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Coherent control of the photoelectron angular distribution in ionization of neon by a circularly
polarized bichromatic field in the resonance region
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Coherent control of the photoelectron angular distribution (PAD) in ionization by a bichromatic circularly
polarized field is theoretically studied in neon in the photon energy range 16–20 eV. The breakdown of the
PAD axial symmetry with respect to the light propagation direction is analyzed. The coherent control of the
PAD manifests itself through: (1) a change from a one-lobe to a three-lobe shape, respectively, for co- and
counter-rotating harmonics, (2) a variation of the polar asymmetry with the light frequency, and (3) a rotation
of the PAD around the direction of the beam depending on the relative phase between the harmonics. Tuning
the lowest harmonic at the 2p53s or 2p54s intermediate excited states strongly influences the PAD. In contrast to
atomic hydrogen and the alkali atoms, the cases of equal and opposite helicity are not related in neon. Features
of a conjugate polarization setup, when one harmonic is linearly polarized while the other one is circularly
polarized, are also discussed.
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I. INTRODUCTION

Quantum coherent control is ubiquitous in atomic, molec-
ular, and solid-state physics, providing a fundamental basis
for numerous methods to investigate quantum systems. The
phase control of photoprocesses has been the subject of
many studies and reviews [1–7]. Quantum coherent-control
approaches have been applied to control chemical reactions or
biological change [8], to ultrafast and nonlinear optics [9,10],
4D ultrafast electron microscopy [11,12], and other promising
applications.

The implementation of highly coherent sources of extreme
ultraviolet (XUV) radiation, such as seeded free-electron
lasers (FELs), has made it possible to extend light-driven
coherent control into the high-energy domain [13]. Coherent
control of the photoelectron angular distributions (PADs)
was recently achieved at FERMI [13] by manipulating the
time delay (corresponding to the relative phase) between a
linearly polarized fundamental field and its second harmonic
to unprecedented accuracy. An asymmetry of the PAD was
obtained by interfering one- and two-photon ionization path-
ways. An intermediate resonant state was employed as a step-
ping stone to enhance the two-photon ionization amplitude,
thereby resulting in an increased interference signal.

Various aspects of coherent control of ionization in the
XUV domain by association of the fundamental with either
the second or third harmonic were discussed in [14], and
its implementation to characterize unknown pulse parameters
was successfully realized [15]. An extensive theoretical anal-
ysis of the control of the PAD after ionization by both lin-
early and circularly polarized bichromatic XUV radiation was

performed for ionization of the hydrogen atom in its ground
state by tuning the fundamental harmonic near the interme-
diate 2p resonance [16,17]. In particular, the asymmetry of
the PADs with respect to the plane normal to the electric field
of the linearly polarized light, as well as the axial asymmetry
of PADs with respect to the direction of the radiation beam
for circularly polarized light, were studied, including their
energy dependence near a resonant intermediate state. Fur-
ther theoretical investigations were performed for bichromatic
ionization of the valence 2p subshell of neon by linearly
polarized light in the vicinity of the intermediate 2p53s and
2p54s states [18,19]. The latter analysis was conducted within
lowest-order perturbation theory, for pulses with either finite
or infinite durations, and also by solving the time-dependent
Schrödinger equation (TDSE).

In the present work we develop a similar approach in
neon for the case of circularly polarized co-propagating FEL
harmonics and discuss other possible polarization setups. The
present investigation was motivated by the fact that some
linear and many nonlinear phenomena can manifest them-
selves in different ways, or possibly also disappear, depending
on the light polarization, e.g., photoelectron spin polariza-
tion [20,21], stabilization [22,23], high-harmonic generation
[24–27], or polarization-plane rotation [28]. Selection rules
with circular radiation often allow fewer ionization channels
compared to using linearly polarized light, thereby enhancing
specific effects and simplifying their interpretation. A detailed
description of multiphoton ionization with elliptically polar-
ized light can, for instance, be found in Ref. [29]. Inves-
tigations of ionization processes with radiation of different
polarizations provide detailed information on the ionization
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amplitudes and may enable so-called “complete” (“perfect”)
experiments [30] to be performed, as well as characterize the
unknown parameters of the radiation [31,32].

There are two occurrences when a multicolor field appears:
A short pulse with broad envelope and laser radiation with
multiple harmonics. Both cases have been discussed exten-
sively in the low-frequency domain, for both the multiphoton
[33,34] and tunneling ionization [35] regimes. The asymmetry
in the photoelectron emission was used to determine the car-
rier envelope phase (CEP) of few-cycle laser pulses [31] and
to produce directional bond breaking in molecular ionization
[36]. At high frequencies, multiphoton ionization can often
be described in terms of lowest-order perturbation theory
[37]. CEP effects and electron vortices in photoionization
by an elliptically polarized ultrashort pulse were discussed
for s-shell ionization [38,39]. Ionization by a fundamental
ω and second harmonic 2 ω has attracted much attention.
It is, however, usually limited to the study of alkali atoms
and molecules, due to the difficulty in manipulating the light
polarization in the vacuum ultraviolet (VUV) domain. The
ω + 2 ω scheme has been successfully achieved with linearly
polarized radiation [40,41], but it could only be applied with
circularly polarized radiation in a few limited cases [42]. For
systems without spherical symmetry, such as molecules or
atoms in external fields [43,44], interference between one-
and two-photon ionization pathways appears in intricate ways.
Recently, such interference was discussed for the case of
chiral molecules [45], where circularly polarized beams are
particularly important, as they enable discriminating different
enantiomers and resolving their dynamics.

In this study we consider the coherent control of the PAD
in ionization of neon by a coherent mixture of a circularly
polarized fundamental pulse, with frequency ω, and its second
harmonic 2 ω in the photon energy range h̄ω = 16–20 eV,
i.e., tuned near the 2p53s, 4s, 3d discrete resonances (see
Fig. 1, where an example of a transition scheme is given in the

FIG. 1. Transition scheme for valence ionization of neon ground
state by bichromatic radiation with a right-hand circularly polarized
fundamental and a right-hand or left-hand circularly polarized sec-
ond harmonic.

vicinity of the 4s states). The ionization of the 2p shell brings
novel features to the process in comparison with ionization
from the 1s ground state of atomic hydrogen [17].

In the next section we present our theoretical approach,
which is followed by our results in Sec. III. In Sec. IV
we discuss other practical polarization setups, and the final
section is devoted to our conclusions. Unless stated otherwise,
atomic units are used throughout this paper.

II. THEORY

The electric field for a right-hand circularly polarized
fundamental (ω), and right-hand (positive helicity, λ = +1)
or left (negative helicity, λ = −1) circularly polarized second
harmonic (2 ω) is of the form

E (t ) = F (t ){x cos ωt + y sin ωt

+ η[x cos(2ωt + φ) + λ y sin(2ωt + φ)]}. (1)

The convention of helicities is in accordance with [46]. We
take the pulse envelope in the form F (t ) = F0 sin2[2πNt/ω],
where N is the number of optical cycles, η > 0 is the ratio of
the electric field strengths between the fundamental and the
second harmonic, φ is the relative phase of the harmonics,
and the z axis is chosen parallel to the radiation beams kγ .
The peak intensity of the pulse is given as Iω = 7 × 1016F 2

0
W/cm2, where F0 is taken in atomic units.

We denote the amplitude for photoemission in the di-
rection k/k ≡ {ϑ, ϕ} by the second harmonic in first-order
perturbation theory as U (1)(k), and the one by the funda-
mental in second order as U (2)(k), respectively. According
to Fermi’s golden rule, the probability to observe an electron
with energy k2/2 = 2ω − I.P. (where I.P. is the ionization
potential) is proportional to |ηU (1)(k) + U (2)(k)|2. In eval-
uating the photoionization amplitudes U (1)(k) and U (2)(k) we
follow the formalism of [19] for linearly polarized fields and
obtain the photoelectron angular distribution as a sum of three
terms:

dW

d

= dW

d


(I)

+ dW

d


(II)

+ dW

d


(III)

. (2)

In the above equation, the first and second terms are due to
the second harmonic (one-photon ionization) and the first har-
monic (two-photon ionization), respectively, while the third
term is due to interference between the two paths. The three
terms can be cast into the forms

dW I

d

= η2

4π

∑
k

BI
kPk (cos ϑ ), (3)

dW II

d

= 1

4π

∑
k

BII
k Pk (cos ϑ ), (4)

dW III

d

= η√

π

∑
k

k̂−1Re
[
BIII

kqYkq(ϑ, ϕ)
]
. (5)

While both BI and BII are real, BIII is complex valued. There
is no sum over q in Eq. (5) because, as will be shown below,
choosing fixed polarizations of the harmonics allows only one
value of q.
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After performing the necessary algebra, we obtain

BI
k = (−1)L f +1

∑
ll ′

l̂ l̂ ′(1λ, 1 − λ | k0)
(
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}
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Here l is the orbital angular momentum of the photoelec-
tron, standard notations for the Clebsch-Gordan coefficients,
6 j symbols, Legendre polynomial, and spherical harmonic
are used, and we defined â ≡ √

2a + 1. In Eqs. (6)–(8) ζn

and ζ f (below) describe collectively any additional quantum
numbers that may be needed to further identify a given state.
The approximations and notations in Eqs. (6)–(8) are similar
to those used previously to derive Eqs. (10)–(13) of [19].
Consequently, we only describe the main ideas below.

We assume a closed-shell atom in the initial state | 0 〉
and the LSJ-coupling scheme for the final ionic states with
orbital angular momentum L f , spin S f = 1

2 , and total elec-
tronic angular momentum Jf . The result implies an incoherent
summation over the fine-structure states Jf . The intermediate
states in the second-order amplitude are described in the
intermediate-coupling scheme. For the nth state we have

| ζnJn 〉 =
∑
LnSn

α
ζn
LnSn

| ζnLnSnJn 〉. (9)

We neglect the spin-orbit interaction in the atomic continuum,
which is a very good approximation for a relatively light target
such as neon. We then introduce the following short-hand
notations for the reduced matrix elements D(S) of the dipole
operator [47]:

D(0)
0→L f l,1 = 〈ζ f L f l, L = 1 || D || 0〉,

D(S)
n,Ln→L f l,L = 〈ζ f L f l : L || DS || ζnLn〉,

D(0)
0→n,1 = 〈ζnLn = 1 || DSn=0 || 0〉, (10)

where the superscript (S) or (0) indicates the value of the
conserved total spin. The electric dipole operator cannot
change the spin of a system. For channels starting from the
ground state, therefore, only S = 0 is allowed. For channels
passing through the intermediate state, S could be either “0”
and “1.” In Eqs. (6)–(8) α

ζn
10 ≡ α

ζn
Ln=1,Sn=0. We also abbrevi-

ated −ii−l eiδl ≡ ei�(1)
l and −i−l eiδl ≡ ei�(2)

l , where δl is the

scattering phase in the photoionization channel with orbital
angular momentum l .

The time-dependent factors T (1) and T (2)
En

were described
in detail in [16,17]. They are given by

T (1)
λ=±1 = ∓e−iφ F0√

2

∫ NT

0
sin2 
t ′ei(E−E0−2ω)t ′

dt ′, (11)

T (2)
En

= F 2
0

2

∫ NT

0
sin2 
t ′ei(E−En−ω)t ′

dt ′

×
∫ t ′

0
sin2 
t ′′ei(En−E0−ω)t ′′

dt ′′. (12)

Here the rotating-wave approximation was applied, and thus
there are no fast-oscillating terms like ei(E−E0+2ω)t . The rela-
tive phase φ, which is an important control parameter, can be
decoupled as

T (1)T (2)∗
En

∼ e−iφ. (13)

The above consequent of the RWA was checked for hydrogen
example and found to be very well fulfilled for N � 40 optical
cycles (see Fig. 2(c) of [17]).

As in the case of linearly polarized harmonics [19],
only terms with S = 0 contribute to the interference cross
section (8). Therefore, in (8) we used L′ = J ′ = 2 for the
final orbital and total angular momenta in the two-photon
ionization.

The PAD (2) may be conveniently parametrized as

dW +

d

= W0

4π
[1 + β+

2 P2(cos ϑ ) + β+
4 P4(cos ϑ )

+β+
1 sin ϑ cos(ϕ − ψ1) − β+

3 sin3 ϑ cos(ϕ − ψ3)]

(14)

for equal helicities (co-rotating fields, +) and

dW −

d

= W0

4π
[1 + β−

2 P2(cos ϑ ) + β−
4 P4(cos ϑ )

+β−
3 sin3 ϑ cos(3ϕ − ψ3)] (15)
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for opposite helicities (counter-rotating fields, −). In both
cases we assume the fundamental to be right-hand polarized.
The situations when both harmonics are left-hand polarized or
when the fundamental is left-hand and the second harmonic is
right-hand polarized are related to (14) and (15), respectively,
by the replacement ϕ → −ϕ. The angular anisotropy param-
eters in (14) and (15) are

W0 = η2BI
0 + BII

0 , (16)

β±
2 = (

η2BI
2 + BII

2

)
/W0, (17)

β±
4 = BII

4 /W0, (18)

β+
1 = η

∣∣BIII
1−1/

√
2 + BIII

3−1

√
3
∣∣/W0, (19)

β+
3 = η 5

√
3
∣∣BIII

3−1

∣∣/(4W0), (20)

β−
3 = η

√
5
∣∣BIII

3−3

∣∣/(4W0), (21)

ψ1 = arg
[
BIII

1−1/
√

2 + BIII
3−1

√
3
]
, (22)

ψ3 = arg
[
BIII

3−3

]
. (23)

Equations (14) and (15) are similar to Eqs. (24) of [17]
for the hydrogen atom, with the major difference being the
β+

1 sin ϑ cos(ϕ − ψ1) term in (14). The origin of this dif-
ference may be understood from the following simplified
discussion in the LS approximation: Two-photon ionization
by a right-hand circularly polarized fundamental leads partly
to a p wave, with the residual 2p5 2P ion in the M f = 1 state.
Single-photon ionization, on the other hand, leads partly to
an s wave, with the residual 2p5 2P ion in the M f = 1 state
for a right-hand circularly polarized second harmonic and in
the M f = −1 state for the left-hand case. Interference of two
pathways is only possible if final states are the same. While
this interference of s and p waves is possible for co-rotating
harmonics, it is forbidden for counter-rotating fields.

This was not the case for a residual ion in an S state, like
atomic hydrogen [17] or alkali atoms. As in hydrogen, the
co-rotating fields produce a single-lobe pattern, albeit in the
Cs symmetry group with the symmetry plane perpendicular to
the beam [see Fig. 2(b)] instead of C2h for hydrogen, while
the counter-rotating fields produce triple-lobe clover-leaf-like
patterns [D3h symmetry group with the principal axis along
the beams, Fig. 2(c)]. The parametrization for the counter-
rotating beams (15) is identical to the case of hydrogen (see
Eqs. (24) of [17]). It will be seen below that the additional
term β+

1 , appearing for neon in (14), can noticeably suppress
coherent control in some cases.

The symmetry of the PAD may be understood by looking
carefully into the strength of the ionizing electric field, which
is an effective way to analyze nonlinear processes [35,48,49].
The origin for the asymmetry in the process considered
here is the following: When a field configuration appears,
it repeats after every period. For co-rotating harmonics, the
electric vectors coincide once in each period [Fig. 3(a)], while
they coincide three times in each period for counter-rotating
harmonics [Fig. 3(b)]. In a classical description, the electron
would immediately follow the electric field vector. Quantum

(a) (b)

(c)

FIG. 2. The coordinate system (a) and typical PADs for
co-rotating (b) and counter-rotating (c) fields. The calculation was
performed in the PT model with ω = E3s′ , η = 0.1, and I = 1012

W/cm2.

ionization, however, involves a scattering phase, and hence the
resulting PAD in the plane containing the laser polarization
rotates away from the field by the angle corresponding to the
phase difference between the one- and two-photon ionization
channels �

(1)
l − �

(2)
l ′ [17] (solid red lines in Fig. 3). When

there are several ionization channels, the rotation angle differs
for each set of matrix elements. For a multielectron atom
ionized by co-rotating harmonics, these patterns with different
rotation angles are summed. It follows from Eqs. (13)–(15)
that the dominant effect of varying the relative phase between
the harmonics is a rotation of the PAD around the direction
of the beams. That would actually be the only effect within
perturbation theory for long pulses (i.e., within PT and RWA).
This can be understood because changing the relative phase
of two circularly polarized long pulses rotates the direction
along which the electric strengths of the harmonics coincide:
e.g., for φ = 0 they coincide along the x axis, for φ = π/2
along the y axis. We set φ = 0 below.

We employ three different computational models to de-
scribe the ionization of neon by a bichromatic field: Lowest-
order time-dependent perturbation theory (PT) for a pulse
of finite length; lowest-order perturbation theory for an in-
finitely long “pulse” (PT∞), and direct numerical solution
of the TDSE. These approaches were already presented in

(a) (b)

FIG. 3. Electric field strength (black dashed line) for co-rotating
(a) and counter-rotating (b) harmonics with zero relative phase
φ = 0, and a modeled PAD (solid red line) in the plane perpendicular
to the pulse beam with a difference in the scattering phases of �

(1)
l −

�
(2)
l ′ = 1. For co-rotating harmonics, the PAD rotates by 1 rad, while

it rotates by 1/3 rad in the counter-rotating case.
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TABLE I. States in Racah notation and their spectroscopic designation N for selected states, experimental excitation energies [56] (in eV),
and leading eigenvector components.

State N Energy Leading terms in multiconfiguration expansion

2p6 1S – 93%|2p6 1S〉 + 6%|2p53p 1S〉 + 1%|2p43p2 1S〉a

2p5(2P3/2)3s[3/2]1 3s 16.67 10%|2p53s 1P〉 + 90%|2p53s 3P〉
2p5(2P1/2)3s′[1/2]1 3s′ 16.84 90%|2p53s 1P〉 + 10%|2p53s 3P〉
2p5(2P3/2)4s[3/2]1 4s 19.68 48%|2p54s 1P〉 + 52%|2p54s 3P〉
2p5(2P1/2)4s′[1/2]1 4s′ 19.78 52%|2p54s 1P〉 + 48%|2p54s 3P〉
2p5(2P3/2)3d[1/2]1 20.03 21%|2p53d 1P〉 + 77%|2p53d 3P〉 + 1%|2p53d 3D〉
2p5(2P3/2)3d[3/2]1 20.04 52%|2p53d 1P〉 + 10%|2p53d 3P〉 + 38%|2p53d 3D〉
2p5(2P1/2)3d[3/2]1 20.14 27%|2p53d 1P〉 + 12%|2p53d 3P〉 + 61%|2p53d 3D〉
aSum of three terms with 2p4 3P, 1D, 1S core states.

[19]. Since additional computational details can be found in
[50–55], we only discuss the relevant modifications below.

The PT∞ and TDSE models are both nonrelativistic and
employ a single-active-electron approximation with the same
potential describing the neon atom. In the PT model, we
use multiconfiguration Hartree-Fock (MCHF) intermediate-
coupling wave functions [57], which were further improved
in comparison with [19]. Specifically, the 1s, 2s, 2p orbitals
were obtained in a self-consistent calculation of the ionic
Ne+(1s22s22p5 2P) ground state. These orbitals were then
frozen, and the physical 3s, 4s, 3d orbitals were obtained in
single-configuration 1s22s22p5nl 1P (nl = 3s, 4s, 3d ) calcu-
lations. A 3p̄ correlation orbital was introduced to optimize
the energy of the ground state on the mixed 2p6 + 2p53p̄ +
2p43p̄2 configurations. Finally, we mixed all configurations
associated with single and double promotions of the 2p
electron(s) by the above electronic states and applied the
semirelativistic Breit-Pauli Hamiltonian to obtain the final
configuration- and term-mixing coefficients. The above model
improves the ionization potential and reproduces the angular
anisotropy parameter β for single-photon ionization in good
agreement with experiment [58].

The configuration mixing in the current model is stronger
than that reported in our previous paper [19]. Table I shows
some spectroscopic parameters of our PT model. The mixing
coefficients strongly deviate from those of the pure LS- and
jK-coupling schemes (not shown). We then used the experi-
mental excitation thresholds in the calculations of the PADs.
For the single-active-electron nonrelativistic PT∞ and TDSE
models, where the fine-structure splitting is neglected, we
shifted the energies of the single-electron 3s and 4s states to
match the calculated energy with the experimental energies
averaged over the appropriate configurations.

III. RESULTS AND DISCUSSION

Figures 4(a) and 4(c) exhibit the angular anisotropy param-
eters as a function of the fundamental frequency. Within the
second-order PT approach, β+

2 = β−
2 , β+

3 = β−
3 , and β−

1 = 0.
The TDSE calculations show that β+

3 ≈ β−
3 and β−

1 ≈ 0, but
β+

2 = β−
2 at a photon energy in resonance with the strong

radiative transition between the ground state and the 3s′ state.
This difference is mainly due to transitions involving the

temporary recapture of an electron. For instance, ionization
by the second harmonic could be followed by capture of an
electron from the continuum state back to the 3s′ state (this is
only possible for co-rotating harmonics), and first-harmonic
ionization could interfere with direct second-harmonic ion-
ization. The asymmetry of this interference with the helicity
of the second harmonic results in a difference between β+

2
and β−

2 near a resonance. This effect cannot be described by
second-order PT.

We confirmed the above interpretation of a strong-field
effect by lowering the peak intensity by a factor of 2, i.e.,
setting I = 5 × 1011 W/cm2. We found that the difference
between β+

2 and β−
2 was reduced by a factor of 3. The PT

and TDSE results are in reasonable agreement with each
other in the vicinity of the 3s state. The differences between
the results obtained in the two approaches (except for the
above-mentioned strong-field effect) are mostly due to the
differences in the spectroscopic models. For example, the PT
calculations exhibit weak features near the 3s state [Fig. 4(a)]
due to the fine-structure splitting, which is not accounted for
in the single-active electron TDSE calculations. Similarly, the
shapes of the PT and TDSE curves are different in the vicinity
of the 4s states [Fig. 4(c)], although the maximum values
of the anisotropy parameters agree. This difference is also a
manifestation of the fine-structure splitting in the PT model.
Although not resolved for the chosen pulse duration of N =
250 optical cycles (50–65 fs), accounting for the fine-structure
splitting shifts the position of the zeros.

The energy dependence of the angle ψk is determined by an
interplay between two-photon ionization into p and f waves.
The former is dominated by resonant ionization via the 3s
and 4s states, while the latter is dominated by nonresonant
ionization through infinite sets of virtual nd and εd states or,
in other words, the potential part of the ionization amplitude.
As a result, the phase of the p-wave amplitude changes by
π when the photon energy crosses the resonance. The longer
the pulse, the sharper is the phase jump. These π jumps are
seen in both angles ψ1 and ψ3, in the vicinity of the 3s′ state
[see Fig. 4(b)], while an additional π jump in ψ1 and ψ3

(out of range of the figure) is due to a vanishing |βk|. For an
infinitely long pulse, the same features would be observed in
the vicinity of the 4s and 4s′ states (see Figs. 3(c) and 3(d)
of [19]). The main contribution to both β+

1 and β±
3 comes
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(a) (c)

(b) (d)

FIG. 4. Angular anisotropy parameters βk (k = 1, 2, 3, 4) and the angles ψk (k = 1, 3). Black thick lines: TDSE, red thin lines: PT.
Left panels: The region near the 3s states, right panels: The region near the 4s and 3d states. The pulse parameters are: I = 1012 W/cm 2,
η = 0.1, N = 250. Those parameters that exist in both the co-rotating and counter-rotating cases coincide in the PT approach. The only visible
difference in the TDSE results is observed for β+

2 and β−
2 in (a).

from interference between two-photon ionization into the f
wave and one-photon ionization into the d wave. Furthermore,
assuming no significant contributions from other channels,
β+

1 = β±
3 and ψ1 = ψ3 + π .

Since it is difficult to extract the angular anisotropy pa-
rameters directly from the experimental data, it is often more
practical to introduce the maximum polar asymmetry of the
PAD, as in the case of hydrogen [17]. This polar asymmetry
is defined as

Aν (ϑ, ϕ) = W ν (ϑ, ϕ) − W ν (ϑ, ϕ + π )

W ν (ϑ, ϕ) + W ν (ϑ, ϕ + π )
, (24)

where W ν (ϑ, ϕ) ≡ dW ν/d
 and ν = (−) or ν = (+). The
asymmetry (24) vanishes for incoherent one- and two-photon
ionization, when the PAD becomes axially symmetric. For
the counter-rotating fields, ν = (−), Eq. (15) shows that the
maximum asymmetry A−

max is observed at ϑ = π/2, 3ϕ = ψ3.
For the co-rotating fields, ν = (+), the answer is not

so straightforward. For practical convenience, therefore, we
consider the maximum asymmetry in the plane perpendicular
to the beam (ϑ = π/2). The dependence of (24) on ϕ is then
seen from Eqs. (14), (15), and

Aν
max = |Aν (π/2, 0) + i Aν (π/2, π/2)|, (25)

while the corresponding polar angle of the maximum signal is
observed at

ϕν
max = arg[Aν (π/2, 0) + i Aν (π/2, π/2)]. (26)

In Eqs. (25) and (26) one can take any other pair of conjugated
angles {ϕ, ϕ + π/2} instead of {0, π/2}.

The asymmetries (24) and (25), as well as the angle (26),
may be considered as controlled parameters, together with βν

k
and ψν

k . At the same time, for the incoherent process, only βν
2

and βν
4 do not vanish.

In Fig. 5 the polar asymmetries (24) are displayed for co-
and counter-rotating fields calculated within our three models
for ϑ = π/2, two angles ϕ = 0, ϕ = π/2, and the relative
phase between the harmonics φ = 0. The polar diagrams
exhibit the maximum asymmetries (25) and the corresponding
observation angle (26) as they vary with the fundamental
frequency. These variations are sharp near the resonances,
while Amax and ϕmax remain almost constant between the
resonances.

The TDSE calculations show that the anisotropy parame-
ters of high rank are small. Specifically, βk>4 < 0.005 sug-
gests the validity of the parametrization (2,14,15) for the
intensity discussed here. From previous calculations for lin-
early polarized harmonics, we also know that the parametriza-
tion is valid up to I ≈ 5 × 1013 W/cm2. Additional channels
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(a)

(c)

(b)

(d)

FIG. 5. Polar asymmetries A− (a) and A+ (c) for the phase φ = 0 between the fundamental and its second harmonic for two angles
ϕ = 0, π/2 [ϑ = π/2, see Eq. (25)]. (b) and (d): The amplitudes of maximum polar asymmetry and polar angle ϕ for its observation, as
obtained with the PT model. The number along the curves marked corresponds to the photon energy. The upper panels are for opposite
helicities, the bottom ones for equal helicities. The pulse parameters are the same as in Fig. 4.

do not play an important role, even though saturation at reso-
nance is achieved earlier at I ≈ 1013 W/cm2 (Fig. 6 of [19]).

An essential difference between the current results for neon
and those for hydrogen [17] is that for hydrogen Amax and
ϕmax were the same for co- and counter-rotating fields. In neon
the patterns are different. This difference originates from the
interplay between many ionization channels. For a strong res-
onance, such as 2p53s, the maximum asymmetry for counter-
rotating fields is much larger than for co-rotating fields. With
a weakening of the resonance ionization pathway, leading to
the domination of the direct two-photon ionization into the f
wave, the asymmetries become comparable and even larger
than for co-rotating fields. The d and f channels dominate in
the nonresonant region, and it follows from (5), (8), and (24)
that A+(ϑ, ϕ) = −2A−(ϑ, ϕ). Both time-dependent models
(TDSE and PT) tend to show the extremum of the asymmetry
near the resonances, while PT∞ predicts zero asymmetry at
the resonance and two pronounced extrema on both sides [the
indication to this splitting could be seen in PT and TDSE for
longer pulses, see Figs. 6(a) and 6(b) region of small η]. In
contrast to hydrogen [17] and neon with linearly polarized

fields [18,19], Aν
max cannot reach unity at the extrema with

circularly polarized light, despite the fact that A−
max can get

close to 1.0 if a resonance is strong enough [cf. Fig. 5(a)].
For A+

max, the value at the extrema depends on the interplay
between the s and d channels and is always less than unity.

Figure 6 provides a general view of the evolution of
the maximum asymmetry with varying the relative harmonic
strength η. To maximize the asymmetry generated by the
interference between the one-photon and two-photon ioniza-
tion channels they should be comparable in strength. The
one-photon ionization channels do not contain resonances,
and hence the corresponding amplitudes vary smoothly in
the region of interest. In contrast, the two-photon channels
include resonances, predominantly in the p-wave channel, due
to the intermediate ns discrete states, in addition to the smooth
two-photon transitions into the f -wave channels. Figures 6(a)
and 6(b) demonstrate that the influence of the resonances is
more important for the counter-rotating fields. For harmonic
ratios of η ≈ 0.3 (for 3s) and η ≈ 0.02 (for 4s), the maximum
polar asymmetry A−

max approaches unity. A−
max is decreasing

for both higher and lower values of η, respectively, due to
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(a) (c)

(b) (d)

FIG. 6. Maximum polar asymmetry as a function of the fundamental frequency ω and harmonic strength ratio η for counter-rotating (upper
panels) and co-rotating (lower panels) harmonic fields. The left panels present the region near the 3s state, the right panels present the region
near the 4s and 3d states. The results are from PT calculations with I = 1012 W/cm 2 and N = 500.

the domination of either the one-photon or the two-photon
ionization channels, thereby leading to a small interference
term in the PAD. Away from the resonance, a large polar
asymmetry is reached at smaller relative intensity of the sec-
ond harmonic η < 0.02, but it remains below the asymmetry
values at the resonance. For the co-rotating fields, the asym-
metry approaches unity away from the resonance region at
small η < 0.1, showing the dominant role of the nonresonant
amplitudes, and then drops down near the resonances.

Finally, Eq. (14) shows that there are six parameters that
describe the PAD for co-rotating fields and four ionization
channels. Consequently, three ratios of complex amplitudes
determine the combined one- and two-photon ionization dy-
namics. This means that measurements of the PAD for the co-
rotating fields are sufficient to extract all the magnitude ratios
and the relative phases (up to modulo π ) between the ampli-
tudes. Except for an overall normalization factor, this makes it

possible to perform, within the limits of nonrelativistic lowest-
order perturbation theory and the dipole approximation, a
so-called complete photoionization experiment [30].

IV. OTHER PRACTICAL EXAMPLES

The ionization with two circularly polarized fields consid-
ered here and in [19] with two linearly polarized fields along
the same direction are two special cases when it comes to
breaking symmetry. If there is no coherence between the har-
monics, then the PADs possess symmetry axes and, perpen-
dicular to them, a symmetry plane. One of these symmetries
is broken when coherent control is realized. From this point
of view it is hardly practical to consider intermediate cases,
such as elliptical polarization(s) or arbitrary angle between
harmonic propagation directions, because most of them do not
possess axial symmetry even for incoherent harmonics. The
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criteria for realization of coherent control, therefore, would
be ambiguous.

There is only one exception, namely when one harmonic
is circularly polarized and the other one is linearly polarized
along the propagation direction of the first one. Specifically,
the field for a linearly polarized fundamental and a circularly
polarized second harmonic (LC) can be cast as

ELC (t ) = F (t ){z cos ωt

+ η[x cos(2ωt + φ) + λ y sin(2ωt + φ)]}.(27)

On the other hand, a circularly polarized fundamental and a
linearly polarized second (CL) is written as

ECL(t ) = F (t )[x cos ωt + y sin ωt

+ ηz cos(2ωt + φ)]. (28)

Since the intensity of a harmonic depends on its polarization,
a meaningful comparison requires that η should be

√
2 times

smaller than for circularly polarized harmonics in the first case
and

√
2 times larger in the second case.

In the first case the PAD takes the same form as (14) for
equal helicities:

dW LC

d

= W0

4π

[
1 + βLC

2 P2(cos ϑ ) + βLC
4 P4(cos ϑ )

+βLC
1 sin ϑ cos

(
ϕ − ψLC

1

)
−βLC

3 sin3 ϑ cos
(
ϕ − ψLC

3

)]
. (29)

It possesses a single-lobe pattern (symmetry group is Cs), but
the parameters in Eqs. (29) and (14) are not related, because
two-photon ionization by linearly polarized radiation allows
channel(s) with total angular momentum J = 0, which are
forbidden for circular polarization. The equations for βLC

k via
the parameters BLC remain the same as given in (16)–(20)
and (22) for equal helicities. The representation of the angular
anisotropy parameters in terms of amplitudes is given in the
Appendix. A typical PAD is shown in Fig. 7(a). There is no
interference contribution along the z axis, i.e., the polarization
direction of the fundamental. A more pronounced interference
pattern appears in the xy plane.

The PAD for a circularly polarized fundamental and a
linearly polarized second harmonic is parametrized as

dW CL

d

= W0

4π

[
1 + βCL

2 P2(cos ϑ ) + βCL
4 P4(cos ϑ )

+βCL
3 cos ϑ sin2 ϑ cos

(
2ϕ − ψ

(CL)
3

)]
. (30)

This case is related to (6)–(8) for the opposite helicities
via the transformations BII(CL)

k ≡ BII
k , BI(CL)

0 = BI
0, BI(CL)

2 =
−2BI

2, and BIII(CL)
3−2 = B3−3/

√
3 (provided that the strength F0

of the linearly polarized harmonic is
√

2 higher than for the
circularly polarized case). Equations (16)–(18) remain the
same, while (21) and (23) are modified as follows:

βCL
3 = η

√
30

∣∣BIII(CL)
3−2

∣∣/(4W0), (31)

ψCL
3 = arg

[
BIII

3−2(CL)

]
. (32)

Hence βCL
3 = √

2β−
3 (provided that ηCL = √

2η−) and ψCL
3 =

ψ3. The symmetry group is S2 and example of typical PAD is

(a) (b)

FIG. 7. Typical PADs for a linearly polarized fundamental and
right-hand circularly polarized second harmonic for η = 0.1/

√
2

(a) and vice versa at η = 0.1
√

2 (b). The calculation was performed
in the PT model with ω = E3s′ , I = 1012 W/cm2.

shown in Fig. 7(b). From the parametrization (30) one can see
that interference contributes most at the magic angle ϑmag =
arccos[1/

√
3], producing two horns for ϕ = ψCL

3 /2 and ϕ =
ψCL

3 /2 + π . The same happens in the lower hemisphere at
ϑ = π − arccos[1/

√
3] and ϕ = ψCL

3 /2 ± π/2. This setup
may be especially attractive for practical purposes, because
at the magic angle there are only minor contributions from
incoherent terms to the PAD due to P2(cos ϑmag) = 0.

In both cases CL and LC, varying the phase between the
harmonics rotates the PAD around the z axis. The efficiency
of control, i.e., the asymmetry, only depends on the harmonic
strengths ratio η.

V. SUMMARY AND CONCLUSIONS

We have investigated the coherent control of the photo-
electron angular distribution from the valence 2p shell of
atomic neon after circularly polarized bichromatic ionization
by a fundamental frequency and its second harmonic in the
vicinity of intermediate resonances. The maximum asymme-
try of the PAD in the plane normal to the photon beams (the
“polar asymmetry”) and the corresponding rotation angle of
the symmetry axis in this plane are the main parameters to
control, while the relative intensities, the helicities, the relative
phases of the two circularly polarized fields, the fundamental
frequency, and the time duration of the pulses represent the
controlling parameters. While varying the relative phase of
the harmonics for collinearly polarized fields provides control
of the PAD asymmetry, it only causes a rotation of the PAD
around the beam direction for circularly polarized beams.

For neon and, by similar considerations, for ionization
of the valence p subshells of other heavy noble gases, the
PADs for co- and counter-rotating fields differ by one term,
in contrast to ionization of s electrons from atomic hydrogen
or the alkali atoms, where the parametrizations are identical.
Thus, in noble gases other than helium, the behavior of the
polar asymmetry is more intricate. For counter-rotating fields,
the polar asymmetry is larger and originates from intermediate
resonances in the two-photon ionization pathway. For co-
rotating fields, the influence of the intermediate resonances
is weaker, and a polar asymmetry is already caused by the
nonresonant ionization pathways.
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In addition, we considered situations when one harmonic
is circularly polarized and the other one is linearly polarized
along the propagation direction of the first. For incoherent
harmonics, ionization with such a field produces an axially
symmetric PAD, and coherent control appears as a violation of
that symmetry. The PAD pattern crucially depends on whether
the first or the second harmonic is linearly polarized, with the
second case appearing more promising from an experimental
point of view.

Remarkably, for all cases considered in this work, there is
a significant difference for right-hand and left-hand polarized
harmonic(s). The realization of coherent control manifests
itself as a differential circular dichroism. Furthermore, exper-
iments on coherent control with circularly polarized harmon-
ics might open a way to perform complete photoionization
experiments through the process of joint one-photon and
two-photon ionization. We hope that the present study will

motivate experimentalists and other theoretical groups to also
investigate this interesting problem.
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APPENDIX

Below we present the parameters BCL and BLC for one linearly and the other circularly polarized harmonics in terms of
reduced ionization amplitudes. Note that BI(LC) ≡ BI [Eq. (6)] and BII(CL) ≡ BII [Eq. (7)]:

BI(CL)
k = (−1)L f

∑
ll ′

l̂ l̂ ′(10, 10 | k0)
(
l0, l ′0 | k0

){1 1 k
l ′ l L f

}
exp

[
i
(
�

(1)
l − �

(1)
l ′

)]∣∣T (1)
λ

∣∣2
D(0)

0→L f l,1D(0)∗
0→L f l ′,1, (A1)

BII(LC)
k = (−1)L f

∑
ll′JJ′
LL′S

(−1)S+L+L′
l̂ l̂ ′Ĵ Ĵ ′(l0, l ′0 | k0

)
(J0, J0 | k0)(10, 10 | J0)

(
10, 10 | J ′0

)
exp

[
i
(
�

(2)
l − �

(2)
l ′

)]

× L̂L̂′
{

L L′ k
l ′ l L f

}{
L L′ k
J ′ J S

}(∑
nLn

α
ζn∗
10 α

ζn
LnST (2)

En

{
S L 2
1 1 Ln

}
D(0)

0→n,1D(S)
n,Ln→L f l,L

)

×
⎛
⎝∑

n′L′
n

α
ζn′
10 α

ζn′ ∗
Ln′ ST (2)∗

En′

{
S L′ 2
1 1 L′

n

}
D(0)∗

0→n′,1D(S)∗
n′,Ln′→L f l ′,L′

⎞
⎠, (A2)

BIII(CL)
k−2 = (−1)L f

√
3

∑
ll ′

l̂ l̂ ′(l0, l ′0 | k0)(10, 2 − 2 | k − 2) exp
[
i
(
�

(1)
l − �

(2)
l ′

)]

×
{

2 1 k
l l ′ L f

}
T (1)

λ D(0)
0→L f l,1

⎛
⎝∑

n′L′
n

∣∣αζn′
10

∣∣2
T (2)∗

En′ D(0)∗
0→n′,1D(0)∗

n′,Ln′→L f l ′,2

⎞
⎠, (A3)

BIII(LC)
k−1 = (−1)L f

√
3

∑
ll ′L′

l̂ l̂ ′(l0, l ′0 | k0)(1 − 1, L′0 | k − 1)(10, 10 | L′0) exp
[
i
(
�

(1)
l − �

(2)
l ′

)]

×
{

L′ 1 k
l l ′ L f

}
T (1)D(0)

0→L f l,1

⎛
⎝∑

n′L′
n

∣∣αζn′
10

∣∣2
T (2)∗

En′ D(0)∗
0→n′,1D(0)∗

n′,Ln′→L f l ′,L′

⎞
⎠. (A4)

Note that the T (1) and T (2)
En

factors for circularly polarized harmonics defined in (11) and (12) are larger by factors of
√

2 and 2,
respectively, than for the linearly polarized case defined in Eqs. (9) and (10) of [16]. In (A3) only channels with L = J = 2 are
allowed, while in (A4) both L = J = 0, 2 for the two-photon amplitudes are possible. In order to cast the parametrization (29)
into the same form as (14), we choose the second harmonic to be left-hand circularly polarized [see Eq. (A4)]. For right-hand
circular polarization one should make the replacement ϕ → −ϕ.

[1] M. Shapiro and P. Brumer, J. Chem. Phys. 84, 4103 (1986).
[2] M. Shapiro and P. Brumer, in Advances in Atomic, Molecular,

and Optical Physics, edited by B. Bederson and H. Walther
(Academic, San Diego, 2000), Vol. 42, p. 287.

[3] F. Ehlotzky, Phys. Rep. 345, 175 (2001).
[4] P. Brumer and M. Shapiro, Principles of the Quantum Control

of Molecular Processes (Wiley-VCH, Berlin, 2003).
[5] M. Shapiro and P. Brumer, Phys. Rep. 425, 195 (2006).

063417-10

https://doi.org/10.1063/1.450074
https://doi.org/10.1063/1.450074
https://doi.org/10.1063/1.450074
https://doi.org/10.1063/1.450074
https://doi.org/10.1016/S0370-1573(00)00100-9
https://doi.org/10.1016/S0370-1573(00)00100-9
https://doi.org/10.1016/S0370-1573(00)00100-9
https://doi.org/10.1016/S0370-1573(00)00100-9
https://doi.org/10.1016/j.physrep.2005.12.005
https://doi.org/10.1016/j.physrep.2005.12.005
https://doi.org/10.1016/j.physrep.2005.12.005
https://doi.org/10.1016/j.physrep.2005.12.005


COHERENT CONTROL OF THE PHOTOELECTRON ANGULAR … PHYSICAL REVIEW A 100, 063417 (2019)

[6] V. A. Astapenko, Quantum Electron. 36, 1131 (2006).
[7] C. Brif, R. Chakrabati, and H. Rabitz, New J. Phys. 12, 075008

(2010).
[8] A. H. Zewail, J. Phys. Chem. A 104, 5660 (2000).
[9] L. A. A. Nikolopoulos, E. P. Benis, P. Tzallas, D.

Charalambidis, K. Witte, and G. D. Tsakiris, Phys. Rev. Lett.
94, 113905 (2005).

[10] Y. Nabekawa, T. Shimizu, T. Okino, K. Furusawa, H. Hasegawa,
K. Yamanouchi, and K. Midorikawa, Phys. Rev. Lett. 97,
153904 (2006).

[11] A. H. Zewail, Science 328, 187 (2010).
[12] O.-H. Kwon and A. H. Zewail, Science 328, 1668 (2010).
[13] K. C. Prince, E. Allaria, C. Callegari, R. Cucini, G. D. Ninno,

S. D. Mitri, B. Diviacco, E. Ferrari, P. Finetti, D. Gauthier et al.,
Nat. Photon. 10, 176 (2016).

[14] L. Giannessi, E. Allaria, K. C. Prince, C. Callegari, G. Sansone,
K. Ueda, T. Morishita, C. N. Liu, A. N. Grum-Grzhimailo, E. V.
Gryzlova et al., Sci. Rep. 8, 7774 (2018).

[15] M. D. Fraia, O. Plekan, C. Callegari, K. C. Prince, L. Giannessi,
E. Allaria, L. Badano, G. De Ninno, M. Trovò, B. Diviacco
et al., Phys. Rev. Lett. 123, 213904 (2019).

[16] A. N. Grum-Grzhimailo, E. V. Gryzlova, E. I. Staroselskaya, J.
Venzke, and K. Bartschat, Phys. Rev. A 91, 063418 (2015); 93,
019901(E) (2016).

[17] N. Douguet, A. N. Grum-Grzhimailo, E. V. Gryzlova, E. I.
Staroselskaya, J. Venzke, and K. Bartschat, Phys. Rev. A 93,
033402 (2016).

[18] N. Douguet, E. V. Gryzlova, E. I. Staroselskaya, K. Bartschat,
and A. N. Grum-Grzhimailo, Eur. Phys. J. D 71, 105 (2017).

[19] E. V. Gryzlova, A. N. Grum-Grzhimailo, E. I. Staroselskaya, N.
Douguet, and K. Bartschat, Phys. Rev. A 97, 013420 (2018).

[20] U. Heinzmann, Phys. Scr. T17, 77 (1987).
[21] U. Fano, Phys. Rev. 178, 131 (1969).
[22] M. Dörr, R. M. Potvliege, D. Proulx, and R. Shakeshaft, Phys.

Rev. A 43, 3729 (1991).
[23] M. Pont and M. Gavrila, Phys. Rev. Lett. 65, 2362 (1990).
[24] P. Dietrich, N. H. Burnett, M. Ivanov, and P. B. Corkum, Phys.

Rev. A 50, R3585(R) (1994).
[25] F. A. Weihe, S. K. Dutta, G. Korn, D. Du, P. H. Bucksbaum, and

P. L. Shkolnikov, Phys. Rev. A 51, R3433(R) (1995).
[26] A. Fleischer, O. Kfir, T. Diskin, P. Sidorenko, and O. Cohen,

Nat. Photon. 8, 543 (2014).
[27] P.-C. Huang, C. Hernández-García, J.-T. Huang, P.-Y. Huang,

C.-H. Lu, L. Rego, D. D. Hickstein, J. L. Ellis, A. Jaron-Becker,
A. Becker et al., Nat. Photon. 12, 349 (2018).

[28] P. F. Liao and G. C. Bjorklund, Phys. Rev. A 15, 2009 (1977).
[29] N. L. Manakov, M. V. Frolov, B. Borca, and A. F. Starace,

J. Phys. B 36, R49 (2003).
[30] H. Kleinpoppen, B. Lohmann, and A. N. Grum-Grzhimailo,

Perfect/Complete Scattering Experiments (Springer, Berlin
Heidelberg, 2013).

[31] S. Fukahori, T. Ando, S. Miura, R. Kanya, K. Yamanouchi, T.
Rathje, and G. G. Paulus, Phys. Rev. A 95, 053410 (2017).

[32] T. Mazza, M. Ilchen, A. Rafipoor, C. Callegari, P. Finetti, O.
Plekan, K. Prince, R. Richter, M. Danailov, A. Demidovich
et al., Nat. Commun. 5, 3648 (2014).

[33] N. I. Shvetsov-Shilovski, S. P. Goreslavski, S. V. Popruzhenko,
and W. Becker, Phys. Rev. A 77, 063405 (2008).

[34] Christian Per Juul Martiny and L. B. Madsen, Phys. Rev. Lett.
97, 093001 (2006).

[35] S. Eckart, M. Kunitski, I. Ivanov, M. Richter, K. Fehre, A.
Hartung, J. Rist, K. Henrichs, D. Trabert, N. Schlott et al., Phys.
Rev. A 97, 041402(R) (2018).

[36] K. Lin, X. Gong, Q. Song, Q. Ji, W. Zhang, J. Ma, P. Lu, H.
Pan, J. Ding, H. Zeng et al., J. Phys. B: At. Mol. Opt. Phys. 49,
025603 (2016).

[37] H. R. Reiss, Phys. Rev. A 82, 023418 (2010).
[38] E. A. Pronin, A. F. Starace, M. V. Frolov, and N. L. Manakov,

Phys. Rev. A 80, 063403 (2009).
[39] J. M. NgokoDjiokap, S. X. Hu, L. B. Madsen, N. L. Manakov,

A. V. Meremianin, and A. F. Starace, Phys. Rev. Lett. 115,
113004 (2015).

[40] N. B. Baranova, B. Y. Zel’dovich, A. N. Chudinov, and A. A.
Shul’ginov, Zh. Eksp. Teor. Fiz. 98, 1857 (1990) [Sov. Phys.
JETP 71, 1043 (1990)].

[41] Y.-Y. Yin, C. Chen, D. S. Elliott, and A. V. Smith, Phys. Rev.
Lett. 69, 2353 (1992).

[42] H. Eichmann, A. Egbert, S. Nolte, C. Momma, B.
Wellegehausen, W. Becker, S. Long, and J. K. McIver,
Phys. Rev. A 51, R3414 (1995).

[43] N. L. Manakov, V. D. Ovsiannikov, and A. F. Starace, Phys.
Rev. Lett. 82, 4791 (1999).

[44] A. Bolovinos, S. Cohen, and I. Liontos, Phys. Rev. A 77,
023413 (2008).

[45] R. E. Goetz, C. P. Koch, and L. Greenman, Phys. Rev. Lett. 122,
013204 (2019).

[46] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quan-
tum Electrodynamics (Butterworth-Heinemann, Oxford, 1982),
Vol. 4.

[47] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii,
Quantum Theory of Angular Momentum (World Scientific,
Singapore, 1988).

[48] S. Eckart, M. Richter, M. Kunitski, A. Hartung, J. Rist, K.
Henrichs, N. Schlott et al., Phys. Rev. Lett. 117, 133202 (2016).

[49] L. Barreau, K. Veyrinas, V. Gruson, S. J. Weber, T. Auguste,
J.-F. Hergott, F. Lepetit, B. Carré, J.-C. Houver, D. Dowek
et al., Nat. Commun. 9, 4727 (2018).

[50] A. N. Grum-Grzhimailo, B. Abeln, K. Bartschat, D. Weflen, and
T. Urness, Phys. Rev. A 81, 043408 (2010).

[51] A. N. Grum-Grzhimailo, M. N. Khaerdinov, and K. Bartschat,
Phys. Rev. A 88, 055401 (2013).

[52] I. A. Ivanov, A. S. Kheifets, K. Bartschat, J. Emmons, S. M.
Buczek, E. V. Gryzlova, and A. N. Grum-Grzhimailo, Phys.
Rev. A 90, 043401 (2014).

[53] A. E. Orel and T. N. Rescigno, Chem. Phys. Lett. 146, 434
(1988).

[54] B. Gao and A. F. Starace, Phys. Rev. A 39, 4550 (1989).
[55] E. I. Staroselskaya and A. N. Grum-Grzhimailo, Vest. Mosk.

Univ. Fiz. N5, 45 (2015) [Moscow Univ. Phys. Bull. 70, 374
(2015)].

[56] NIST atomic spectra database, https://physics.nist.gov/
PhysRefData/ASD/levels_form.html.

[57] C. F. Fischer, T. Brage, and P. Johnsson, Computational Atomic
Structure: An MCHF Approach (IOP, Bristol, 1997).

[58] B. Langer, in Studies of Vacuum Ultraviolet and X-ray
Processes, edited by U. Becker (ANS, New York, 1992).

063417-11

https://doi.org/10.1070/QE2006v036n12ABEH013231
https://doi.org/10.1070/QE2006v036n12ABEH013231
https://doi.org/10.1070/QE2006v036n12ABEH013231
https://doi.org/10.1070/QE2006v036n12ABEH013231
https://doi.org/10.1088/1367-2630/12/7/075008
https://doi.org/10.1088/1367-2630/12/7/075008
https://doi.org/10.1088/1367-2630/12/7/075008
https://doi.org/10.1088/1367-2630/12/7/075008
https://doi.org/10.1021/jp001460h
https://doi.org/10.1021/jp001460h
https://doi.org/10.1021/jp001460h
https://doi.org/10.1021/jp001460h
https://doi.org/10.1103/PhysRevLett.94.113905
https://doi.org/10.1103/PhysRevLett.94.113905
https://doi.org/10.1103/PhysRevLett.94.113905
https://doi.org/10.1103/PhysRevLett.94.113905
https://doi.org/10.1103/PhysRevLett.97.153904
https://doi.org/10.1103/PhysRevLett.97.153904
https://doi.org/10.1103/PhysRevLett.97.153904
https://doi.org/10.1103/PhysRevLett.97.153904
https://doi.org/10.1126/science.1166135
https://doi.org/10.1126/science.1166135
https://doi.org/10.1126/science.1166135
https://doi.org/10.1126/science.1166135
https://doi.org/10.1126/science.1190470
https://doi.org/10.1126/science.1190470
https://doi.org/10.1126/science.1190470
https://doi.org/10.1126/science.1190470
https://doi.org/10.1038/nphoton.2016.13
https://doi.org/10.1038/nphoton.2016.13
https://doi.org/10.1038/nphoton.2016.13
https://doi.org/10.1038/nphoton.2016.13
https://doi.org/10.1038/s41598-018-25833-7
https://doi.org/10.1038/s41598-018-25833-7
https://doi.org/10.1038/s41598-018-25833-7
https://doi.org/10.1038/s41598-018-25833-7
https://doi.org/10.1103/PhysRevLett.123.213904
https://doi.org/10.1103/PhysRevLett.123.213904
https://doi.org/10.1103/PhysRevLett.123.213904
https://doi.org/10.1103/PhysRevLett.123.213904
https://doi.org/10.1103/PhysRevA.91.063418
https://doi.org/10.1103/PhysRevA.91.063418
https://doi.org/10.1103/PhysRevA.91.063418
https://doi.org/10.1103/PhysRevA.91.063418
https://doi.org/10.1103/PhysRevA.93.019901
https://doi.org/10.1103/PhysRevA.93.019901
https://doi.org/10.1103/PhysRevA.93.019901
https://doi.org/10.1103/PhysRevA.93.033402
https://doi.org/10.1103/PhysRevA.93.033402
https://doi.org/10.1103/PhysRevA.93.033402
https://doi.org/10.1103/PhysRevA.93.033402
https://doi.org/10.1140/epjd/e2017-70695-7
https://doi.org/10.1140/epjd/e2017-70695-7
https://doi.org/10.1140/epjd/e2017-70695-7
https://doi.org/10.1140/epjd/e2017-70695-7
https://doi.org/10.1103/PhysRevA.97.013420
https://doi.org/10.1103/PhysRevA.97.013420
https://doi.org/10.1103/PhysRevA.97.013420
https://doi.org/10.1103/PhysRevA.97.013420
https://doi.org/10.1088/0031-8949/1987/T17/009
https://doi.org/10.1088/0031-8949/1987/T17/009
https://doi.org/10.1088/0031-8949/1987/T17/009
https://doi.org/10.1088/0031-8949/1987/T17/009
https://doi.org/10.1103/PhysRev.178.131
https://doi.org/10.1103/PhysRev.178.131
https://doi.org/10.1103/PhysRev.178.131
https://doi.org/10.1103/PhysRev.178.131
https://doi.org/10.1103/PhysRevA.43.3729
https://doi.org/10.1103/PhysRevA.43.3729
https://doi.org/10.1103/PhysRevA.43.3729
https://doi.org/10.1103/PhysRevA.43.3729
https://doi.org/10.1103/PhysRevLett.65.2362
https://doi.org/10.1103/PhysRevLett.65.2362
https://doi.org/10.1103/PhysRevLett.65.2362
https://doi.org/10.1103/PhysRevLett.65.2362
https://doi.org/10.1103/PhysRevA.50.R3585
https://doi.org/10.1103/PhysRevA.50.R3585
https://doi.org/10.1103/PhysRevA.50.R3585
https://doi.org/10.1103/PhysRevA.50.R3585
https://doi.org/10.1103/PhysRevA.51.R3433
https://doi.org/10.1103/PhysRevA.51.R3433
https://doi.org/10.1103/PhysRevA.51.R3433
https://doi.org/10.1103/PhysRevA.51.R3433
https://doi.org/10.1038/nphoton.2014.108
https://doi.org/10.1038/nphoton.2014.108
https://doi.org/10.1038/nphoton.2014.108
https://doi.org/10.1038/nphoton.2014.108
https://doi.org/10.1038/s41566-018-0145-0
https://doi.org/10.1038/s41566-018-0145-0
https://doi.org/10.1038/s41566-018-0145-0
https://doi.org/10.1038/s41566-018-0145-0
https://doi.org/10.1103/PhysRevA.15.2009
https://doi.org/10.1103/PhysRevA.15.2009
https://doi.org/10.1103/PhysRevA.15.2009
https://doi.org/10.1103/PhysRevA.15.2009
https://doi.org/10.1088/0953-4075/36/9/201
https://doi.org/10.1088/0953-4075/36/9/201
https://doi.org/10.1088/0953-4075/36/9/201
https://doi.org/10.1088/0953-4075/36/9/201
https://doi.org/10.1103/PhysRevA.95.053410
https://doi.org/10.1103/PhysRevA.95.053410
https://doi.org/10.1103/PhysRevA.95.053410
https://doi.org/10.1103/PhysRevA.95.053410
https://doi.org/10.1038/ncomms4648
https://doi.org/10.1038/ncomms4648
https://doi.org/10.1038/ncomms4648
https://doi.org/10.1038/ncomms4648
https://doi.org/10.1103/PhysRevA.77.063405
https://doi.org/10.1103/PhysRevA.77.063405
https://doi.org/10.1103/PhysRevA.77.063405
https://doi.org/10.1103/PhysRevA.77.063405
https://doi.org/10.1103/PhysRevLett.97.093001
https://doi.org/10.1103/PhysRevLett.97.093001
https://doi.org/10.1103/PhysRevLett.97.093001
https://doi.org/10.1103/PhysRevLett.97.093001
https://doi.org/10.1103/PhysRevA.97.041402
https://doi.org/10.1103/PhysRevA.97.041402
https://doi.org/10.1103/PhysRevA.97.041402
https://doi.org/10.1103/PhysRevA.97.041402
https://doi.org/10.1088/0953-4075/49/2/025603
https://doi.org/10.1088/0953-4075/49/2/025603
https://doi.org/10.1088/0953-4075/49/2/025603
https://doi.org/10.1088/0953-4075/49/2/025603
https://doi.org/10.1103/PhysRevA.82.023418
https://doi.org/10.1103/PhysRevA.82.023418
https://doi.org/10.1103/PhysRevA.82.023418
https://doi.org/10.1103/PhysRevA.82.023418
https://doi.org/10.1103/PhysRevA.80.063403
https://doi.org/10.1103/PhysRevA.80.063403
https://doi.org/10.1103/PhysRevA.80.063403
https://doi.org/10.1103/PhysRevA.80.063403
https://doi.org/10.1103/PhysRevLett.115.113004
https://doi.org/10.1103/PhysRevLett.115.113004
https://doi.org/10.1103/PhysRevLett.115.113004
https://doi.org/10.1103/PhysRevLett.115.113004
https://doi.org/10.1103/PhysRevLett.69.2353
https://doi.org/10.1103/PhysRevLett.69.2353
https://doi.org/10.1103/PhysRevLett.69.2353
https://doi.org/10.1103/PhysRevLett.69.2353
https://doi.org/10.1103/PhysRevA.51.R3414
https://doi.org/10.1103/PhysRevA.51.R3414
https://doi.org/10.1103/PhysRevA.51.R3414
https://doi.org/10.1103/PhysRevA.51.R3414
https://doi.org/10.1103/PhysRevLett.82.4791
https://doi.org/10.1103/PhysRevLett.82.4791
https://doi.org/10.1103/PhysRevLett.82.4791
https://doi.org/10.1103/PhysRevLett.82.4791
https://doi.org/10.1103/PhysRevA.77.023413
https://doi.org/10.1103/PhysRevA.77.023413
https://doi.org/10.1103/PhysRevA.77.023413
https://doi.org/10.1103/PhysRevA.77.023413
https://doi.org/10.1103/PhysRevLett.122.013204
https://doi.org/10.1103/PhysRevLett.122.013204
https://doi.org/10.1103/PhysRevLett.122.013204
https://doi.org/10.1103/PhysRevLett.122.013204
https://doi.org/10.1103/PhysRevLett.117.133202
https://doi.org/10.1103/PhysRevLett.117.133202
https://doi.org/10.1103/PhysRevLett.117.133202
https://doi.org/10.1103/PhysRevLett.117.133202
https://doi.org/10.1038/s41467-018-07151-8
https://doi.org/10.1038/s41467-018-07151-8
https://doi.org/10.1038/s41467-018-07151-8
https://doi.org/10.1038/s41467-018-07151-8
https://doi.org/10.1103/PhysRevA.81.043408
https://doi.org/10.1103/PhysRevA.81.043408
https://doi.org/10.1103/PhysRevA.81.043408
https://doi.org/10.1103/PhysRevA.81.043408
https://doi.org/10.1103/PhysRevA.88.055401
https://doi.org/10.1103/PhysRevA.88.055401
https://doi.org/10.1103/PhysRevA.88.055401
https://doi.org/10.1103/PhysRevA.88.055401
https://doi.org/10.1103/PhysRevA.90.043401
https://doi.org/10.1103/PhysRevA.90.043401
https://doi.org/10.1103/PhysRevA.90.043401
https://doi.org/10.1103/PhysRevA.90.043401
https://doi.org/10.1016/0009-2614(88)87473-6
https://doi.org/10.1016/0009-2614(88)87473-6
https://doi.org/10.1016/0009-2614(88)87473-6
https://doi.org/10.1016/0009-2614(88)87473-6
https://doi.org/10.1103/PhysRevA.39.4550
https://doi.org/10.1103/PhysRevA.39.4550
https://doi.org/10.1103/PhysRevA.39.4550
https://doi.org/10.1103/PhysRevA.39.4550
https://doi.org/10.3103/S0027134915050148
https://doi.org/10.3103/S0027134915050148
https://doi.org/10.3103/S0027134915050148
https://doi.org/10.3103/S0027134915050148
https://physics.nist.gov/PhysRefData/ASD/levels_form.html

