our
calculated transition linewidths with experiment, finding good
semiquantitative agreement, and discuss the limitations of our
model.

We begin with the ESR Hamiltonian for a central S = 1/2
atom embedded in a solid p-H2 host matrix [45,46,48], as
illustrated in Fig. 15(a),

Hh f = AaS · I + 2μ0S · g · B + S · A · I +
∑

α

S · Aα · Iα,

(1)
where S and I are the electron and nuclear spins of the central
atom, A is the hyperfine tensor on the central nucleus of
interest, and Aα are the hyperfine tensors on the surrounding
nuclei bearing nuclear spin angular momenta Iα (we neglect
this final term in the following calculations). In Eq. (1), g
is the g tensor of the central atom [45,46,48], assumed here
to be proportional to the unit matrix, g = ge1, where ge � 2
is the electron g factor. In defining the hyperfine tensor, we
separate out the contribution due to the hyperfine structure of
the free atom AaS · I, which allows us to define unperturbed
atomic states |F mF 〉 in the weak-field limit. Here, F = I + S
is the total angular momentum of the atom, and mF is the
projection of F on the space-fixed quantization axis defined
by the external magnetic field.

The hyperfine tensor accounts for the modification of the
atomic hyperfine structure due to the interaction with the
matrix, and can be decomposed as

A = Aiso(R)1 + T, (2)

where the scalar constant Aiso describes the isotropic (Fermi
contact) interaction and the traceless tensor T describes the
anisotropic hyperfine interaction. Note that the isotropic hy-
perfine interaction does not affect the splitting between the
mF sublevels of the same F state, so we do not consider this

term in the following. However, it must be taken into account
when considering the transitions involving hyperfine states of
different F . We further assume that matrix perturbations are
weak, i.e., Aa � Ti j .

The third term in Eq. (1) can be written as a sum over
Cartesian components of vector operators S and I:

Hah f =
∑

i, j=x,y,z

SiTi j I j . (3)

In general, the form of this operator depends on the choice
of the coordinate system. Here, we choose the principal axes
(PAs) of the tensor T as coordinate axes. The orientation of the
PAs with respect to space-fixed axes defined by the external
magnetic field is specified by the Euler angles � = (φ, θ, χ )
as shown in Fig. 15(b). In this coordinate system, A and T
take the diagonal form and Eq. (3) reduces to

HPA
ah f = TxxSxIx + TyySyIy + TzzSzIz, (4)

where Txx, Tyy, and Tzz are the PA components of T calculated
ab initio as described in the next section.

In first-order perturbation theory, the energy shift of the
atomic level |FmF 〉 due to the interaction with the host matrix
is given by the diagonal matrix element of the perturbation

�EFmF = 〈FmF |HPA
ah f |FmF 〉. (5)

To evaluate the matrix elements in Eq. (5) in terms of the PA
components of the hyperfine tensor, we express the Hamil-
tonian via the spherical tensor operators expressed in the
space-fixed frame [see Fig. 15(b)]. Following Appendix A of
Ref. [49] and keeping in mind that T̄ = 1

3 (Txx + Tyy + Tzz ) =
0, we have

HPA
ah f =

2∑
p=−2

[
1

2
(Txx − Tyy)

[
D2

p,2(�) + D2
p,−2(�)

]

+ 1√
6

(2Tzz − Txx − Tyy)D2
p0(�)

]
[I ⊗ S](2)

p , (6)

where [I ⊗ S](2)
p is a rank-2 tensor product of two rank-1

spherical tensor operators and D2
p,2(�) are the Wigner D

functions of the Euler angles � that define the orientation of
the PA coordinate system relative to the space-fixed axes [see
Fig. 15(b)].

In the case of axial symmetry assumed below [46,48],
Txx = Tyy and the expression (6) simplifies to

HPA
ah f = 2√

6
�T

2∑
p=−2

D2
p0(�)[I ⊗ S](2)

p , (7)

where we define �T = Tzz − Txx as the hyperfine anisotropy.
The matrix shifts in Eq. (5) thus become, for a given orienta-
tion � of the PA coordinate system relative to the space-fixed
axes,

�EFmF (�) = 2√
6
�T

2∑
p=−2

D2
p0(�)〈FmF |[I ⊗ S](2)

p |FmF 〉.

(8)
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Applying the Wigner-Eckart theorem [50] to evaluate the matrix elements on the right-hand side, we find

〈(IS)FmF |[I ⊗ S](2)
p |(IS)F ′m′

F 〉 =(−1)F−mF

(
F 2 F ′

−mF p m′
F

)
[(2F + 1)5(2F ′ + 1)]1/2 p3(I )p3(S)

⎧⎨
⎩

I I 1
S S 1
F F ′ 2

⎫⎬
⎭, (9)

where the symbols in parentheses and curly brackets are 3- j and 9- j symbols, and p3(X ) = [(2X + 1)X (X + 1)]1/2. For mF =
m′

F , the 3- j symbol in Eq. (9) is nonzero only when q = 0. Setting D2
p0(�) = d2

00(θ ) = 1
2 (3 cos2 θ − 1) in Eq. (9), we obtain the

angular dependence of the tensor matrix shift

�EFmF (θ ) = 3 cos2 θ − 1√
6

�T (−1)F−mF

(
F 2 F

−mF 0 mF

)
[(2F + 1)5(2F + 1)]1/2 p3(I )p3(S)

⎧⎨
⎩

I I 1
S S 1
F F 2

⎫⎬
⎭. (10)

For a polycrystalline p-H2 matrix, the orientation of the PA coordinate system with respect to the external magnetic field
is random [45]; i.e., all possible θ angles will contribute to the linewidth. In the presence of axial symmetry, Eq. (9) shows
that there is a distribution of matrix shifts proportional to (3 cos2 θ − 1). The transition linewidth can then be evaluated as a
difference between the maximum (2) and minimum (−1) values of the angular function (3 cos2 θ − 1) for θ ∈ [0, π ]. Replacing
3 cos2 θ − 1 → 3 in Eq. (10), we obtain the linewidth of the atomic state |FmF 〉 in a polycrystalline matrix

�EFmF = 3

√
5

6
�T (−1)F−mF (2F + 1)p3(I )p3(S)

(
F 2 F

−mF 0 mF

)⎧⎨
⎩

I I 1
S S 1
F F 2

⎫⎬
⎭. (11)

The 3- j symbol on the right is equal to (−1)F−mF [(2F + 3)(2F + 2)(2F + 1)2F (2F − 1)]−1/2[3m2
F − F (F + 1)] [50].

Equation (11) thus establishes that for a given alkali-metal atom (fixed I , S, and �T ), the linewidth of the F, mF level scales
with F and mF as

�EFmF ∝ [(2F + 3)(2F + 2)(2F + 1)2F (2F − 1)]−1/2(2F + 1)

⎧⎨
⎩

I I 1
S S 1
F F 2

⎫⎬
⎭

[
3m2

F − F (F + 1)
]
. (12)

Given the broadening of the individual hyperfine levels (11), we can calculate the inhomogeneous transition linewidth
assuming that the hyperfine levels F, mF and F ′, m′

F involved in the magnetic dipole transition are broadened by the interaction
with the matrix. Both of the hyperfine levels experience tensor matrix shifts according to Eq. (11). Taking the difference of the
F, mF and F ′, m′

F level shifts given by Eq. (11) and averaging the result over θ as described above, we obtain the inhomogeneous
linewidth of the F, mF ↔ F ′, m′

F transition

�EFmF ↔F ′m′
F

= 3
√

5/6p3(I )p3(S)�T

⎡
⎣(−1)F−mF (2F + 1)

(
F 2 F

−mF 0 mF

)⎧⎨
⎩

I I 1
S S 1
F F 2

⎫⎬
⎭

− (−1)F ′−m′
F (2F ′ + 1)

(
F ′ 2 F ′

−m′
F 0 m′

F

)⎧⎨
⎩

I I 1
S S 1
F ′ F ′ 2

⎫⎬
⎭

⎤
⎦. (13)

For the transitions involving different mF sublevels of the same F state of interest here, F = F ′ and Eq. (13) simplifies to
[omitting the irrelevant overall phase (−1)F−mF ]

�EFmF ↔F ′m′
F

= 3
√

5/6p3(I )p3(S)(2F + 1)�T

[(
F 2 F

−mF 0 mF

)
− (−1)mF −m′

F

(
F 2 F

−m′
F 0 m′

F

)]⎧⎨
⎩

I I 1
S S 1
F F 2

⎫⎬
⎭. (14)

Table II presents the theoretical linewidths of mF -changing
transitions in different alkali-metal atoms. The linewidths
are calculated using Eq. (14) based on the ab initio values
of the hyperfine anisotropy �T from Sec. VII B. We ob-
serve good semiquantitative agreement between theory and
experiment across all species and isotopes, confirming that
anisotropic hyperfine interactions are the dominant source of
broadening.

The overall trend of the measured linewidths to increase
from K to Rb and from Rb to Cs is well reproduced by
the theory. The reason for this trend is that the calculated
linewidths (14) are proportional to the hyperfine anisotropy
�T , which increases in the sequence K → Rb → Cs (see
Table IV). The small magnitude of the K linewidths is a
result of its exceedingly small hyperfine anisotropy, which is
a factor of 10 smaller than the values calculated for Rb and Cs
complexes.
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TABLE II. Calculated linewidths (in kHz) for the F, mF ↔
F, m′

F transitions in different alkali-metal isotopes. The theoretical
values are computed using Eq. (14) based on the ab initio hyperfine
anisotropies �T calculated as described in Sec. VII B. The theoret-
ical mF ↔ m′

F transition linewidths are invariant with respect to the
simultaneous sign reversal mF → −mF and m′

F → −m′
F ; thus only

positive values are presented.

Transition (mF ↔ m′
F ) Theory

39K, F = 2:

2 ↔ 1 6.19
1 ↔ 0 2.06
85Rb, F = 3:

3 ↔ 2 109.6
2 ↔ 1 65.78
1 ↔ 0 21.93
87Rb, F = 2:

2 ↔ 1 334.4
1 ↔ 0 111.5
133Cs, F = 4:

4 ↔ 3 546.27
3 ↔ 2 390.18
2 ↔ 1 234.11
1 ↔ 0 78.04

For the same alkali-metal isotope, Eq. (14) predicts F -
independent broadening of the F, mF ↔ F, m′

F transitions.
Within the same F manifold, the linewidths are expected
to increase linearly with mF and to be independent of its
sign, again consistent with the trend observed experimentally
(Fig. 13). Significantly, Eq. (12) predicts that +mF ↔ −mF

transitions will have dramatically reduced inhomogeneous
broadening, as these pairs of levels are (to first order) shifted
identically by the anisotropic hyperfine interaction. Experi-
mentally, such transitions are found to have much smaller
linewidths than the Larmor-precession transitions, as dis-
cussed in Sec. VIII [28].

While our theoretical results are in nearly quantitative
agreement with experiment, small disagreements remain. We
suspect these disagreements are due to differences between
our model trapping site and the true trapping site. To com-
pensate for this, we scale our theoretical Rb anisotropies
by a single constant factor (common to both isotopes). This
scaled calculation is presented alongside experimental data

TABLE III. Calculated isotropic hyperfine interaction constants
(in MHz) compared with experiment for atomic hydrogen (Ref. [64])
and alkali-metal atoms (Ref. [38]).

Atom This work Experiment

1H 1418 1420.405 726(3)
7Li 399 401.752 043 3(5)
39K 221 230.859 860 1(3)
85Rb 848 1011.910 813(2)
87Rb 2875 3417.341 306 42(15)

TABLE IV. Principal-axis components (Txx, Tyy, Tzz ) of the hy-
perfine tensor (in kHz) for the H2-A-H2 complexes. The hyperfine
anisotropy �T = Tzz − Txx . The value of R is fixed at the equilibrium
distance Re of the corresponding A-H2 interaction potential (see
Fig. 16).

System (Txx, Tyy, Tzz )

H2-39K-H2 (−1.8, −1.8, 3.7)
H2-85Rb-H2 (−29.2, −29.2, 58.5)
H2-87Rb-H2 (−99.1, −99.1, 198.2)
H2-133Cs-H2 (−138.7, −138.7, 277.5)

in Fig. 13. With this scaling, we see nearly quantitative
agreement with experiment.

Additional work is warranted to provide more detailed
models of trapping sites, which are different not only in their
orientations, but also in their geometries and coordination
numbers [51], bringing about additional broadening mecha-
nisms. A theoretical study of these mechanisms would require
a detailed investigation of trapping site structure (using, e.g.,
quantum Monte Carlo simulations) combined with extensive
ab initio calculations of the hyperfine and g-tensor elements
corresponding to different site structures.

B. Ab initio calculations of alkali-H2 potentials
and hyperfine interactions

As discussed in Sec. VII A, the linewidths of alkali-metal
atoms trapped in solid p-H2 are determined by the hyperfine
anisotropy �T . To estimate this quantity, we adopt a minimal
model for the alkali-metal trapping site illustrated in Fig. 15.
In this axially symmetric model, commonly used in theoreti-
cal simulations of molecular ESR spectra [46,48], the central
alkali-metal atom A is surrounded by two H2 molecules in
the linear configuration H2-A-H2. We then use the eigenvalues
of the hyperfine tensor calculated ab initio at the equilibrium
A-H2 geometry Re to approximate the hyperfine anisotropy
�T defined in Sec. VII A above.

To estimate the equilibrium configuration of the axial
trapping site, we carried out ab initio calculations of the
alkali-H2 interaction potentials using the unrestricted cou-
pled cluster method with singles, doubles, and perturbative
triples [UCCSD(T)] [52], as implemented in MOLPRO [53].
The aug-cc-pVQZ [54] and Jorge-AQZP [55] one-electron
basis sets were employed for H and K atoms, respectively.
For Rb and Cs atoms, n core electrons were replaced with
the ECPnMDF relativistic effective potential (n = 28 for
Rb and n = 46 for Cs). The remaining valence electrons of Rb
and Cs were described with the uncontracted [13s10p5d3 f ]
and [12s11p5d3 f ] basis sets [56], respectively. The alkali-
H2 interaction potentials were corrected for the basis set
superposition error [57] and expressed in Jacobi coordinates R
and θ , where R is the interatomic distance between an A atom
and the H2 center of mass, and θ is the angle between the A-H2

vector R and the H2 interatomic axis. The two-dimensional
interaction energies were averaged over 19 equally spaced
values of θ ∈ [0, 90◦] using the hindered rotor model [58] and
fitted with cubic splines to produce the isotropic potentials
shown in Fig. 16.
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FIG. 16. Ab initio isotropic interaction potentials for K, Rb, and
Cs atoms with H2.

As shown in Sec. VII A, the hyperfine tensor on the nu-
cleus of interest has the isotropic (Aiso1) and anisotropic (T)
components, which can be expressed as the Fermi contact and
spin-dipolar terms in SI units:

Aiso = gN e2h̄

6πε0c2memp
|�(r)|2, (15)

T = gN e2 h̄

16π2ε0c2memp

〈
rt · r · 1 − 3r · rt

r3

〉
, (16)

where gN is the nuclear g factor, e is the electron charge, h̄
is the reduced Planck constant, ε0 is vacuum permittivity, c
is the speed of light, me and mp are the electron and proton
masses, |�(r)|2 is the electron spin density at the nucleus,
and the expectation value 〈. . .〉 is that of the spin-dipolar
interaction. We carried out ab initio calculations of the spin
density |�(r)|2 and the spin-dipolar interaction on the alkali-
metal nucleus using the UCCSD(T) method and all-electron
fully uncontracted basis sets augmented by the large-exponent
s functions in CFOUR [59]. The aug-cc-pwCV5Z [60] and
relativistic ANO-RCC [61] basis sets augmented with four
s functions obtained by multiplying the largest exponent
by a factor of 4 were used for H and alkali-metal atoms,
respectively, as described in our previous work on alkali-He
hyperfine interactions [62,63]. We carried out test calculations
of the hyperfine tensor for 1H, 39K, 85Rb, 87Rb, and 133Cs with
the corresponding nuclear spins I = 1/2, 3/2, 5/2, 3/2, and
7/2.

To validate the level of theory used to predict the
anisotropic component of the hyperfine tensor, we also calcu-
lated its isotropic component Aiso in Eq. (15). Table III com-
pares the calculated and experimental values of the hyperfine
constants for 1H and the alkali-metal atoms. For the light 1H,
7Li, and 39K isotopes, the calculated and experimental values
are in good agreement. For Rb isotopes, we observe signif-
icant deviations from experiment because of the relativistic
properties of the core electrons, which are not accounted for
in our ab initio calculations. It is important to note that the
isotropic part of hyperfine interaction depends on the electron
density at a nucleus, while the anisotropic part is defined by
the spin-dipolar interaction, which is much less affected by the
electron density of the core electrons. Therefore, we expect a

much higher accuracy in our anisotropic hyperfine constant
calculations on heavy alkali-metal isotopes.

Figure 16 shows the radial dependence of the isotropic part
of our ab initio alkali-H2 interaction potentials. We note that
the potential minima of all alkali-H2 complexes occur at much
larger distances than the H2-H2 potential minimum, and also
they are much larger than the 7 a0 nearest-neighbor spacing in
zero-pressure solid hydrogen [65]. This “mismatch” in sizes
may explain the existence of multiple trapping sites in the
solid [51], as there may be multiple different configurations of
similar (or lower) energy than a simple interstitial or single-
substitution site. The well depths of the potentials are De =
−8.5 cm−1 at 11.7 a0 for K-H2, De = −7.2 cm−1 at 12.1 a0

for Rb-H2, and De = −6.6 cm−1 at 12.5 a0 for Cs-H2.
In Table IV, we report the values of anisotropic compo-

nents of the hyperfine tensor for the linear H2-A-H2 com-
plex at the equilibrium A-H2 separation determined from the
ab initio potentials plotted in Fig. 16. In these calcula-
tions, the H2 bond is taken to be collinear to the symmetry
axis of the axially symmetric H2-A-H2 complex. We estimate
the upper limits to the hyperfine anisotropy �T = Tzz − Txx

to be 5.5, 87.7, 297.3, and 416.2 kHz for 39K, 85Rb, 87Rb, and
133Cs, respectively.

VIII. PROPERTIES OF INHOMOGENEOUS BROADENING
FROM GENERIC TIME-SYMMETRIC PERTURBATIONS

Our measured T ∗
2 times for Larmor precession states agree

well with the theoretical model for inhomogeneous broad-
ening due to hyperfine interactions with an inhomogeneous
host matrix, as presented in Sec. VII A. First-order perturba-
tion theory—in the limit that F and mF are good quantum
numbers—finds that states of the same F and |mF | undergo
identical shifts. This will be the case not only for the spe-
cific interaction Hamiltonian used in Sec. VII A, but for any
electrostatic-like perturbation (i.e., a perturbation which is
unchanged under time reversal).

Because electrostatic interactions are unchanged under
time reversal, the electrostatic shift of the |F, mF 〉 and the
|F,−mF 〉 level should be the same to first order. Hence,
superpositions of such levels should show dramatically re-
duced broadening when compared to Larmor precession lev-
els. This effect has been demonstrated in previous measure-
ments of 85Rb in parahydrogen [28]. We wish to consider
the specific behavior of this phenomena in greater detail
here, and compare the broadening of different superposition
states.

We first construct a Hamiltonian for the known gas-phase
hyperfine and Zeeman structure of the ground state of 85Rb
(I = 5/2), working in the 12-dimensional subspace of the
2S1/2 electronic ground state [66]. We model the crystal-
field interaction as a random Hermitian matrix in this sub-
space, with each element a Gaussian distribution of ampli-
tudes chosen to roughly match our observed T ∗

2 . We then
“time-symmetrize” the matrix by adding it to a time-reversed
copy of itself. We solve for the eigenvalues of the total
Hamiltonian, calculate the energy differences between each
pair of levels (labeled by their low-field, perturbation-free
eigenvalues), and then repeat the process multiple times and
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FIG. 17. Simulation of inhomogeneous broadening for different
superpositions of Zeeman levels of the F = 3 manifold of 85Rb,
plotted as a function of magnetic field. The simulations were for
“random matrix” perturbations that were symmetric under time
reversal (i.e., electrostatic-like), as explained in the text. The states
are labeled by F and mF quantum numbers; we note that these
are good quantum numbers only in the limit of small magnetic
fields (Zeeman shifts small compared to the hyperfine splitting) and
small random matrix perturbations (small compared to the Zeeman
splitting).

calculate the standard deviation of the distribution of energy
differences.

This simple model will capture some of the generic effects
of a time-symmetric perturbation, but will miss many of
the important details of the inhomogeneous broadening. The
model omits the specific structure and symmetry of the trap-
ping sites. It also emits the specific nature of the electrostatic
interactions (which will cause different shifts for different
mF levels and different species, as discussed in Secs. VI A,
VI B, and VII A). Additionally, it has no predictive capability
for the magnitude of the broadening, as the magnitude of
the random matrix elements are chosen to match experiment.
However, it does reveal interesting behavior which we ex-
pect will be general, as shown in Fig. 17, which plots the
simulated linewidths as a function of the applied magnetic
field, for Zeeman shifts small compared to the hyperfine
splitting.

As shown in Fig. 13, 85Rb (F = 3) has six superpositions
which give rise to Larmor precession. All show roughly
similar behavior in this simple calculation; in Fig. 17 we have
plotted the linewidth of a single superposition to simplify the
graph. All show a linewidth which is roughly independent of
the applied field. More interesting is the behavior of the other
states shown. The mF = +3 and −3 levels are, in the absence
of the crystal field, time reversals of each other. At high
magnetic fields, where the Zeeman splitting is much greater
than the crystal-field interaction, this leads to a large suppres-
sion of the inhomogeneous broadening, as the perturbation
by the crystal field is zero to first order. At lower fields, this
“protection” is reduced as higher-order perturbations begin to

play a larger role. In the low-field limit, where the crystal
field is greater than the Zeeman splitting, the levels are fully
mixed by the crystal-field perturbation and the protection is
lost, as seen in Fig. 17. Slightly more complex are the mF ,
−mF superpositions which are not stretched states (+2 and
−2, and +1 and −1 for 85Rb). In the absence of the crystal
field, these states are time reversals of each other only in the
low-magnetic-field limit. Hence, they show behavior similar
to the stretched-state superposition at low magnetic fields, but
at higher magnetic fields lose their “protection” due to the
nonlinear Zeeman effect.

These simulations qualitatively agree with our experimen-
tal measurements. First, we typically find that our optical
pumping signal is reduced in amplitude if we work at longi-
tudinal magnetic fields �1 G, as discussed in Sec. IV C. This
is qualitatively consistent with the idea that the mF levels are
fully mixed by the crystal-field perturbation at low magnetic
fields. Second, in Ref. [28], we measured the linewidth of a
superposition of |F = 3, mF = +1〉 and |F = 3, mF = −1〉
at magnetic fields ranging from 60 to 150 G. The linewidth
observed was significantly narrower than any of the Larmor
precession superpositions. The linewidth increased linearly
with the magnetic field over the measured range, in qualitative
agreement with the model shown in Fig. 17. From the simula-
tion, we expect significant improvements could be obtained by
working with a superposition of stretched states, and at higher
fields.

IX. DISCUSSION

The optical spin polarization signals obtained for Rb and
Cs in solid parahydrogen are significantly larger than had pre-
viously been reported for alkali atoms in solid argon or neon
[25,67], but not as large as what has been observed in solid
helium [18]. However, the behavior observed in Sec. IV B
suggests that significant improvement could be obtained in an
apparatus capable of colder substrate temperatures and higher
parahydrogen deposition rates.

The measured T ∗
2 times are significantly shorter than those

of cesium atoms in solid helium [19], but are predomi-
nantly due to matrix inhomogeneities. Significant improve-
ment would be observed with a sample of uniform trapping
sites in a single-crystal hydrogen matrix. Even in the absence
of uniform trapping sites, significant gains in the spin T ∗

2
would be expected by employing stretch-state superpositions
rather than Larmor precession states [28], as discussed in
Sec. VIII.

Considering the other alkali-metal atoms, we would
expect lithium and sodium to have long T ∗

2 times due
to their small hyperfine splitting [38], as explained in
Secs. VI A and VII A. Unfortunately, we would expect poor
polarization signals from lithium and sodium due to their
small excited-state fine-structure splitting, as discussed in
Sec. IV D.

Considering other elements of the periodic table, we expect
that—unless one is able to grow single-crystal samples with
uniform trapping sites—atoms with ground states with J >

1/2 will have short T ∗
2 times, as tensor Stark shifts would

be expected to be significantly larger. Among the J = 1/2
elements, silver appears promising: it has a large excited-
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state fine-structure splitting (which should be favorable for
optical pumping and readout of spin) and a small ground-
state hyperfine splitting (which should be favorable for a
long T ∗

2 ). Moreover, silver’s nuclear spin of I = 1/2 makes it
straightforward to obtain stretched-state superpositions with a
simple two-photon transition [28]. In addition, silver’s smaller
“size” may allow it to fit into the lattice in a more stable or
favorable configuration.
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