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Dynamics of an unbalanced two-ion crystal in a Penning trap for application
in optical mass spectrometry
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In this paper, the dynamics of an unbalanced two-ion crystal comprising the “target” and the “sensor” ions
confined in a Penning trap along the magnetic-field axis has been studied. First, the low amplitude regime
is addressed. In this regime, the overall potential including the Coulomb repulsion between the ions can be
considered harmonic and the axial, magnetron, and reduced-cyclotron modes split up into the so-called stretch
and common modes, that are generalizations of the well-known “breathing” and “center-of-mass” motions of a
balanced crystal made of two ions. By using optical detection to measure the frequencies of the modes of the
crystal, and of the sensor ion on its own, in the quantum regime of motion, it will be possible to determine the
target ion’s free-cyclotron frequency. The nonharmonicity of the Coulomb interaction is also discussed since this
causes large systematic effects, which are minimized due to the high sensitivity of the optical detection method
when the crystal is cooled to the ground state of motion in the Penning trap.
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I. INTRODUCTION

A precise determination of atomic and nuclear masses of
exotic particles is of fundamental interest in many areas, for
example, in nuclear physics and in neutrino physics [1,2]. The
determination of nuclear binding energies of exotic nuclides
has contributed to a better understanding of their nuclear
structure by identifying the changes in shell structure or by
finding the onset of deformation (see, e.g., [3]). Superheavy
elements (SHEs) are among the most challenging objects for
such investigations since they can only be produced in quanti-
ties of a few atoms at a time in only four facilities worldwide,
and they are often short lived [4–8]. Among these large-
scale facilities, there is just one Penning trap system, at GSI-
Darmstadt [9], which allows direct mass measurements by
means of Penning traps [10]. However, the minute production
yields for SHEs (Z � 104) call for measurement techniques
of utmost sensitivity, capable of characterizing isotopes over
a wide mass range using a single ion. In addition, in the
case of a nondestructive measurement technique, additional
observables such as nuclear decay modes and half-lives can
be obtained from the very same ion. Such an approach would
also benefit precise mass measurements that are required in
the context of neutrino physics where often the mass of rare
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isotopes, available only in limited samples, is demanded. The
limitation in sensitivity of the phase-imaging ion-cyclotron-
resonance (PI-ICR) technique, currently in use at GSI-
Darmstadt, to about ten ions [11] motivated the development
of new techniques [12,13]. Developments for single-ion sensi-
tivity on rare ions, using electronic detection, are also ongoing
at the National Superconducting Cyclotron Laboratory [14].

In this paper, we present the results from analytical calcu-
lations of the dynamics of an unbalanced two-ion crystal in
a 7-T Penning trap [15]. The outcomes from the calculations
can be combined with the optical response of the sensor ion
after applying external fields in resonance with the motional
modes of the crystal. The proposed method is universal (with
respect to the mass-to-charge ratio), and offers a permanent
monitoring of the motion of the sensor ion in the trap. Al-
though masses of some stable ions have been measured with
relative uncertainties on the order of 10−10 to 10−11 by means
of techniques based on electronic detection (see, e.g., a recent
review in [16]), in all those cases, the ions are generated
by off-line sources, inside the trap, or outside with large
electronic charge states. Using optical detection, we aim at
improving sensitivity, reaching a competitive level of accuracy
for nuclear physics studies in a first stage, and with prospects
to contribute to the determination of the mass of the electron
antineutrino, the latter, for example, by performing mass
measurements on 187Re+ and 187Os+, the masses of which
have been already improved using a Penning trap technique
developed for rare isotopes [11,17].
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FIG. 1. Left: Original shape of a Penning trap (revolution hyper-
boloid). The yellow electrode is referred to as the ring, and the red
ones are known as endcaps. The so-called characteristic distance of
the trap is given by d2

0 = (z2
0 + ρ2

0/2)/2. Right: Normal modes of a
single ion stored in a Penning trap. The black solid line depicts the
overall motion.

II. PENNING TRAP DYNAMICS

A Penning trap (see the left panel of Fig. 1) uses
the combined effect of a strong homogeneous magnetic
field, �B = Bẑ, and a quadrupolar electrostatic field, V =
(U/4d2

0 )(2z2 − x2 − y2), to confine a charged particle or a
crystal [18]. In this section the dynamics of the unbalanced
two-ion crystal in a Penning trap is presented, after intro-
ducing the dynamics of the single trapped ion and obtaining
the general equations in the low amplitude regime. Solv-
ing these equations numerically for a particular case allows
characterization of the frequency shifts arising from the non-
harmonic nature of the Coulomb repulsion. Previous work
on ion crystals formed by identical ions stored in the same
Penning trap has been carried out at Imperial College [19,20],
while ultraaccurate mass spectrometry using two different
ions stored simultaneously in a large magnetron orbit, to
minimize their electrostatic interaction, was developed at
Massachusetts Institute of Technology [21,22]. This Penning
trap was relocated afterwards to Florida State University [23].
There, an additional Penning trap technique [24], based on
work of the Harvard group [25], was used.

The motion of a single ion confined in an ideal Penning trap
is well known [18]. The only force with a nonzero projection
along the revolution axis is that of the electrostatic field. Since
the field is quadrupolar, the resulting motion is harmonic with
an oscillation frequency

ωz = 2πνz =
√

qU

md2
0

. (1)

The motion in the radial plane is an epicyclic orbit with
frequencies

νc′/m = νc

2

⎡
⎣1 ±

√
1 − 2

(
νz

νc

)2
⎤
⎦. (2)

The subscript c′ (corresponding to the + sign) is associated
to the so-called reduced-cyclotron motion, the frequency of
which is very close to the free cyclotron frequency of the ion
in the magnetic field, ωc = 2πνc = qB/m. The subscript m,
on the other hand, corresponds to the magnetron motion, the
frequency of which is much lower than all the other involved
frequencies under normal operation conditions.

The relationship between νc and the ion’s mass depends
only on the magnetic field, thus the precise determination
of νc is the most common way to perform high-precision
mass measurements. Since the ions do not oscillate with this
frequency, relationships between the motional frequencies and
the true cyclotron frequency are utilized, namely,

νc = νc′ + νm (3)

and

ν2
c = ν2

c′ + ν2
z + ν2

m. (4)

These can be easily derived from Eq. (2). The latter involves
the measurement of an additional eigenfrequency, νz. How-
ever, it provides an advantage: Eq. (4), known as the invari-
ance theorem, holds for real Penning traps [26], i.e., traps with
a small misalignment between electric and magnetic field or
with electric-field imperfections.

In a crystal made of two different ions, one defines the mass
ratio μ = mt/ms, where the subscript t denotes the “target”
ion or “ion of interest” and s denotes the “sensor” ion. The
axial and cyclotron frequencies of the target ion are ωzt =
ω0/

√
μ and ωct = ωcs/μ, respectively, with ω0 and ωcs being

the axial and true cyclotron frequency of the sensor ion. The
orientation of the crystal can be axial or radial. This depends
on frequency ratios. For example, if the crystal is composed
of two identical ions, the axial orientation is energetically
favorable provided [19]

ω2
z < 1

6ω2
c . (5)

In this direction the distance between the ions in equilibrium
is fixed.

In order to solve the equations for the unbalanced crystal
(Appendix A), we will work in the small amplitude regime,
i.e., when the displacement from the equilibrium position is
�d , d being the distance between the target and sensor ion
along the z axis in the equilibrium position (see Fig. 2). Under
these conditions, the Coulomb interaction can be considered
harmonic. In this case the Coulomb force is Taylor expanded
to first order and the resulting equations are

ẍt = 1

μ
ω2

0xt + 1

μ
ωcsẏt − 1

2

1

μ
ω2

0xs,

ÿt = 1

μ
ω2

0yt − 1

μ
ωcsẋt − 1

2

1

μ
ω2

0ys,

z̈t = −2
1

μ
ω2

0zt + 1

μ
ω2

0zs,

ẍs = ω2
0xs + ωcsẏs − 1

2
ω2

0xt ,

ÿs = ω2
0ys − ωcsẋs − 1

2
ω2

0yt ,

z̈s = −2ω2
0zs + ω2

0zt . (6)
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FIG. 2. Electric potentials as seen by the ion at z = −d/2 (col-
ored in cyan) along the trap axis. The repulsion term is due to the
presence of a second (pink-colored) ion.

In this approximation, the coupling between radial and axial
motions disappears, and thus the equations in the radial plane
and axial direction can be solved separately.

A. Axial motion

The equations describing the axial motion can be written
in matrix form as(

z̈t

z̈s

)
= ω2

0

(−2
μ

1
μ

1 −2

)(
zt

zs

)
. (7)

The normal modes and frequencies are obtained by diagonal-
izing the coefficient matrix, yielding

Z̈± = −(�±
z )2Z±, (�±

z )2 = ω2
0

[
1 + 1

μ
±

√
1 + 1

μ2
− 1

μ

]
.

(8)

Here, + and − stand for stretch and common mode, respec-
tively. They are related to the amplitudes of the ions by

Z± =
(

1 − 1

μ
∓

√
1 + 1

μ2
− 1

μ

)
zt + zs, (9)

where a global normalization factor has been omitted. Thus,
the ions move in phase for the common mode, and out of
phase for the stretch mode. The lighter ion moves with more
amplitude than the heavier one in this mode, and with less
amplitude in the common one as shown in Fig. 3. These results
naturally agree with those obtained using a Paul trap [27].

B. Radial motion

The radial part of Eq. (6) can be written as(
üt

üs

)
= −iωcs

( 1
μ

0
0 1

)(
u̇t

u̇s

)
+ ω2

0

( 1
μ

− 1
2

1
μ

− 1
2 1

)(
ut

us

)

= Mdot

(
u̇t

u̇s

)
+ M

(
ut

us

)
(10)
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FIG. 3. Eigenvalues and eigenvectors for the two-ion crystal in
the axial degree of freedom. The solid lines correspond to the axial
frequencies in units of the axial frequency of the sensor ion. Note
that the stretch frequency is almost constant for large values of μ;
the same happens for the common mode when μ is small. The dashed
lines correspond to the ions’ amplitude ratios (target over sensor).

after the usual change of variable ut,s = xt,s + iyt,s. The eas-
iest way to find the normal modes and frequencies of the
system is to find a base where M and Mdot are simultaneously
diagonal, thus both matrices have to commute. However,

i

ωcsω
2
0

[Mdot, M]

= 1

2

1

μ
(μ − 1)

(
0 − 1

μ

1 0

)
= 0 ⇔ μ = 1. (11)

This implies that the radial motion can only be studied
using this procedure when μ = 1 (equal masses). Although
this case is of no interest for mass spectrometry, its study
gives insight on the motion of two simultaneously trapped
ions. Diagonalizing M in Eq. (10) yields the eigenvalues

�± = ω2
0

2 ± 1

2
(12)

and eigenvectors

U± = ut ∓ us. (13)

U− corresponds to a center-of-mass motion in the radial plane
(U+ = 0 ⇒ ut = us). U+, on the other hand, is a breathing
motion (U− = 0 ⇒ ut = −us). Equation (10) can be written,
in its diagonalized form, as

Ü+ = −iωcsU̇+ + 3

2
ω2

0U+ = −iωcsU̇+ + �+U+,

Ü− = −iωcsU̇− + 1

2
ω2

0U− = −iωcsU̇− + �−U−. (14)

Each of these is equivalent to the equation of motion
of a single ion, and can be solved to obtain the motional
frequencies. These are, for the + mode,

�+
c′,m = ωcs

2

⎡
⎢⎣1 ±

√√√√1 − 2

(√
3ω0

ωcs

)2
⎤
⎥⎦. (15)
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(a)                                    (c)
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FIG. 4. (a) Balanced crystal moving in the breathing (magnetron
and reduced-cyclotron) modes. (b) Balanced crystal moving in the
center-of-mass modes. (c) Unbalanced crystal moving in the stretch
mode (magnetron and reduced cyclotron). (d) Unbalanced crystal
moving in the center-of-mass mode.

Again, the subscript c′ corresponds to the + sign in front of
the square root, and the subscript m corresponds to the minus
sign. Similarly, for the − mode,

�−
c′,m = ωcs

2

⎡
⎣1 ±

√
1 − 2

(
ω0

ωcs

)2
⎤
⎦, (16)

which can be rewritten as

�±
c′,m = ωcs

2

⎡
⎣1 ±

√
1 − 2

(
�±

z

ωcs

)2
⎤
⎦ (17)

where �±
z = √

2 ± 1ω0 for two identical ions [Eq. (8)]. This
equation is very similar to Eq. (2) and yields the radial fre-
quencies of a balanced crystal as a function of the single-ion
cyclotron frequency and the axial frequencies of the crystal.
Figures 4(a) and 4(b) depict the radial motion of this crys-
tal. The higher frequency for the reduced-cyclotron motion
corresponds to the center-of-mass motion. This is different
compared to the axial and magnetron motions, where the
higher frequencies correspond to the breathing mode.

In the general case (μ 	= 1) there are still two high-
frequency (reduced-cyclotron) modes and two low-frequency
(magnetron) modes [Figs. 4(c) and 4(d)]. For each of them
there is an in-phase (common) mode and an opposite-phase
(stretch) mode. In order to characterize them, the ansatz ut,s =
ρt,se−i�t is introduced into Eq. (10). By dividing over ω2

cs, the
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FIG. 5. Eigenvalues and eigenvectors of the reduced-cyclotron
motion of the two-ion crystal. The solid lines correspond to the
frequencies in units of the cyclotron frequency of the sensor ion ωcs,
whereas the dashed lines correspond to the amplitude ratios (target
over sensor). The inset shows a zoomed-in version around μ = 1.

resulting expression is[(
�

ωcs

)2(
1 0
0 1

)
− �

ωcs

( 1
μ

0
0 1

)
+

(
ω0

ωcs

)2

×
(

1
μ

− 1
2

1
μ

− 1
2 1

)](
ρt

ρs

)
= 0, (18)

which is known as a nonlinear eigenproblem. A numerical
solution can be computed [28] to obtain the parameters of
interest. The frequency ratio ω0/ωcs is the only trap-dependent
quantity in the equation, as long as one solves it for �/ωcs,
which is the mode frequency normalized to the sensor ion’s
free cyclotron frequency. For our current trap configuration
(ω0/ωcs 
 0.0371), the results are presented in Figs. 5 and
6. It is interesting to see that the reduced-cyclotron modes
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FIG. 6. Eigenvalues and eigenvectors of the magnetron motion of
the two-ion crystal. The solid lines show the frequencies normalized
to the cyclotron frequency of the sensor ion ωcs. The dashed lines, on
the other hand, show the amplitude ratios (target over sensor).
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are weakly coupled (i.e., only one of the ions moves with
significant amplitude) except for the region μ ∼ 1, where
the frequencies are very similar. The motions can be consid-
ered perturbed versions of the individual reduced-cyclotron
motions, where the most noticeable effect is an additional
shift towards lower frequencies of about �−

m . The magnetron
motions remain strongly coupled. Higher values of the ratio
ω0/ωcs (i.e., larger ion-ion coupling) result in larger mag-
netron frequencies (scaling with ≈ω2

0). Increasing the axial
frequency, the region where the reduced-cyclotron modes
have significant coupling extends further away from μ ∼ 1,
and the 2�−

m deviation from the individual ions’ free cyclotron
frequencies still holds outside that mass interval.

III. MASS MEASUREMENTS WITH TWO TRAPPED
IONS AND OPTICAL DETECTION

So far, calculations of the motional frequencies of a two-
ion crystal as well as its dynamics have been shown. This
allows determining the individual cyclotron frequencies for
each of the ions forming the unbalanced crystal using a
generalization of the invariance theorem [Eq. (4)] that reads
[29,30]

6∑
i=1

ω2
i = ω2

cs + ω2
ct , (19)

where i is an index to account for each of the eigenfre-
quencies. The measurement of the crystal eigenfrequencies
requires external fields applied in a similar way as it is done
in many experiments [11,31–33]. However, the detection will
differ, i.e., by using optical photons from the laser-cooled
40Ca+ ion, instead of a micro-channel plate detector or via im-
age charge detection with an electrical circuit. The cyclotron

frequency of the sensor ion can be measured using the optical
method on a single sensor ion stored in the trap and only
cooled to the Doppler limit [34]. This measurement can be
performed before and after the measurement of the crystal
eigenmode frequencies. We also note that it is possible to
know unequivocally whether a target ion has been produced
and stored, since this results in a shift of the sensor ion’s
position of d/2 in the axial direction, that can be resolved
by the CCD camera. This means that no produced ions are
lost, as opposed to current techniques (time-of-flight ICR and
PI-ICR), where the calibration measurements require isolating
the traps from the incoming beam. In the following, the
frequency shifts are calculated to analyze the applicability in
optical mass spectrometry.

Up to this stage, our calculations were based on the low
amplitude approximation [Eq. (6)]. However, when the os-
cillation amplitudes become large enough, some of the fre-
quencies of the crystal modes shift with respect to the values
given in Figs. 3, 5, and 6 (linear approximation). In order
to characterize the frequency shifts for the six eigenmodes,
we have calculated the 6 × 6 matrix, where each term is
in units of hertz per phonon. The procedure described in
[35] for ion crystals in a linear Paul trap has been followed
but now adapting it to the Penning trap eigenmodes of an
unbalanced crystal. The mathematical treatment is shown
in Appendix B. Experimentally, the ion crystal should be
cooled to its ground state of motion, which is possible by
performing sideband cooling [36]. We calculate the tensors
from Eqs. (B1) and (B2), as well as the matrix elements
e′
α,i that connect the eigenmode basis with the ξi basis. The

result for a 257Rf+-40Ca+ crystal using the trap configuration
ω0/2π = 100 kHz and ωcs/2π = 2.689 MHz is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝


�−
c′


�+
c′


�+
m


�−
m


�−
z


�+
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 2π ×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0004 0.0016 0.3967 0.0000 −0.0012 −0.0162

0.0016 0.0004 0.4942 0.0000 −0.0010 −0.0124

0.3967 0.4942 −0.4094 −0.0003 2.0643 −1.2477

0.0000 0.0000 −0.0003 −0.0000 0.0000 0.0000

−0.0012 −0.0010 2.0643 0.0000 −0.0014 0.0172

−0.0162 −0.0124 −1.2477 0.0000 0.0172 0.0469

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

n−
c′

n+
c′

n+
m

n−
m

n−
z

n+
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hz. (20)

This dependence with the phonon number is linear in the
quantum regime. After reaching the Doppler limit (T ∼ 1
mK) the mean phonon number is given by 〈n±

ξ 〉 = kBT/h̄�±
ξ ,

where kB is Boltzmann’s constant and h̄ is Planck’s constant
over 2π . Only the common reduced-cyclotron eigenmode is
in the quantum regime at this point with 〈n−

c′ 〉 
 10. However,
the system can in principle be cooled down to the ground
state using similar techniques as developed for a single ion
[36]. In this regime each of the eigenmodes can be excited
individually to probe the frequencies. The dependence of their
shifts as a function of the phonon number can be studied
systematically. The readout can be done using a standard
procedure as described in Ref. [37].

IV. CONCLUSIONS AND PERSPECTIVES

In this paper we have shown results from calculations of the
dynamics of an unbalanced two-ion crystal for applications
in optical Penning trap mass spectrometry. The significance
of our method lies in the optical detection, which allows
monitoring the sensor ion permanently in the trap. For small
amplitudes, the Coulomb interaction can be considered har-
monic. This has been studied in detail to obtain the eigen-
frequencies and eigenvectors of the crystal. The frequency
shifts shown in the 6 × 6 matrix [Eq. (20)] will prevent us
from reaching high precision, if the crystal is not cooled to
the ground state of motion. The highest dependence of the
frequency shift of a mode as a function of phonon number in
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the same mode appears in stretch axial and stretch magnetron
modes, contributing to the relative uncertainty on the order of
10−8 per phonon in both cases. Here we rely on the feasibility
of probing any of the modes preserving the phonon number
of the remaining modes. In any case, these shifts can be
taken into account in the measurement protocol as one can
determine the number of phonons in each mode, so that the
ultimate uncertainty is only limited by the precision achieved
in the frequency measurement.
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APPENDIX A: EQUATIONS OF MOTION

The equations of motion of two singly charged ions of
masses mt and ms confined simultaneously in a Penning trap,
using coordinates with respect to the trap center, can be
written as

ẍt = 1

μ

ω2
0

2
xt + 1

μ
ωcsẏt + 1

mt

e2

4πε0

(�rt − �rs) · x̂

|�rt − �rs|3 ,

ÿt = 1

μ

ω2
0

2
yt − 1

μ
ωcsẋt + 1

mt

e2

4πε0

(�rt − �rs) · ŷ

|�rt − �rs|3 ,

z̈t = − 1

μ
ω2

0zt + 1

mt

e2

4πε0

(�rt − �rs) · ẑ

|�rt − �rs|3 ,

ẍs = ω2
0

2
xs + ωcsẏs − 1

ms

e2

4πε0

(�rt − �rs) · x̂

|�rt − �rs|3 ,

ÿs = ω2
0

2
ys − ωcsẋs − 1

ms

e2

4πε0

(�rt − �rs) · ŷ

|�rt − �rs|3 ,

z̈s = −ω2
0zs − 1

ms

e2

4πε0

(�rt − �rs) · ẑ

|�rt − �rs|3 . (A1)

where μ = mt/ms. The parameters ωzt = ω0/
√

μ and ωct =
ωcs/μ are the axial and true cyclotron frequencies of the target
ion, respectively. ω0 and ωcs are the axial and true cyclotron
frequencies of the sensor ion. The last term of each equation
accounts for the Coulomb repulsion between the two ions.

In the case of an unbalanced crystal oriented in the axial
direction (see Fig. 2), the equilibrium positions are zeq

t =

−zeq
s = d/2, where d3 = e2/(2πε0msω

2
0 ) is the equilibrium

distance. Referring the coordinates of each ion to its equilib-
rium position, the resulting equations are

ẍt = 1

μ

ω2
0

2
xt + 1

μ
ωcsẏt + ω2

0d3

2

1

μ

(�rt − �rs + dẑ) · x̂

|�rt − �rs + dẑ|3 ,

ÿt = 1

μ

ω2
0

2
yt − 1

μ
ωcsẋt + ω2

0d3

2

1

μ

(�rt − �rs + dẑ) · ŷ

|�rt − �rs + dẑ|3 ,

z̈t = − 1

μ
ω2

0

(
zt + d

2

)
+ ω2

0d3

2

1

μ

(�rt − �rs + dẑ) · ẑ

|�rt − �rs + dẑ|3 ,

ẍs = ω2
0

2
xs + ωcsẏs − ω2

0d3

2

(�rt − �rs + dẑ) · x̂

|�rt − �rs + dẑ|3 ,

ÿs = ω2
0

2
ys − ωcsẋs − ω2

0d3

2

(�rt − �rs + dẑ) · ŷ

|�rt − �rs + dẑ|3 ,

z̈s = −ω2
0

(
zs − d

2

)
− ω2

0d3

2

(�rt − �rs + dẑ) · ẑ

|�rt − �rs + dẑ|3 . (A2)

This system of equations can be partially solved for μ =
1 (equal masses) for the center-of-mass motion, since the
Coulomb term cancels out for �COM = ξt − ξs, ξ = {x, y, x}.
The resulting motion is the same as for the single ion.

APPENDIX B: CALCULATION OF FREQUENCY SHIFTS
AT THE QUANTUM LEVEL

In order to calculate frequency shifts in the two-ion crystal
it is convenient to change the original (Cartesian) coordinate
system to a new system where ξ ′

i = √
miξi. Here, ξ1 = xt ,

ξ2 = xs, ξ3 = yt , and so on, and mi is the mass of the ion
associated to the coordinate ξi. Expanding the Coulomb po-
tential U to third and fourth order in this new basis (equivalent
to second and third order in the Coulomb force, given that
�F = −∇U ) gives rise to the third- and fourth-order tensors
A′ (3) and A′ (4), with elements

A′ (3)
i jk = 1

3!

1√
mimjmk

∂3U

∂ξi∂ξ j∂ξk

∣∣∣∣∣
eq

(B1)

and

A′ (4)
i jkl = 1

4!

1√
mimjmkml

∂4U

∂ξi∂ξ j∂ξk∂ξl

∣∣∣∣∣
eq

, (B2)

taking into account that ∂/∂ξ ′
i = (1/

√
mi )∂/∂ξi. Therefore,

the third- and fourth-order contributions to the potential are,
respectively,

U (3) =
∑
i, j,k

A′ (3)
i jk ξ ′

i ξ
′
jξ

′
k (B3)

and

U (4) =
∑

i, j,k,l

A′ (4)
i jkl ξ

′
i ξ

′
jξ

′
kξ

′
l . (B4)

Now it is necessary to change to the eigenmode basis. This
is done via the coefficients e′

α,i, where the greek letter labels
the mode and the latin letter labels the coordinate ξi:

G′ (3)
αβγ = σ ′

ασ ′
βσ ′

γ

∑
i, j,k

e′
α,ie

′
β, je

′
γ ,kA′ (3)

i jk , (B5)

063415-6



DYNAMICS OF AN UNBALANCED TWO-ION CRYSTAL … PHYSICAL REVIEW A 100, 063415 (2019)

G′ (4)
αβγ δ = σ ′

ασ ′
βσ ′

γ σ ′
δ

∑
i, j,k,l

e′
α,ie

′
β, je

′
γ ,ke′

δ,l A
′ (4)
i jkl . (B6)

In these equations, σ ′
α = √

h̄/2ωα .

Quantization of a harmonic oscillator in the coordinates
x′ = √

mx gives rise to the relationship x̂′ = √
h̄/2ω(â + â†),

where â† and â are the creation and annihilation operators, re-
spectively. Therefore, it is clear from the previous expressions
that

Û (3) =
∑
α,β,γ

G′ (3)
αβγ (âα + â†

α )(âβ + â†
β )(âγ + â†

γ ) (B7)

and

Û (4) =
∑

α,β,γ ,δ

G′ (4)
αβγ δ (âα + â†

α )(âβ + â†
β )(âγ + â†

γ )(âδ + â†
δ ). (B8)

Due to symmetry reasons, Û (3) does not contribute in first-order perturbation theory. Therefore, the second-order contribution of
Û (3), 
E (2), as well as the first-order contribution of Û (4), 
E (1), are required to consistently estimate the shift.

The energy shift in the nζ → nζ + 1 transition (keeping all other phonon numbers constant) is [35]

h
 fζ ({nα}, nζ ) = 
E (1)({nα}, nζ + 1) − 
E (1)({nα}, nζ ) + 
E (2)({nα}, nζ + 1) − 
E (2)({nα}, nζ )

= 12

⎡
⎣(nζ + 1)G′ (4)

ζ ζ ζ ζ +
∑
α 	=ζ

G′ (4)
ααζζ (2nα + 1)

⎤
⎦

− 36

h̄

∑
α 	=ζ

(2nα + 1)

[
2ωα

(
G′ (3)

ααζ

)2

4ω2
α − ω2

ζ

+ 2ωζ

(
G′ (3)

ζ ζα

)2

4ω2
ζ − ω2

α

+ G′ (3)
ζ ζ ζ G′ (3)

ααζ

ωζ

+ G′ (3)
αζζ G′ (3)

ααα

ωα

]

− 6

h̄
(nζ + 1)

⎡
⎣10

(
G′ (3)

ζ ζ ζ

)2

ωζ

− 6
∑
α 	=ζ

(
G′ (3)

ζ ζα

)2
ωα

4ω2
ζ − ω2

α

+ 12
∑
α 	=ζ

(
G′ (3)

αζζ

)2

ωα

⎤
⎦

− 72

h̄

∑
α 	=ζ

∑
β 	=α,ζ

(
G′ (3)

αβζ

)2

[
(nα − nβ )(ωβ − ωα )

(ωβ − ωα )2 − ω2
ζ

+ (nα + nβ + 1)(ωβ + ωα )

(ωβ + ωα )2 − ω2
ζ

]

− 36

h̄

∑
α 	=ζ

G′ (3)
αζζ

ωα

⎡
⎣ ∑

β 	=α,ζ

G′ (3)
αββ (2nβ + 1)

⎤
⎦. (B9)

Derivating this equation with respect to a certain nκ gives the element Sζ ,κ of a matrix that connects the frequency shift of a
given mode with the phonon number of all modes:

h

⎛
⎜⎝


 f1


 f2

. . .


 f6

⎞
⎟⎠ = S

⎛
⎜⎝

n1

n2

. . .

n6

⎞
⎟⎠. (B10)

The expression used for the diagonal terms is

Sζ ζ = ∂ (h
 fζ )

∂nζ

= 12G′ (4)
ζ ζ ζ ζ − 6

h̄

⎡
⎣10

(
G′ (3)

ζ ζ ζ

)2

ωζ

− 6
∑
α 	=ζ

(
G′ (3)

ζ ζα

)2
ωα

4ω2
ζ − ω2

α

+ 12
∑
α 	=ζ

(
G′ (3)

αζζ

)2

ωα

⎤
⎦, (B11)

and for the off-diagonal ones

Sζκ = ∂ (h
 fζ )

∂nκ

= 24G′ (4)
κκζζ − 72

h̄

⎡
⎣2ωα

(
G′ (3)

κκζ

)2

4ω2
κ − ω2

ζ

+ 2ωζ

(
G′ (3)

ζ ζκ

)2

4ω2
ζ − ω2

κ

+ G′ (3)
ζ ζ ζ G′ (3)

κκζ

ωζ

+ G′ (3)
κζζ G′ (3)

κκκ

ωκ

+
∑

α 	=κ,ζ

[(
G′ (3)

καζ

)2 + (
G′ (3)

ακζ

)2]( ωα − ωκ

(ωα − ωκ )2 − ω2
ζ

+ ωα + ωκ

(ωα + ωκ )2 − ω2
ζ

)
+ G′ (3)

αζζ G′ (3)
ακκ

ωα

⎤
⎦. (B12)
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