
PHYSICAL REVIEW A 100, 063418 (2019)

Pulsed production of cold protonium in Penning traps

Sebastian Gerber* and Michael Doser
CERN, European Laboratory for Particle Physics, 1211 Geneva, Switzerland

Daniel Comparat
Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Bât. 505, 91405 Orsay, France

(Received 8 July 2019; published 16 December 2019)

Precision comparison experiments on bound states of matter and antimatter rely on the production of
corresponding systems at low temperatures and in sufficient numbers. In this paper we propose a scheme for
the pulsed production of highly excited protonium (Pn) in a Penning-Malmberg trap at low kinetic energies of
tens of meV. The scheme relies on the resonant-charge-exchange reaction H∗ + p̄ → Pn∗ + e− where Rydberg
excited hydrogen and antiprotons ( p̄) interact to form Pn∗. The reagent H(n = 30, l = 2) is created from laser
photodetached and excited hydrogen anions (H−), which are initially trapped and mixed in a plasma together
with electrons and antiprotons at low kinetic energies. We discuss a three-step pulsed laser excitation using rate
equations. A semiclassical Monte Carlo approach leads to a formation rate of 105 Pn per 20 s when assuming a
production temperature of 100 K. The formed Pn are internally excited in states with average principal quantum
number 〈n〉 ≈ 1200 having lifetimes that can reach seconds. The proposed scheme is therefore particularly
interesting for experiments aiming at the study of cold antimatter and purely baryonic systems for precision
experiments (charge neutrality, gravity, spectroscopy), as performed at the antiproton decelerator facility at
CERN.
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I. INTRODUCTION

Protonium (Pn) consists of the Coulomb bound state of
a proton (p) and an antiproton ( p̄). In comparison to hy-
drogen (H), the internal energies and intrinsic distances of
Pn approximately scale as the ratio of the reduced masses
μ(Pn)/μ(H ) = 914, yielding a ground-state Bohr radius of
57 fm. Due to the wave-function overlap of the onium pair,
Pn exhibits a finite lifetime before annihilation of one or more
quark-antiquark pairs from p/p̄, which modifies the properties
predominantly of the deeply bound states and of s or p states
[1,2]. For example, the annihilation width from the 2p state is
found to be larger than the radiative width of 0.4 meV with
97.4% of the total annihilations occurring from the 2p state
and only 0.8% from the 1s state after emission of a 9 keV x
ray [3].

Studies of Pn have been mainly carried out at CERN at
the low-energy antiproton ring (LEAR) experiments Obelix
and Asterix and at the PS207 experiment [3–5], where Pn
has been produced via resonant-charge-exchange of p̄ with
liquid and gaseous hydrogen. This production method was
initially discussed using p̄ in Ref. [6]. Through occasional
interactions between p̄’s and trace amounts of H+
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the experiment’s vacuum, Pn was also produced randomly and
quasicontinuously at the Athena experiment at the antiproton
decelerator (AD) in a Penning trap [7]. While at Athena
about 100 Pn per experimental cycle of 3 min were produced,
in the case of the LEAR experiments a Pn flux of about
105 s−1 was achieved, with Pn energies in both cases in the
eV range. For these targets using hydrogen molecules in their
electronic ground states, due to energy conservation of the
constituents, Pn was formed at similar sizes as H2, resulting
in initial principal quantum numbers of about 20–40 and a
mean lifetime before annihilation of about μs [8,9]. Photons
emitted during the cascade of Pn to deeper bound states before
annihilation could be observed and the Pn formation processes
studied [5]. For the Balmer and Lyman series the hadronic
level shifts were measured using a Röntgen spectrometer with
a resolution of up to tens of meV [3]. In general, due to the size
of Pn in the fm range, spectroscopic studies directly probe the
residual strong force of the Yukawa potential at thresholds.

Pulsed production of Pn would open up the possibility of
laser-manipulation of the formed protonium atoms, allowing
one to extend the range of experimentally reachable binding
energies and thus perform spectroscopic studies on Rydberg
transitions of Pn. Due to Doppler line broadening, for such
spectroscopic studies it would be beneficial to produce Pn
with sub-eV energies. Further, the possibility to produce Pn at
these low energies would enable diffraction studies in matter
interferometers, e.g., in a Talbot-Lau device [10,11], allowing
precision measurements of the charge neutrality between p
and p̄ or measurements of the gravitational interaction of
antimatter with a purely baryonic system. Due to the mag-
netic moment of the p̄ of μB/μp = 1521, interferometric
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measurements of Pn would be more robust against magnetic
field gradients that can occur within Penning traps, compared
to measurements on antihydrogen (H̄). Similarly, precision
spectroscopy of transitions between Pn* Rydberg states gives
access to the (anti)protonic Rydberg constant in a fully cal-
culable two-body system [9]. Furthermore, extending the Pn
production to cold antiprotonic deuterium would allow preci-
sion measurements with distinct sensitivities to Lorentz and
CPT violation, where the higher intrinsic nucleon momentum
of the deuteron enhances Lorentz violation signals [12,13].
Finally, because of the absence of density-dependent Stark
quenching of excited protonium states, a very large fraction
of the formed protonium reaches deeply bound states. A
protonium source at rest in vacuum could thus also be used to
revisit searches for putative subthreshold dibaryonic [14–16]
or hexaquark states [17] with higher sensitivity than in the past
by measuring gamma emissions in the range of 0–100 MeV
in coincidence with annihilation from x-ray-tagged Pn(1s) or
Pn(2p) states.

In this article we theoretically investigate a pulsed produc-
tion scheme of Pn with energies of tens of meV and with
highly excited internal states in a Penning-Malmberg trap.
We propose to increase the Pn yield by several orders of
magnitude compared to the previous Penning trap experiment
(Athena [7]) in a three-step process: (1) trapping, electron
cooling, and plasma preparation of mixed p̄ and H− at cryo-
genic temperatures, (2) pulsed photodetachment of H− and
laser excitation via H(2p) to Rydberg states, resulting in (3)
formation of Pn from the resonant-charge-exchange reaction

H(n, l ) + p̄ → Pn(n′, l ′) + e−. (1)

This then produces highly excited Pn(n′, l ′) states with radia-
tive lifetimes >10 ms for l > 5. This long lifetime is essen-
tial for future spectroscopic and gravitational measurements
attempts of Pn. To test the proposed scheme over a range of
experimental parameters we used a Monte Carlo method to
simulate the expected Pn yield and position distribution where
the laser-atom interaction is described with a semiclassical
rate equation calculation.

II. Pn PRODUCTION SCHEME

The proposed experimental setup using a Penning-
Malmberg trap is sketched in Fig. 1. Initially, H− can be gen-
erated from a suitable source, e.g., as presented in Ref. [18],
to form a flux of up to 0.1 mA cm−2 at beam energies of
few keV. Part of the anion beam can then be directed into
a cryogenic trap of B = 5 T and confined by pulsing the
axial electric field electrodes. Other magnetic field values
could obviously be chosen, but we use this convenient one
to illustrate our purpose (mainly because high fields lead to
fast electron cooling and lower magnetron motion).

The H− can be overlapped with previously loaded e−
and electron cooled for a duration of about 1 min to reach
temperatures in the vicinity of the trap’s environment [19].
The p̄ delivered by the AD at intervals of about 100 s can be
caught similarly. The AD upgraded to the ELENA antiproton
ring, described in Ref. [20], is estimated to allow for the
trapping of about a factor 30 more p̄ than with the current AD
facility, thus reaching intensities of ≈107 p̄ per shot. The p̄

FIG. 1. Sketch of the experimental setup. In a Penning-
Malmberg trap a plasma of e−, H−, and p̄ is confined radially by
a 5 T magnetic field and axially by an electric field. The plasma is
addressed axially by three pulsed lasers, which photodetach H− at
1064 nm and excite the resulting H on the Lyman-alpha H(1s) to
H(2p) transition at 121 nm and on the H(2p) to H(30d) transition
at 366 nm. At that time Pn production starts via resonant-charge-
exchange of H and p̄, and the Pn are emitted according to their
angular velocity distributions. Part of the Pn can escape in forward
direction into a solid angle of �.

bunch can be electron cooled in similar manner as the H−, and
energies down to tens of meV are regularly achieved at AD
experiments [21–24]. For this paper we choose a plasma tem-
perature of 100 K as a convenient and conservative choice to
illustrate the proposed scheme. At this stage, the two plasmas
can be brought to overlap by electric field manipulation on the
electrodes. Using a rotating wall drive by applying a dipole
field to a four-segmented electrode, the mixed plasma can
be compressed and prepared at adjustable densities resulting
in plasma radii rp in the mm range and in lengths lp up
to hundreds of mm, depending on the participating particle
numbers. After thermalizing again, part of the e− can be
removed by a series of short rf pulses applied to the axial
confining electrode, described in Ref. [25]. Assuming heating
rates due to residual gas pressure and trap inhomogeneities of
about 10 mK s−1 [26], an approximate number ratio consisting
of ∼10% e− ensures being able to maintain the temperature
[19].

Collisions between p̄ and H− or H can cause resonant-
charge-exchange formation to Pn, where the formation cross
sections are mainly determined by the collision kinetic energy
Ek of the p̄ with the matter atoms and by the quantum state
the atoms reside in. At Ek < 2.7 eV, which is the case for
the mixed plasma after electron cooling, the formation cross
section of Pn via H− + p̄ → Pn + 2e− can be neglected due
to the Coulomb repulsion of the constituents [8]. Thus, for-
mation of Pn is greatly suppressed at the time in the sequence
when p̄ and H− are merged to one plasma.

For collision with ground-state atoms H(1s), the electric
field (E ) produced by p̄ induces a dipole moment d ∼ αE on
H leading to the classical Langevin cross section for the for-
mation process of Eq. (1) as σL = π

√
2e2α(H)/Ek with α the

H polarizability [27–29]. The collision with H(1s) has been
studied over a wide energy range of μeV to keV by comparing
analytical to classical trajectory Monte Carlo (CTMC) models
in Ref. [30], by using CTMC pseudopotential models in
Ref. [31], and by using adiabatic methods in Refs. [32,33]. For
relative energies of <1.5 eV the process can be approximated

063418-2



PULSED PRODUCTION OF COLD PROTONIUM IN … PHYSICAL REVIEW A 100, 063418 (2019)

in an adiabatic formation picture [34]. However, for collisions
with H(n) with states n > 1 the situation is quite different
because the level degeneracy leads to a situation in which
the dipole d has a permanent component (linear Stark shift).
This modifies the scaling of the incoming kinetic energy Ek in
the cross section to ∝ E−1

k for low Ek . This has been recently
studied in CTMC simulations of p̄ collisions with H(2s) and
Ps(2s) in Ref. [35,36], and with Ps(n � 8) in Ref. [37], and
Pn(n � 50) in Ref. [38].

When the de Broglie wavelength of the atom is compa-
rable to its size, quantum suppression can lead to a varying
of the cross section with n2 away from its geometrical n4

dependence [37]. But for n � 10 this effect would become
relevant only at about Ek < 30 μeV. These results underline
that for our considered energy and H(n) excitation range the
formation cross section, σPn, scales approximately with n4 and
k2
v = (ve/vcm)2, where kv is the ratio between the electron

velocity ve in the H atom and the center of mass velocity
vcm between the H and the p̄, yielding to σPn/n4 ∝ 1/(n2Ek )
in a.u.

Although an exact solution for H(n > 2) (and Rydberg H)
collisions with p̄ would require more in-depth studies, we will
employ an approximation from a fitting function, similarly as
discussed in Refs. [38–41], to the CTMC results for H(n = 2)
from Fig. 6 in Ref. [36] as

σPn(n, Ek ) = n4
(
c1 k2

v + c2
)
,

kv = ve

v cm
= e2

4πε0nh̄

√
mp

2Ek
,

c1 = 1.49 × 10−24 m−2,

c2 = 1.76 × 10−20 m−2. (2)

Figure 2(a) shows the data points from that figure together
with the fit for H(n = 2).

Our formation process [see Eq. (1)] is very similar to
Ps + p̄ → H̄ + e− leading to the formation of H̄ through
resonant charge exchange of p̄ with Ps. In studies of Ps(n)
collisions the scaling of Eq. (2) with n and Ek was found to
be consistent with CTMC results for 2 � n � 50 in Ref. [38]
and for Ps(n = 2) and Ps(n = 3) in Ref. [41]. We can thus use
a similar description for the final Pn state distribution as was
studied for H̄ formation in Ref. [42]. The Pn states are then ex-
pected to be almost fully equipopulated in angular momentum
so with all lPn states populated and with 2lPn + 1 degeneracy
until circular states (lPn =nPn−1). As discussed for H(n=1)
in Ref. [34], generally with higher Ek the lPn distribution be-
comes broader and can approach values of the orbiting angular
momentum lPn,orb ≈ [8α(Pn)(μ(Pn))2Ek]1/4 (in atomic units).
Here μ(Pn) is the reduced mass of Pn, which will be outlined
in the Appendix. The n distribution is mainly determined by
energy conservation E (Pn) ≈ (μ(Pn)/μ(H))E (H) + Ek , with the
H binding energy E (H) = Ry(H)/n2

H and Ry(H) ≈ 13.6 eV. The
quantum state of Pn then scales with the one of the H atom
nPn = nH

√
μ(Pn)/μ(H) ≈ 30.2 nH. The energy conservation we

wrote was only approximate because the kinetic energy of
the ejected electron is not included. However, we know
that the Pn must have binding energies larger than E (H)−Ek

since the electron from the H has to be ejected with positive
energy. Thus, at Ek = E (H) there is a cutoff for the formation

FIG. 2. (a) Formation cross section, versus the collision energy,
to produce Pn from p̄: with H(n = 1) using the Langevin cross
section, with H(n = 2) and H(n = 30) using Eq. (2). The right
axis also indicates the probability distribution function (PDF) for a
Maxwellian at 100 K. (b) Radiative lifetime of 100 � nPn � 1200 for
different lPn states including black body radiation at 10 K. (c) nPn dis-
tribution resulting from p̄ capture by either H(n = 20) with 〈nPn〉 =
735, H(n = 30) with 〈nPn〉 = 1288, or H(n = 40) with 〈nPn〉 = 1825.
(d) lPn distribution corresponding to Pn formation from H(n = 30).
(e) Time before annihilation occurring in a field-free environment
and at 10 K plotted for initially Pn(n = 300, l). Similarly, panel (f)
shows the annihilation time for initial Pn(n = 1000, l) and different
lPn for a perturbation electric field of Ep = 1 V/cm.

cross section above which ionization of H dominates [43,44].
A full quantum mechanical treatment in Ref. [45] for H(1s)
confirms the steep formation rate drop with a small formation
probability continuing until Ek ≈ 1.2 E (H). In the adiabatic
picture used here, this translates into integer solutions of
nPn,cutoff =

√
μ(Pn)Ry(H)/[me(E (H) − Ek )] [44,46]. There is no

lower bound of nPn imposed, but because this would require
large relative kinetic energies of Pn and of the released
e−, which are dynamically improbable, the n distribution is
shifted to larger values [34].

Similarly as for the discussion of the cross section in
Eq. (2), because no results exist for H(n) collisions for arbi-
trary n values, for the P(n, l) distribution we use results for
H(n = 1) and expand the energy scales to higher H(n) states.
Here we use results from Table 2 in Ref. [31], as analytical
fits to CTMC simulations. Figure 2(c) then plots the expected
nPn distribution for Pn formation from H(n = 30) at Tp =
100 K, and in comparison from H(n = 20) and H(n = 40), for
energies integrated until E (H). The corresponding expected lPn

distribution for nH = 30 is plotted in Fig. 2(d).
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Assuming a thermalized mixed plasma with a Maxwell-
Boltzmann energy distribution at temperature Tp, we define
ηmb,nH as the fraction of collisions from p̄ and H(n) to occur at
energies < E (H ). Here we will focus on Pn formation from
nH = 30, which choice we will discuss in more detail in
Sec. III, resulting in ηmb,30 = 0.68. Figure 2(a) then plots the
formation cross sections for the states H(n = 1), H(n = 2),
and H(n = 30), where an increase of about four orders of
magnitude can be seen when comparing H(n = 1) to H(n =
30). The classical cutoffs at E (H) are shown together with the
energy distribution at 100 K, resulting in ηmb,30 = 0.68.

Figure 2(b) shows the radiative lifetimes for different
Pn(n, l) states in a cryogenic trap environment at 10 K. Here
the black body radiation (BBR) at 10 K is included, which can
cause stimulated transitions and photoionization. For the latter
we use the rate �bbr = c

∫ ∞
ωnl

ρωσω dω, where ωnl = 1/(2n2)
is the photoioinization threshold frequency in a.u., ρω is the
volume density of the BBR photons given by the Planck
distribution, and σω is the photoionization cross section given
by Eq. (A9). At 10 K for Pn(n < 1200) the BBR-induced
photoionization is then negligible compared to the absorption
and stimulated emission rate to neighboring states caused by
the BBR. From Fig. 2(b) the radiative lifetime for nPn > 900
reaches >100 ms for states lPn > 40.

Taking as an example the initial state nPn = 300, the time
until annihilation occurs is then plotted in Fig. 2(e) for dif-
ferent lPn, where for each lPn all mPn states are equipopulated.
In this plot, each point represents the time required from an
initial Pn(n, l) state to undergo the radiative decay cascade
through intermediate Pn states in 10 K until the population
reaches low l states and annihilation occurs. Each interme-
diate Pn(n, l ) → Pn(n′, l ′) transition is calculated from all
possible transition probabilities for time steps of 10 ns using
a Metropolis-Hastings algorithm [47,48]. For each lPn state
the simulation of the decay cascade is repeated, giving rise
to a scattered lifetime plot. The annihilation rates from low l
states will be estimated using the Ball-Chew model and scale
as n−3 [49,50]:

νa(ns) = 5.3 × 1018 n−3 s−1,

νa(np) = 4.3 × 1014 n−3 s−1,

νa(nd ) = 1010 n−3 s−1. (3)

Annihilations thus mainly occur from s or p states, where
rates from higher values of lPn such as d states are negligible
compared to the spontaneous decay rates. From Fig. 2(e) the
lifetimes reach seconds for lPn > 150.

To estimate an initial Pn yield, the envisaged resonant-
charge-exchange reaction from p̄ capture of H(30d) relies on
the formation cross section σPn, the collision energy, and the
number of available constituents. The expected number of
inelastic collisions can then be estimated for a plasma with
homogeneous cylindrical shape of radius rp and length lp

using Beer-Lambert’s law

Ncol = NH[1 − exp(−σPnnp̄D)], (4)

with NPn = ηmb,30Ncol. Here NH is the number of Rydberg H
atoms interacting with the p̄ at a density np̄ and D is the mean
distance of any point inside the plasma to the plasma edge.
For this simple estimation we use the crude approximation

D = min(2rp, lp). For values of rp = 1 mm, lp = 100 mm,
np̄ = 1014 m−3, σPn = 1.4 × 10−13 m−2 [Eq. (2) at H(n = 30)
and at kinetic energy corresponding to a plasma temperature
of T = 100 K of Ek = 8.6 meV], and NH = 106 we expect
about NPn ≈ 3 × 104. In B = 5 T the energy from plasma
rotation of p̄/H− would be 0.3 meV, which is smaller than
the thermal energy and is neglected for this estimation using
Eq. (4). This simple estimation is confirmed by a full Monte
Carlo simulation. For doing this we first need to study the laser
interaction in more detail.

A. H− excitation to Rydberg H

To create Rydberg H from ground-state H− and to calculate
the value for the laser excitation efficiency ηL, several laser
excitation paths are possible [51]. However, for an acces-
sible experimental realization we concentrate on a scheme
using single-photon excitations and a Lyman-α laser. First a
pulsed laser at 1064 nm photodetaches H− from the ground
state to the H(1s) state, overcoming the binding energy of
BE = 0.7542 eV [52]. The photodetachment cross section is
about σ1064 = 4 × 10−21 m2 [53–55]. Subsequently, a laser at
121 nm excites the atoms to the H(2p) state, from where a
third laser at 366 nm addresses the H(2p) → H(30d) transi-
tion.

Figure 3(a) sketches the relevant levels of H and H− in
the Paschen-Back regime at B = 5 T showing the uncoupled
basis |n, l, s, ml , ms〉 for each state (with obvious notations for
the orbital and spin components), where the level splitting is
�E = μBB(ml + 2ms). The splitting caused by a change of
�ml = ±1 or �ms = ±1/2 is then 11.2 GHz. In the scheme
(see Fig. 1) the lasers illuminate the plasma along the B field
and drive σ transitions, where we choose a laser polarization
of σ− for the 121 nm and σ+ for the 366 nm. For the
121 nm we will use specifications that have been achieved
in Ref. [56] of a laser energy of 190 nJ at a pulse duration
of 16 ns, which results in a line width of δνL ≈ 27 MHz. For
the other two lasers we will fix the pulse duration to typical
10 ns giving line widths of ≈44 MHz. The H transitions get
Doppler broadened at the plasma temperature, which gives at
Tp = 100 K a transition FWHM of �νD,121 = 17.9 GHz and
�νD,366 = 5.9 GHz. Because this broadening is larger than
the hyperfine splittings between mi = ±1/2 states of �EHF =
1.3 GHz for the H(1s) and of 55 MHz for the H(2p), all mi

hyperfine substates are addressed.
From this we see that after the 1064 nm addresses the sin-

glet H− state, all four mi H(1s) hyperfine states get populated.
Then, due to Doppler broadening at 100 K the 121 nm laser
addresses all H(1s) substates. To find the overall transfer effi-
ciency, we can calculate the cross sections and the excitation
and photoionization rates using standard expressions for the
radial wave functions of H and their overlaps for bound-bound
and bound-continuum transitions (see the Appendix). The
excitation rates include the Doppler broadening at the plasma
temperature. Both the 121 nm and 366 nm laser can cause
photoionization from the excited states. The photoionization
rates for the 121 nm laser from H(2p), �pi,2p, is calculated
from the sum of the rates coupling to the l = 0 and l = 2
continuum states. Similarly, the photoionization rate from
H(30d) caused by the 121 nm and the 366 nm laser as �pi,30d
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FIG. 3. (a) Level scheme of the relevant states of H− and H at 5 T.
The continuum of H is marked in gray with the possible ionizations
from the excited states. The ml , ms states and �E are labeled and
the binding energy (BE) of H−. The three lasers are shown with the
121 nm and 366 nm laser driving σ− and σ+ transitions, respectively.
The solid lines represent the addressed states. (b) Excitation effi-
ciency ηL versus 366 nm laser parameters for a beam waist of wL =
1 mm and Gaussian intensity pulse shapes Ii = Ii,max exp[−4 ln 2(t −
Ti )2/τ 2

i ] for i = 1064, 121, 366 with peak intensity Ii,max, FWHM
intensity pulse duration τi, and pulse delay Ti with respect to the
121 nm; I1064,max = 2.5 MW/cm2, I121,max = 755 W/cm2, τ1064 =
τ366 = 10 ns, τ121 = 16 ns and T1064 = −20 ns. (c) Laser intensities
versus time for I366,max = 40 kW/cm2 and T366 = −5 ns. (d) Pop-
ulations of the bound electronic levels and of dissociated H from
Eq. (5) versus time with an insert showing the H(30d) state resulting
in ηL = 0.30 at 100 ns.

consists of the sums of the individual photoionization rates
that couple to the continuum states with l = 1 and l = 3. The
effect of the laser interaction with the H− and H atom can then
be described as solutions to a set of Einstein rate equations for
the time dynamics of the involved atomic populations given
by

ṄH− = −�pd NH− ,

Ṅ1s = A2p N2p + �pd NH− − �1s2p (N1s − N2p),

Ṅ2p = −A2p N2p + �1s2p (N1s − N2p)

−�2p30d (N2p − N30d ) − �pi,2p N2p,

Ṅ30d = −A30d N30d + �2p30d (N2p − N30d ) − �pi,30d N30d ,

Ṅpi = �pi,2p N2p + �pi,30d N30d . (5)

Here A2p = 6.3 × 108 s−1 and A30d = 2.6 × 105 s−1 are the
Einstein A coefficients from the H(2p) and the H(30d) state,
respectively, and �pd is the photodetachment rate of H−.
Because the decay of H(30d) populates many levels with
a negligible probability of reaching H(2p) within the con-
sidered time, we neglected this part. �1s2p is the 121 nm
laser excitation rate for the transitions H(1s) |ml = 0〉 →

H(2p) |ml = −1〉 and �2p30d is the 366 nm laser excitation
rate for H(2p) |ml = −1〉 → H(30d ) |ml = 0〉, because we
have used circular polarized light. Npi is the population lost
due to photoionized H. We define the population transfer ef-
ficiency from H− to H(30d) as ηL = N30d/NH− at t = 100 ns.
This parameter is maximized scanning over the laser inten-
sities and pulse delays; see Fig. 3(b). Figure 3(c) shows the
time-dependent populations of the states in Fig. 3(d). Here we
find that ∼30% of the H− are excited to H(30d) mainly limited
by the Lyman-α laser power and spectral width.

B. Pn limitations from crossed fields in Penning traps

The preceding discussion deals (especially the Pn cross-
section formation and Pn radiative lifetime and annihilation)
with Pn in field-free |nlm〉 state. But the Pn evolves in a
complex electric and magnetic field environment. Indeed,
formed Pn will be exposed to the trapping magnetic field but
also to several electric fields: time-constant electric fields (due
to the trapping potential in axial Eax and radial Erad direction)
but also time-varying electric fields (from stochastic Coulomb
collision with p, p̄, e−, H−, H∗) and a motional field Em =
v × B. It is beyond the scope of this article to study in detail
the effect of the external fields, and we will simply give simple
arguments in order to estimate the modification of the internal
states and especially concerning the effect on annihilation.
The Hamiltonian for Pn in E and B fields is expressed as H =
H0 + HZeeman + HDiamagnetic + HStark and is discussed in the
Appendix (the formulas are also valid for H and Ps because of
the reduced mass). The Zeeman effect of Pn [see Eq. (A1) in
the Appendix[ is very small and occurs only from the nuclear
spin. Furthermore, the first-order (orbital) Zeeman effect is
zero. We can thus simply regard Pn as affected only by the
Stark effect. The Hamiltonian eigenstates are thus the Stark
eigenstates (assuming a quantization axis along the electric
field): |nkm〉 = ∑

l |nlm〉Clm
n−1

2
m+k

2 , n−1
2

m−k
2

where C jm
j1m1, j2m2

is the

standard Clebsch-Gordan coefficient. This formula can be
used to estimate the annihilation lifetime of the Stark states
because of the s or p annihilation rate; see Eq. (3).

In a very rough estimation we can assume that the Clebsch-
Gordan coefficient is on the order of 1/n and that the Stark
eigenstates contain more or less all l � m quantum numbers.
Therefore the annihilation rate for a Stark eigenstate with
m = 0 is roughly given by ∼νa(ns)n−1 and for a m = 1 state
by ∼νa(np)n−1. For m = ±2 the radiative transition rate into
p states is larger than the d-state annihilation rate. The first
net important result is that annihilation dominates from m =
0,±1 Stark states and that particularly higher m states can be
thought to be stable against annihilation.

The Pn are initially formed inside a plasma where the
Debye shielding makes the mean (global) electric field to be
zero, and the Pn are thus formed in |nlm〉 states. The key
question that arises is what happens during the Pn motion,
when Pn will see modification of its environment, for instance,
by moving from a zero field region, with |nlm〉 eigenstates,
to a region with presence of an electric field, with |nkm〉
eigenstates. The frontier is given by comparing the evolution
time τ and the typical energy gap of the Hamiltonian [57–59].
For instance, a Pn will stay in its initial |nlm〉 level (sud-
den approximation) if τ � h̄

�H̄ where �H̄ is the root mean
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square deviation of the system Hamiltonian averaged over the
interval of interest. This can be estimated using the matrix
elements for HStark (where z is the quantization axis where m
is defined) [27,60,61]:

νSt,x(nlm) = e

h̄
|〈nlm|Ex|nl − 1m ± 1〉|

= 3

2

e a(Pn)
0

h̄
|E| n

√
(l ∓ m−1)(l ∓ m)(n2 − l2)

4(4l2−1)
s−1,

νSt,z(nlm) = e

h̄
|〈nlm|Ez|nl − 1m〉|

= 3

2

e a(Pn)
0

h̄
|E| n

√
(l2 − m2)(n2 − l2)

4l2 − 1
s−1, (6)

where a(Pn)
0 = 914a(H )

0 is the Bohr radius of Pn. These are
the rates at which the |nlm〉 states are mixed. The detailed
theory of the complex evolution of all states under varying
electric field is obviously very complex and out of the scope
of this article. Therefore we will use a simple shuffling model
as developed in Refs. [27,60]. This model will give only a
rough order of magnitude for the evolution and takes into
account the net effect of back and forth “transitions” between
different Pn(n, l, m ↔ n, l − 1, m ± 1). The simple picture is
thus that an electric field along z causes the Pn to oscillate
continually between all degenerate l states with a frequency
of ∼∑l=n−1

l=0 (ν2
St,z )1/2 and for an orthogonal field at a rate

∼ ∑l=n−1
l=0

∑m=l
m=−l (ν

2
St,x )1/2. For the case of a perturbation field

of Ep=1 V/cm, Fig. 2(f) shows the lifetime before annihi-
lation occurs for the case of an initial state Pn(n = 1000, l).
Using time steps of 1 ns, the number of Stark transitions for
each lPn and using equipopulated mPn states are calculated
from Eq. (6) giving νSt,x ∼ 107 s−1. From Eq. (3) this then
leads to a reduction of the annihilation lifetime compared to
Fig. 2(e) to about 0.1 ms for lPn > 100.

As stated previously the effective electric field E for the
Stark effect is the vector sum of many contributions (stochas-
tic, trapping, or motional fields), from whose time dependence
the perturbation field can be calculated. This will be done in
the next section in a Monte Carlo simulation, but we can first
give here some rough estimations.

(1) Concerning the stochastic effect of collisions between
Pn and other particles, when a Pn traverses a H∗ or a ground-
state H atom it experiences the inner atomic electric field.
Similarly the Pn can be subject to the Coulomb field in
case of passing close to a p̄ or H−. However, for a density
np = 1014 m−3, a thermal velocity of the Pn of vth = 912 m/s
and 〈nPn〉 ∼ 1300, the rate of Coulomb collisions inside the
plasma is of the order of �St = npvthπ (a(Pn)

0 n2
Pn)2 ≈ 2.6 ms−1

[61] and is smaller than the travel time through the plasma
of order μs. This is a first indication that the collisions are
probably negligible. It is confirmed by the fact that the typical
electric field created by the particle that Pn will encounter will
be on the order of ∼1 V/cm (because this is created by an
elementary charge at 4 μm, which is the typical interparticle
distance). And as seen previously this field is not enough to
reduce significantly the annihilation lifetime (except for very
low l values). Finally this field is just enough to mix the
n ∼ 1300 manifold with the n + 1 ones (Inglis-Teller fields),

but because only a few collisions will arise during the Pn
travel, this will probably have a small effect. In conclusion, at
first glance, unlike is the case for liquid and gaseous hydrogen
targets, the collisions do not seem to play a big role, and we
will neglect them here.

(2) For the motion under the trapping field, we will assume
z along the B field, and so the axial field does not modify
the m values and so does not produce any extra annihilation;
see Eq. (6). However, the radial field (along x) mixes the m
values. This electric field is Erad(r) = e npr/(2ε0) for r � rp

and Erad(r) = e npr2
p/(2rε0) for r > rp (it reaches 103 V/m

at the plasma radius rp = 1 mm for a density ∼1014 m−3).
This implies that for a Pn with a radial velocity component of
vth = 912 m/s created at the center of a plasma with density
np = 1014 m−3 and rp = 1 mm, E reaches ∼4 × 103 V/m per
μs of flight. During the time this Pn reaches the plasma edge
at rp, the sum of electric fields caused NSt,x = rp

vth
νSt,x ≈ 104

Stark transitions. Assuming a Rydberg state of 〈nPn〉 ∼ 1300
this transit then yields a mean survivability until annihila-
tion occurs of ∼15%, when using the same model as for
Fig. 2(f).

(3) The motional Stark effect is a very similar effect
because the Pn velocity component perpendicular to B gives
a Lorentz electric field, reaching values of Em = 4.5 × 103

V/m for a Pn moving in radial direction at vth = 912 m/s.
These fields of kV/m are important, and in addition to

Stark quenching they may cause field ionization of the Pn
highly excited states. For instance, in axial plasma direction
the electric potential rises within a few Debye lengths typ-
ically of ∼20 μm to values of the applied axial trapping
potential. For the considered trap geometries and densities the
potential change over this short distance leads to peak values
of up to Eax ≈ 3 × 103 V/m on axis at the plasma edges
[24,62,63]. A polarized Rydberg Pn moving parallel to B
ionizes when the electric field surpasses the value in Pn atomic
units of Emax > 1/(16n4

Pn) [64–66]. With the Pn atomic units
of the electric field of 4 × 1017 V/m we find for Eax about
nax

Pn,ion ≈ 1700. Thus for Pn formation from nH = 30 a fraction
of ηion,30 = 0.84 of the Pn are formed below the threshold
nax

Pn,ion [nPn distribution; see Fig. 2(a)].
From all this discussion and limitations, we see that, if

most of the Pn should survive, the Stark mixing and the
field ionization (especially at the plasma edges) as Pn travel
through the trap has to be considered carefully to give the
proper Pn formation number. This is why we have performed
a more detailed Monte Carlo simulation to estimate the ex-
pected Pn production yield.

We mention that this simulation is based on the simple
assumption that the Pn motion through the trap is an unde-
flected trajectory. This is a reasonable assumption because the
transition into “guiding center atoms” where the magnetron
motion causes the bound systems to drift apart occurs for
nrad

Pn,ion ≈ 11 000 [64,65,67–69].

III. Pn YIELD SIMULATION

In order to confirm the large production number estimated
in Sec. II, we studied in more detail the Pn formation and
annihilation process using a Monte Carlo simulation. Here we
analyzed the Pn yield into 4π , N4π

Pn and into the forward solid
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angle of � = 30 msr, N�
Pn, for various plasma parameters and

including Stark effects using random positioning ri for H−
and a 3D Maxwellian distribution for the mixed plasma in
thermal equilibrium. In azimuthal direction for each ith H−,
the plasma rotation velocity, vφ (ri) = ri e np/(2ε0B), is added
at the respective particle’s radial position ri. The number of
H(30d) are randomly taken determined by ηL. We then use
a Metropolis-Hastings method to choose the Pn formation
according to the cross section from Eq. (2) and with the nPn

and lPn state distributions from Fig. 2.
After the laser interaction at t0, during each time step of

typically dt = 10 ns for each Pn the sum of E j = Em, j +
Erad, j + Eax, j defining the quantization axis z is calculated.
Between two time steps, a variation of E defines the per-
turbation field Ep and determines the number of Stark total
transitions NSt, j = dt (νSt,x, j + νSt,z, j ) from Eq. (6) that occur.
Per dt , NSt, j transitions are then performed for each Pn(n, l),
where the probability for a �m = +1, �m = −1, �l = +1
or �l = −1 transition is chosen with a Metropolis-Hastings
method according to the individual νSt,x, j and νSt,z, j frequen-
cies. Pn that hereby reach mPn = 0,±1 or lPn = 0, 1 during
this time step are considered lost and are removed from the
simulation and are summed to find N4π

St , the number of total
Stark-quenched Pn. At 100 K, most Pn formation occurs then
within few μs.

Figure 4 depicts N4π
Pn (left column) and N�

Pn (right column)
for different plasma parameters. From Figs. 4(a) and 4(b)
one sees the intuitive picture of an increase in Pn yield with
lower Tp and with higher np reaching N4π

Pn = 3 × 104 and
N�

Pn = 200 at 50 K and np = 1015 m−3. The particle ratio
inside the plasma is scanned in Figs. 4(c) and 4(d) showing a
plateau at NH−/Np̄ ≈ 1 − 2 at np � 1014m−3, which is shifted
to larger ratios of two to five for higher densities. The flux into
� reaches ∼100 Pn for np = 1015 m−3 and for a particle ratio
of one to five. In Figs. 4(e) and 4(f) the plasma aspect ratio
is scanned while keeping Np̄ fixed at 3 × 107 for a density of
1015 m−3. Here for the case of keeping the laser intensities
constant when varying the plasma radii (increasing laser pow-
ers with larger radius), a flat yield distribution is seen with the
maximum flux into � at around Al/r = 1 (rp = 1 mm, lp =
100 mm). For the case of keeping the laser powers constant
and adjusting the laser waists to the respective plasma radius
in the calculation (thereby increasing the laser intensities with
smaller radii and ηL) a plasma with large Al/r (small radius)
exhibits a higher Pn yield.

Because per laser shot about ηL = 30% of the H− are
excited to H(30d) and about 104 p̄ are used to produce Pn,
the remaining plasma still carries sufficient constituents to
repeat the formation process. The repetition rate is, however,
limited by the pulsed laser repetition rate and the rether-
malization time of the plasma. Eventually, a large enough
number of p̄ and H− have been either transformed to Pn,
ionized, or have escaped the trap as H, so that it becomes
beneficial to recycle the plasma with new particles. For the
rethermalization time, the released photoelectrons from H−
photodetachment at kinetic energies of about 0.42 eV (BE-
hc/λ1064) will cause additional heating of the plasma, which
will be offset by the continuous electron cooling of the ini-
tially trapped electrons. For example, at parameters as used in
Fig. 4 of np = 5 × 1014 m−3, NH−/Np̄ = 1, and Ne−/(NH− +

FIG. 4. Number of formed Pn in 4π (left column) and into �

(right column) for one laser shot for the following plasma parame-
ters: Tp = 100 K, rp = 1 mm, lp = 100 mm, NH−/Np̄ = 2, B = 5 T,
nH = 30 for densities np = 5 × 1013 to 1015 m−3. While leaving
the other parameters constant, in panels (a) and (b) the plasma
temperature is scanned, in panels (c) and (d) the ratio of the number
of H− to p̄ and, in panels (e) and (f) the plasma aspect ratio Al/r .
To keep the plasma volume πr2

plp constant, Al/r is defined via

rp = 10−5/2A−1/2
l/r and lp = 10−2Al/r , for (solid lines) constant laser

intensities and (dashed lines) constant laser powers. See text for
details.

Np̄) = 0.1 there are Ne− = 9 × 107 electrons and per laser
shot 7 × 106 H− are removed and photoelectrons added. For
these photoelectrons the time constant for radiative cooling

is given by τel = 3πm3
eε0c3

e4B2 = 0.1 s−1, and using coupled rate
equations, described in Ref. [70], we find that this heats the
plasma temperature initially by about 50 K within 1 ms before
reaching initial temperatures again after about 0.8 s. Thus, in
this example an experimental repetition rate of about 1 Hz is
feasible, which rate can easily be reached by typical pulsed
laser systems.

The increase of N4π
Pn as a function of the number of

consecutive laser repetitions is then plotted in Fig. 5(a) for
nH = 15 to 45. As each shot reduces the number of available
particles the curves flatten at about 10 repetitions. For this
case, Figs. 5(b) and 5(c) show the numbers of accumulated
Pn, ionized H and Pn, and Stark-quenched Pn within 4π

and �, respectively. Here higher nH occupations result in
more Stark losses and ionizations from inelastic collisions,
resulting in a flat distribution of the Pn yield from nH = 20
to 40. For nH = 45 the Pn yield decreases, and it reaches a
maximum into � at nH = 30 of 194 Pn after 10 repetitions.
This then corresponds to a total of 7 × 104 formed Pn for
H(n = 30), and thus nH = 30 is used for the laser excitation
calculation.
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FIG. 5. Number of formed Pn as a function of consecutive laser
repetitions and of the initial Rydberg excitation state of H using the
parameters rp = 1 mm, lp = 100 mm, NH−/Np̄ = 1, B = 5 T, np =
5 × 1014 m−3, and Tp = 100 K. (a) N4π

Pn versus the number of con-
secutive laser repetitions for nH = 15–45 resulting in ηmb,15 = 0.99,
ηmb,20 = 0.95, ηmb,25 = 0.83, ηmb,30 = 0.68, ηmb,35 = 0.53, ηmb,40 =
0.42, and ηmb,45 = 0.33. After 100 laser repetitions: (b) N4π

Pn , N4π
H,ion

and N4π
St versus nH and (c) N�

Pn, N�
Pn,ion, and N�

H,ion versus nH. To find
N�

Pn,ion, the fractions of Pn with n < nax
Pn,ion are ηion,15 = 1, ηion,20 =

0.99, ηion,25 = 0.93, ηion,30 = 0.84, ηion,35 = 0.71, ηion,40 = 0.55, and
ηion,45 = 0.39. See text for details.

IV. SUMMARY AND OUTLOOK

In this paper an ab initio simulation is performed in a
Penning-Malmberg trap to produce a pulsed source of highly
excited Pn that exhibit long-lived states and with temperatures
corresponding to the cryogenic environment in which they
are formed. The scheme is based on the preparation of p̄ to
interact with Rydberg excited H(30d) that are produced from
photodetached and excited H−. The laser excitation scheme
was calculated using a semiclassical picture where in a 5 T
field an excitation efficiency of about 30% was found for
standard laser parameters. The excitation efficiency is taken
as an input to perform a Monte Carlo simulation of the inter-
acting p̄ and H(30d) to produce Pn∗ via a resonant-charge-
exchange reaction. For a mixed plasma of the constituents at
a temperature of 100 K the Pn formation was found to yield
about 7 × 104 Pn into 4π and ∼200 Pn into a solid angle of 30
msr towards the Penning trap opening per experimental cycle
of 10 s with a 1 Hz laser repetition rate.

In an experiment, Pn created from this proposed method
could be used to perform spectroscopic studies of Pn Ryd-
berg states, from which the Rydberg constant of Pn can be

determined to potentially higher precision than in antiprotonic
helium, as the three-body calculation of the later system is
simplified to a pure QED two-body calculation. Laser light in
the microwave and optical range can drive individual Rydberg
transitions, probing the strong force close to the annihilation
threshold, where the state detection could be performed by
optically pumping the considered state into either a short-lived
s and p state or into weakly bound states using field ionization.
Also, part of the spontaneously emitted light, which is radiated
by Pn∗ when cascading down before annihilating from low
level states, can be collected and sent to a spectrometer
leading to the possibility of an improved (in the case of Pn)
or first (in the case of antiprotonic deuterium) measurement
of the strong-interaction shift of the ground state.

Indeed, the production scheme can be also extended to
antiproton-deuteron atoms, using initially deuterium anions
and with the laser excitation frequencies increased by the
deuterium level shift of 0.027% compared to H, and more
generally to any atomic system susceptible to be photoionized
from its anionic form and excited into a Rydberg state.

Further, the presented Pn source could be used as an input
to a Talbot-Lau type interferometer. The Stark effect could
be used to create three laser gratings to quench Pn at the
antinodes, resulting in an interference pattern, similar to the
ionization laser gratings used in Refs. [71–73]. Such a device
could allow performing precision measurements sensitive to
the gravitational interaction and to the charge neutrality be-
tween p and p̄. Here using the scheme of Ref. [11], the phase
shift induced by gravity could be measured by horizontally ro-
tating the IF grating plane to control the influence of g during
the measurement, i.e., by a rotation of 30o to be sensitive to
0.5 g. Similarly as discussed for H̄ in Ref. [74], Pn at a kinetic
energy of 10 meV and for gratings with a periodicity of 1 μm
and separated by 10 cm would then allow to resolve g to a
1σ precision after detecting approximately 1000 Pn behind
the interferometer. To reach the sensitivity needed to tackle
the know neutrality of Pn (7 × 10−10 C at 90% confidence
interval) [75], in such an IF only a small bias electric field
of ∼1 V/cm perpendicular to the IF axis would be required,
while observing an unperturbed interference fringe. Because
larger fields can be applied, we think that such Pn source and
interferometric measurement is promising for neutrality tests.
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APPENDIX

In this Appendix we will start by describing the first- and
second-order perturbation theory of two-body bound atoms
(Pn, H, and for completeness Ps) in E and B fields given
in generalized reduced atomic units. For H, the problem is
treated in more detail in Refs. [27,76–79].

While such treatments of the overlap of the radial wave
function of H can be found in many works [27,80–82], they
are often given only partially or are misprinted. We will then
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recollect the relevant formulas to calculate the light-atom
interaction for two-body atoms in a semiclassical picture.

A. Two-body atoms in E and B fields (perturbation theory)

In Ref. [27] Eq. (42.1) gives the proper Hamiltonian for
two particles in free field, so is valid for H, Pn, and Ps. To
add the external fields we typically change p to p − eA/c
where A = 1

2 B × r for a uniform magnetic field. Using SI
units we find the Hamiltonian in external electric E′ and
magnetic B fields is given by (where we did not put the
relativistic terms such as the spin-orbit ones) [27]: H =
H0 + HZeeman + HDiamagnetic + HStark where H0 = − h̄2

2μ
∂2

∂r2 −
e2

4πε0r , HPn
Zeeman = μNgpB· I2−I1

2h̄ , HH
Zeeman = μBB·−geS1+gLL

h̄ −
μNB· gpI1

2h̄ , HPs
Zeeman = μBgeB· S2−S1

h̄ where μB = h̄e
2me

, μN =
h̄e

2mp
, S1 is the spin operator for the electron, S2 for the positron,

I1 for the proton and I2 for the antiproton, and gL ≈ 1 −
1/M, where M is the ratio of the nuclear mass to the elec-
tron mass, ge ≈ −2.002319 and gp ≈ 5.585. HDiamagnetic =
− e2

8μ
(r × B)2, and the Stark effect HStark = −er·E has to be

calculated using the Lorentz transform to put the Pn, Ps, or
H, at rest. So the atom sees a modified electric field E =
E′ + v × B.

We define reduced units as
(1) The (Bohr) radius a(μ)

0 = 4πε0 h̄2

μe2

(2) The (Hartree) energy E (μ)
h = h̄2

μ(a(μ)
0 )2

= e2

4πε0a(μ)
0

(3) The reduced electric field E (μ)
au = Eμ

h /(ea(μ)
0 )

(4) The reduced magnetic field B(μ)
au = h̄/[e(a(μ)

0 )
2
].

(5) For H we have μ(H) = memp/(me + mp) ≈ me, for
Pn μ(Pn) = mp/2 ≈ μ(H)/914, and for Ps μ(Ps) = me/2. For
infinite nucleus mass we have μ(∞) = me and for such
case the previous values are the atomic units (values
are from Ref. [83]), E (∞)

h = 4.359744722 × 10−18 J,
E (∞)

au = Eh/(ea(∞)
0 ) = 5.142206748 × 1011 V/m,magnetic

field (SI) B(∞)
au = h̄

e(a(∞)
0 )2 = 2.350517568 × 105 T.

Using dimensionless units defined by r = r̄a(μ)
0 , H =

H̄E (μ)
h , E = −ĒE (μ)

au , and B = B̄B(μ)
au and using the angular

momentum L̄ = L
h̄ with eigenvalues m on the field-free |nlm〉

basis and the spin angular momenta S̄ = S
h̄ and Ī = I

h̄ we find

H̄ = −1

2

∂2

∂ r̄2
− 1

r̄
+ r̄·Ē − 1

8
(r̄ × B̄)2 + H̄ (μ)

Zeeman,

H̄ (H )
Zeeman = 1

2
B̄·

(
gLL̄ − geS̄1 − me

2mp
gpĪ1

)
,

H̄ (Pn)
Zeeman = 1

8
gp B̄·(Ī2 − Ī1),

H̄ (Ps)
Zeeman = 1

4
geB̄·(S̄2 − S̄1), (A1)

where the magnetic terms differ for H, Pn, and Ps.

B. Perturbation theory

The first part of the Hamiltonian − 1
2

∂2

∂ r̄2 − 1
r̄ leads to the

standard energy levels − 1
2n2 . If we restrict ourself to a given n

manifold we obtain to the following Hamiltonian:

H̄ = − 1

2n2
+ r̄·Ē − 1

8
(r̄ × B̄)2 + H̄ (μ)

B,L ,

H̄ (H )
B,L = 1

2
gLB̄·L̄ , (A2)

where the Zeeman effect of Pn and Ps is independent of L.
This Hamiltonian has been studied in several articles, with the
pioneering work performed by Pauli, who shows that on the n
submanifold r̄ = − 3

2 Ā, where A is the Runge-Lenz vector. In
this manifold we can define new commuting angular momenta
K1 = L̄+Ā

2 and K2 = L̄−Ā
2 . We shall use the |K1m1〉 ⊗ |K2m2〉

basis where their eigenvalues m1, m2 (on a given axis) take the
values −(n − 1)/2,−(n − 3)/2, . . . . , (n − 1)/2.

1. First-order perturbation in fields

Our goal is to calculate the energy levels using perturbation
theory. A perturbation theory in field values is when Stark
or Zeeman effects are bigger than the fine structure, which
is therefore well suited for Rydberg states.

In the uncoupled Paschen-Back basis of
|n, l, ml , s, ms, i, mi〉 we will focus on the nontrivial
orbital part |n, l, m〉 (notation m = ml ). To the first order
in field we thus have to deal with the perturbation for H as
being approximately (gL = 1 and no hyperfine structure)
V1 = r̄·Ē + 1

2 B̄·L̄ and for Pn and Ps as V1 = r̄·Ē. To
stay closer to the H case and to prepare the second-order
perturbation theory we will use the |K1m1〉 ⊗ |K2m2〉 basis.
We define for H ω1 = B̄−3nĒ

2 and ω2 = B̄+3nĒ
2 and for Ps

and Pn ω1 = − 3nĒ
2 and ω2 = 3nĒ

2 . In the n manifold, we get
V1 = ω1·K1 + ω2·K2, which can be diagonalized using the
|K1m1〉ω1 |K2m2〉ω2 basis. So m1 is the projection of K1 on ω1

and ω1 = |ω1| and similarly for m2. From this the first-order
perturbation theory is

�Ē (1)
m1m2

= ω1m1 + ω2m2. (A3)

For a pure electric field we restore (for H, Ps, and Pn) the Stark
effect �Ē (1)

m1m2 = 3
2 nĒ (m1 + m2) with a clear relation to the

parabolic quantum number [84]. For H we restore the standard
�Ē (1)

m1m2 = 1
2 B̄(m1 + m2) where m = m1 + m2 because K1 +

K2 = L̄.
The connection with the parabolic eigenfunctions |n, k, m〉

is n = n1 + n2 + |m| + 1 with n1, n2 � 0 such that k = n2 −
n1 is the eigenvalue of Az. The introduction of parabolic
coordinates simultaneously diagonalizes Lz, K1z, K2z. So we
can write

|n, k, m〉 = |K1m1 = 1
2 (m + k)〉E

× |K2m2 = 1
2 (m + k)〉E. (A4)

Another parabolic basis often used is the |n, k, m〉 linked to
Ĥ , Âz, L̂z eigenvalues, so k = n1 − n2. It is important to note
that using this formalism the states will always be given in
a parabolic basis and not in a spherical basis even in a pure
magnetic field, so, for instance, s and p states will be mixed.

2. Second-order perturbation in fields

The second-order perturbation in fields is due to the
diamagnetic term V2 = − 1

8 (r̄ × B̄)2, and the second-order
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Stark effect W = r̄·ĒGnr̄·Ē, with Gn is the Green’s function of the field-free Hamiltonian. Solov’ev [76] found expressions in
the n manifold valid for Pn, Ps, and H atoms: V2 = n2B̄2

16 [4Ā2 − 5(Ā·eB)2 + (L̄·eB)2 + n2 + 3] and W = n4Ē2

16 [5n2 + 31 + 24L̄2 −
21(L̄·eE )2 + 9(Ā·eE )2], where we write the projections on the direction vectors for the electric and magnetic fields as eE = Ē/Ē
and eB = B̄/B̄. By taking α1 and α2 as the angles between the magnetic field B̄ and the vectors ω1 and ω2, respectively, (so for
Pn and Ps α1 = π − α2) gives for �Ē (2)

m1m2 = 〈nm1m2|V2 + W |nm1m2〉 [76,77]

�Ē (2)
m1m2

= −n4Ē2

16

[
17n2 + 19 − 12

[
m2

1 + m1m2 cos(α1 + α2) + m2
2

] + n2B̄2

48
[7n2 + 5 + 4m1m2 sin α1 sin α2

+(n2 − 1)(cos2 α1 + cos2 α2) − 12
(
m2

1 cos2 α1 − m1m2 cos α1 cos α2 + m2
2 cos2 α2

)]
. (A5)

C. Reduced radial wave function

For stationary bound states the wave function of a bound two-body system (H, Pn, Ps) with reduced mass μ can be written
in the usual form �nlm(r, θ, φ) = Rnl (r)Ylm(θ, φ) and for continuum states �W lm(r, θ, φ) = RW l (r)Ylm(θ, φ). Here W labels the
free electron kinetic energy linked to an incident photon energy as h̄ω = W + Ry(μ)/n2, where Ry(μ) = 2E (μ)

h is the reduced
Rydberg energy. The overlaps of the dipole matrix elements of states |n, l〉 to |n′, l ′〉 can be solved for bound-bound transitions
as Rn′l ′

nl = 〈n′l ′|r|nl〉 = ∫ ∞
0 R∗

n′l ′rRnl r2 dr and for bound-continuum transitions as RW l ′
nl = 〈W l ′|r|nl〉 = ∫ ∞

0 R∗
W l ′rRnl r2 dr. The

space-normalized radial wave functions of bound states Rnl and of continuum states RW l for a reduced Bohr radius a(μ)
0 are then

given by

Rnl (r) =

√√√√ (n − l − 1)!

2n(n + l )!

(
2

na(μ)
0

)3(
2r

na(μ)
0

2
)l

exp

(
− r

na(μ)
0

)
L

(
n − l − 1; 2l + 1;

2r

na(μ)
0

)
(A6)

and

RW l (r) =
√√√√ 2�l

i=0(1 + i2W/Ry(μ) )

(1 − exp[−π
√

4Ry(μ)/W )]
(
a(μ)

0

)3
Ry(μ)

(
2r/a(μ)

0

)l

(2l + 1)!
exp

(
i

r

a(μ)
o

√
W

Ry(μ)

)

× 1F1

(
l+1−i

√
W

Ry(μ) ; 2l + 2; −2i
r

a(μ)
0

√
W

Ry(μ)

)
, (A7)

with L the generalized Laguerre polynomial and 1F1 the confluent hypergeometric function. For the bound states the normaliza-
tion 1 = ∫ ∞

0 Rnl (r)2r2 dr is used, and for the continuum states we use the energy normalization through W = (k(μ) )2Ry(μ) and

δ(W − W ′) = ∫ ∞
0 RW l (r)RW ′l r2 dr so that Rkl (r) =

√
Ry(μ)RW l (r). To solve the overlap integral for Rn′l ′

nl an analytical expression
for dipole transitions l ′ = l − 1 is

Rn′l−1
nl = (−1)n′−l

4(2l − 1)!

√
(l + n)!(l + n′ − 1)!

(−l + n − 1)!(n′ − l )!

(4nn′)l+1(n − n′)n+n′−2l−2

(n + n′)n+n′

{
2F1

(
l − n + 1; l − n′; 2l; − 4nn′

(n − n′)2

)

− (n − n′)2

(n′ + n)2 2F1

[
l − n − 1, l − n′; 2l; − 4nn′

(n − n′)2

]}
. (A8)

Rn′l+1
nl is calculated similarly using Rn′l+1

nl = Rnl
n′l+1. The overlap for bound-continuum transitions Rkl ′

nl with k(μ) =
√

W/Ry(μ) is
given for the cases of l ′ = l − 1 and l ′ = l + 1 by

Rk(μ)l−1
nl = −1

4(2l + 1)!

√
(n + l )!�l−1

i=1[1 + i2(k(μ) )2]

2(n − l − 1)![1 − exp(2π/k(μ) )]

[
4n

1 + n2(k(μ) )2

]l+1

exp

[−2 arctan(nk(μ) )

k(μ)

][
n − i/k(μ)

n + i/k(μ)

]n−l−1

×
{

2F1

[
l − i/k(μ); l + 1 − n; 2l;

−4ni/k(μ)

(n − i/k(μ) )2

]
− (n − i/k(μ) )2

(n′ + i/k(μ) )2 2F1

(
l − i/k(μ); l − 1 − n; 2l;

−4ni/k(μ)

(n − i/k(μ) )2

)}
,

Rk(μ)l+1
nl = −i

4k(μ)(2l + 1)!

√
(n + l )!�l−1

i=1 (1 + i2(k(μ) )2)

2(n − l − 1)![1 − exp(2π/k(μ) )]

[
4n

1 + n2(k(μ) )2

]l+2

exp

[−2 arctan(nk(μ) )

k(μ)

][
n − i/k(μ)

n + i/k(μ)

]n−l−2

×
{

2F1

[
l + 2 − i/k(μ); l + 1 − n; 2l + 2;

−4ni/k(μ)

(n − i/k(μ) )2

]

− (n − i/k(μ) )2

(n′ + i/k(μ) )2 2F1

[
l − i/k(μ); l + 1 − n; 2l + 2; − 4ni/k(μ)

(n − i/k(μ) )2

]}
. (A9)
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To include the fine splitting in the regime of strong fields,
where the state is expressed in the uncoupled basis |nlmlsms〉
(for H in the Paschen-Back regime of strong magnetic fields),
the dipole transition between |nlmlsms〉 and |n′l ′m′

l s
′m′

s〉 (or
|kl ′m′

l s
′m′

s〉 for the case of continuum states) can be found
using the Wigner-Eckart theorem that links the dipole moment
�d = e�r with the radial overlap Rn′l ′

nl (or Rkl ′
nl ) and with s = s′ as

〈n′l ′m′
lm

′
s|r (q)|nlmlms〉

= δmsm′
s
C

l ′m′
l

lml ,1(q=m′
l −ml )

〈n′l ′||r (q=m′
l −ml )||nl〉√

2l ′ + 1

= δmsm′
s
C

l ′m′
l

lml ,1(m′
l −ml )C

l ′0
l0,10

√
2l + 1√
2l ′ + 1

Rn′l ′
nl , (A10)

where we see directly the selection rule �ms = 0.

D. Stimulated emission and photoionization cross section

The bound-bound cross section between the |nlmlms〉 and
|n′l ′m′

lm
′
s〉 states with a energy difference h̄ω is given by

σ
n′l ′m′

l m
′
s

nlml ms
= δmsm′

s

πωe2
(
a(μ)

0

)2

3cε0 h̄
g(ω − ω0)

×|〈n′l ′m′
l |r (q=m′

l −ml )|nlml〉|2. (A11)

Here g(ω − ω0) is the line shape function of the transition
with normalization

∫
gdω = 1 and describes the frequency

dependency of the cross section over the ensemble-average
line shape. The Einstein A coefficient can then be expressed
as function of the bound-bound cross section:

A
n′l ′m′

l m
′
s

nlml ms
= δmsm′

s

ω3e2
(
a(μ)

0

)2

3πε0h̄c3

×|〈n′l ′m′
l |r (q=m′

l −ml )|nlml〉|2. (A12)

Similarly, the cross section for a bound-continuum transition
for incident light at angular frequency ω is

σ
kl ′m′

l m
′
s

nlml ms
= δmsm′

s

16π3a(μ)
0 Ry(μ)ω

c

× |〈kl ′m′
l |r (q=m′

l −ml )|nlml〉|2. (A13)

Using a Gaussian laser spectrum with FWMH laser line
width �νL gives the laser electric field EL(t ) = √

2I (t )/(ε0c),
where I (t ) = ∫

dωI (ω, t ) is the entire laser irradiance and
I (t ) = I0 exp[−4 ln 2(t/τ )2] is the temporal profile with the
peak value I0 and pulse width τ = 0.44/�νL . For broad-
band lasers (�νL � A) the bound-bound dipole transition

rate at resonance is then given for a dipole d = d
n′l ′m′

l m
′
s

nlml ms
=

ea(μ)
0 〈n′l ′m′

l |r (q=m′
l −ml )|nlml〉 and a laser polarization ε by

�
n′l ′m′

l m
′
s

nlml ms
(t ) = 2I (t )|d εq|2

h̄2ε0c
√

�ν2
L + �ν2

D

= �(t )2√
�ν2

L + �ν2
D

, (A14)

with the Rabi frequency �(t ) = d·EL(t )/h̄. �νD is the
Doppler broadening of the transition for an ensemble of mov-
ing atoms at temperature T and particle mass M as �νD =
ω0/π

√
2kT ln 2/(Mc2).

If the photodetachment cross section does not vary signif-
icantly over the laser spectral bandwidth (which is the case
for the profile of H− and the considered 1064 nm laser with
�νL = 44 MHz), the photodetachment rate can be written as

�pd (t ) = I (t )

h̄ω
σpd , (A15)

with the photodetachment cross section σpd . Similarly, the
bound-continuum photoionization rate is given by

�
kl ′m′

l m
′
s

nlml ms
(t ) = I (t )

h̄ω
σ

kl ′m′
l m

′
s

nlml ms
. (A16)
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