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Manipulating neutral particles in Bessel beams: From rings, through fixed helices,
to three-dimensional traps
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Faculty of Mathematics and Natural Sciences, College of Sciences, Institute of Physics,
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The motion of neutral, polarizable atoms (also called neutral particles in this work) in the field of the Bessel
beam is considered. It is shown in the numerical way that the Bessel rings, i.e., the regions of high energy
concentration, can trap particles of positive polarizability (atoms in red-detuned beams). This trapping occurs
only in the plane perpendicular to the wave propagation, and the motion along the beam is unrestricted. When the
beam is superposed with the plane wave of the same frequency propagating in the same direction, the particles
are guided along helices, fixed in space. The shape of these helices depends on the parameters characterizing
the electromagnetic fields but not on the initial state of guided particles. Depending on the vorticity of the
Bessel beam, these helices can be made left- or right-handed. In the special case of zero vorticity, the helices
are degenerated to the true, three-dimensional rings, which can serve as three-dimensional traps. The emerging
structure of potential valleys can be applied to parallel guidance or capture several independent atoms, each in
its own trap.
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I. INTRODUCTION

The idea of manipulating small neutral objects with the
use of light beams was practically born around 1970 with
an experimental work by Ashkin [1] in which the author
demonstrated the possibility of controlling the motion of par-
ticles by the beam of radiation. In his experiment, transparent
dielectric micrometer-sized spheres placed in the water were
given acceleration by means of a Gaussian laser beam. In such
a beam, the law of light refraction leads to the appearance
of the gradient force dragging a given object into the area
of higher or lower electromagnetic energy density. If the
refractive index of a sphere with respect to the surrounding
medium is greater than unity, it is pulled into the area of
higher energy density. If, however, the material of the sphere
is optically rarer, it is repelled from such area (for further
details and references see the review articles [2–4]). The light
intensity distribution of a typical Gaussian beam is presented
in Fig. 1. It explicitly shows the white region in the center
which represents the increased energy density attracting the
high-index spheres.

Apart from this property the acceleration in the direction
of beam propagation due to radiation pressure exerted on
the sphere pushes it along the beam. In order to avoid this
effect and construct a real three-dimensional (3D) trap, one
can apply, for instance, two opposite laser beams [1]. Instead
of the second beam of radiation the gravitational force can
also be used to stabilize the dielectric spheres or, for instance,
liquid drops leading to the levitation phenomenon [5–7].
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A similar mechanism based on the presence of gradient
forces has been applied to neutral atoms in beams red-detuned
from the characteristic atomic lines. The appearance of the
optical force is based on the Stark effect [8] or, equivalently,
on polarizability of atoms. The radiation pressure on such
atoms is strongly reduced, and the force pushing them along
the beam becomes smaller than the gradient force pulling
atoms backward into the bright region of Fig. 1. The practical
implementation of this type of a trap, called the optical
tweezer, has been reported in [9] and later in [10]. Such traps
are also realized in the intersecting beams (see, for instance,
[11]). A similar blue-detuned trap was also shown to work
[12–14]. In the case of far-detuned beams the atomic excita-
tions can be avoided and the dipole force becomes dominating
[15,16]. Optical tweezers have found many applications in
distant areas of activity, from physics to biology or medicine
(see, for instance, [17–22]). A good theoretical background is
given in [23].

The Gaussian beam, as shown in Fig. 1, exhibits a rela-
tively simple structure with one energy concentration zone
localized at the beam’s waist. Much richer possibilities of
trapping or guiding particles are provided by beams of the
so-called structured light [24–26], where the word “structure”
mainly refers to phase. One can enumerate here, for instance,
Laguerre-Gaussian [27,28], Bessel [29–31], Mathieu [32], or
Airy [33] beams. An up-to-date summary of the results on
“twisted light” is gathered in the review work [34]. In the
present paper we concentrate on Bessel beams, which belong
to the class of nondiffracting beams [35–37], and on their
ability to manipulate neutral polarizable particles [38]. Pure
Bessel beams would carry infinite energy, so in practical
applications one naturally deals with Bessel beams truncated
in the radial direction, which, however, is irrelevant for the
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FIG. 1. The light intensity of a typical Gaussian beam. The bright
region corresponds to the higher concentration of energy. The beam
propagates along the z axis, and w(z) stands for the spot size.

present work. For another type of beam of a similar kind,
namely, Bessel-Gaussian beams, the trapping effects have
been revealed by showing the existence of a waveguiding
potential, used consequently to investigate the Bose-Einstein
condensate [39].

The mechanism of trapping neutral particles as atoms is
similar to that spoken of above in the context of a Gaussian
beam, but the spatial structure of the Bessel beam opened a
variety of ways to manipulate microparticles [40–43]. Since it
would be difficult to talk about the capture of relativistic par-
ticles in traps of the potential depth measured in electronvolts
(which will be estimated later), it is quite sufficient to consider
in this paper the nonrelativistic motion.

Assuming that the atomic dipole moment is proportional to
the external electric field, i.e.,

d = αE, (1)

where α typically depends on the driving frequency, one gets
the equation of motion in the form

m r̈ = (d · ∇)E = 1
2 α∇(E2). (2)

The appearance of the optical force is then caused by the
nonhomogeneity of the electric field. As stems from the theory
of the Stark effect, for the red-detuned beam the polarizability
α is positive and for the blue-detuned negative [16]. Is is inter-
esting to mention that a similar potential with negative value
of α is obtained for charged particles in the ponderomotive
potential, and therefore there are some similarities between
the motion of neutral atoms and charged particles, such as, for
instance, electrons in the Bessel beam [44,45].

In the following section the potential for the polarizable
particle in a pure Bessel beam is analyzed and the equation of
motion (2) is examined. The trajectories of both red-detuned
and blue-detuned atoms are obtained numerically in Sec. II B.
This section serves as a kind of introduction for a more
complicated system of fields. The analysis of the motion of
atoms placed in the combination of a Bessel beam and a plane
wave is dealt with in Sec. III.

Assuming that these two waves are precisely tuned, it
is shown that if the Bessel beam has nonzero vorticity the
conservative potential emerging after taking the average over
rapid oscillations has minima in the form of helices which
are fixed in space (Sec. III A). These helices can serve to
transport atoms independently on their initial velocity, as

shown numerically in Sec. III B. Depending on the topological
vortex number, several atoms can be transported in parallel,
independently of each other. The twist of the helices and their
pitch are connected with the value of this number (higher
vorticity produces a looser helix). In the special case of
zero vorticity it is shown in Sec. III C that the considered
configuration of waves leads to the appearance of a system
of real 3D toroidal traps, equally spaced, which form a kind
of a lattice of traps.

II. ATOMS IN THE BESSEL BEAM

The electric field in the monochromatic Bessel beam of
frequency ω propagating along the z axis has the form

Ex = E0{κ− cos[kzz − ωt + (M + 1)ϕ]JM+1(k⊥ρ)

+ κ+ cos[kzz − ωt + (M − 1)ϕ]JM−1(k⊥ρ)}, (3a)

Ey = E0{κ− sin[kzz − ωt + (M + 1)ϕ]JM+1(k⊥ρ)

− κ+ sin[kzz − ωt + (M − 1)ϕ]JM−1(k⊥ρ)}, (3b)

Ez = 2E0 sin(kzz − ωt + Mϕ)JM (k⊥ρ). (3c)

For nonrelativistic motion we are dealing with, the influence
of the magnetic field may be neglected. The following nota-
tion has been used above:

κ± =
√

k2
z + k2

⊥ ± kz

k⊥
, (4)

where k2
z + k2

⊥ = ω2/c2, ρ =
√

x2 + y2 stands for the radial
variable, and ϕ for the azimuthal angle. Each particular beam
is characterized by an integer number M which represents the
vorticity of the field (strictly speaking, the vortex topological
number equals M − 1). The quantities JM refer to the Bessel
functions of the first kind.

A. Potential

As mentioned in the Introduction for the motion of polar-
izable particles in the beam described with Eq. (2) the role of
the potential is played by the quantity

V (ρ, ϕ, z, t )

= − 1
2 αE(ρ, ϕ, z, t )2

= − 1
2 αE2

0 {κ2
−JM+1(k⊥ρ)2 + κ2

+JM−1(k⊥ρ)2

+ 2JM+1(k⊥ρ)JM−1(k⊥ρ) cos[2(kzz − ωt + Mϕ)]

+ 4JM (k⊥ρ)2 sin2(kzz − ωt + Mϕ)}, (5)

where the identity κ+κ− = 1 has been utilized. Upon intro-
ducing the following dimensionless variables and auxiliary
constants,

ξx = k⊥x, ξy = k⊥y, ξ = k⊥ρ, ζ = kzz, τ = ωt,

(6a)

σ⊥ = ck⊥
ω

, σz = ckz

ω
, β = αE2

0 σ 2
⊥

mc2
, γ = αE2

0 σ 2
z

mc2
,

(6b)

the equation of motions can be rewritten in suitable form
(10). The quantities β and γ = (σz/σ⊥)2β, which satisfy the
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identity

β2 + γ 2 =
(

αE2
0

mc2

)2

, (7)

are typically very small since they refer the electric energy to
the rest energy of a given particle in motion. For a generic
Bessel beam one has σ⊥ � σz, which leads to the condition
β � γ . The constants κ± now read

κ± = 1 ± σz

σ⊥
. (8)

It should be noted that for a beam propagating along the z axis
in the positive direction (as in the present case) κ+ � 1 and
κ− � 1. If the beam runs in the opposite direction, these two
quantities would switch roles.

Denoting

V (ξ, ζ , τ ) = −κ2
−J2

M+1(ξ ) − κ2
+J2

M−1(ξ )

− 2JM+1(ξ )JM−1(ξ ) cos[2(ζ + τ + Mϕ)]

− 4J2
M (ξ ) sin2(ζ + τ + Mϕ) (9)

where ξ = [ξx, ξy] (V (ξ, ζ , τ ) should be alternatively under-
stood as V (ξ, ϕ, ζ , τ ) if needed), the equations of motion can
be given the form

ξ̈x(τ ) = −β

2
∇ξxV (ξ, ζ , τ ), (10a)

ξ̈y(τ ) = −β

2
∇ξyV (ξ, ζ , τ ), (10b)

ζ̈x(τ ) = −γ

2
∇ζV (ξ, ζ , τ ). (10c)

In what follows, V is called the “potential.” The true potential,
obviously, has the additional and very small factor β/2 (or
γ /2 if one accounts for different scaling of the ζ axis).

Since the electric field is time dependent, the total energy
is not conserved but rather satisfies

d

dτ
E = d

dτ

[
ξ̇ 2

x

2β
+ ξ̇ 2

y

2β
+ ζ̇ 2

2γ
+ 1

2
V

]
= 1

2

∂

∂τ
V . (11)

On the other hand, in the considered setup there is a constant
of motion related to the invariance with respect to the sym-
metry which consists in the simultaneous shifting of ζ and ϕ

(ζ �→ ζ + Mε, ϕ �→ ϕ − ε):

C = 1

β

(
ξx ξ̇y − ξ̇xξy

) + M

γ
ζ̇ . (12)

In the particular case of vanishing M this constant reduces
to the third component of the angular momentum (AM) of
the particle. This happens because such a beam does not
carry AM: the spin and orbital momenta are opposite. Conse-
quently, the potential looses its ϕ dependence and no force in
the azimuthal direction is exerted on the particle. For M �= 0
such a force does exist, and the transfer of the AM from the
field to the particles is observed. As will be seen below, the
nonconservation of the AM in this case happens in a short
time scale: AM understood as a mean, where fast oscillations
are eliminated, is conserved.

Potential (9) depends on time, but in typical situations
the oscillations of the electromagnetic field are very rapid as

FIG. 2. The exemplary trajectories of neutral atoms in the Bessel
beam with M = 1 obtained from the approximate potential Va (left
diagram) and full potential V (right diagram) in the red-detuned case.
In both cases β = 5 × 10−4, σ⊥ = 0.1.

compared to the eventual oscillatory motion of the atom. It is
too heavy to keep up with the evolution of the electric field for
optical frequencies or even many orders of magnitude lower.
For instance, for small oscillations the harmonic force can be
written as

F = α

2
(x · ∇)∇E2, (13)

which leads to atomic frequencies satisfying the condition

ω2
at

ω2
∼ αE2

0

2mc2

(
k2
⊥, k⊥kz, k2

z

) = 1

2
(β,

√
βγ , γ ) � 1. (14)

This enables calculation of the average of the “potential” over
short-time oscillations of the electric field and consequently,
to set cos(. . .) �→ 0 and sin2(. . .) �→ 1/2, simplifying the
expression for V:

Va(ξ, ζ ) = 〈V (ξ, ζ , τ )〉τ
= − κ2

−J2
M+1(ξ ) − κ2

+J2
M−1(ξ ) − 2J2

M (ξ ), (15)

with a standing for “averaged.” This approximation is tested
below also in the numerical way. The obtained potential is no
longer ϕ dependent, which means that the particle’s AM is
conserved if understood as an average over rapid oscillations.
Va can be further simplified if one remembers that κ+ � 1
and κ− � 1. From among the above three terms the second
one is dominant.

B. Trajectories of atoms

The motion described with Eqs. (10), even determined by
the simplified potential Va, cannot be solved analytically. The
plots of the numerical solutions are presented in Fig. 2. The
left diagram shows the motion of atoms in the (ξx, ξy) plane in
the Bessel beam for M = 1 according to Eqs. (10a) and (10b)
with the approximate potential Va. On the right the trajectories
with the same initial conditions but with the use of the full
potential V are depicted. For M �= 1 the beam has nonzero
vorticity and consequently is devoid of the central core, but
the motion of atoms in the Bessel rings is identical.

Two conclusions can be drawn from these graphs. First,
the trajectories are practically identical, which emphasizes the
validity of the approximation used. Second, the particles have
a tendency to stay in the regions of high energy concentration
(bright rings). This phenomenon is well known from trapping
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FIG. 3. Same as in Fig. 2 but for blue-detuning (β = −5 × 10−4).

neutral atoms by light beams as spoken of in the Introduction
and is connected with the sign of the polarizability α.

For α > 0, which corresponds to red-detuned wave, the
effect of trapping particles within Bessel rings is obtained
as seen in Fig. 2. For tiny oscillations, the radial motion is
harmonic with the small frequency of β1/2ω. In the realistic
situation of, say, 7Li atoms in the laser beam of intensity
I = 1011 W/cm2, the potential depth of the subsequent rings
(still for M = 1) can be estimated to 14.4 eV, 2.4 eV, 1.3 eV,
and so on, where the value of the atomic polarizability
was roughly taken as α = 103 in atomic units (1 a.u. ≈
1.65 × 10−41 C2 m2/J), where calculations show that 164 <

α < 1991 depending on the wave frequency [46]. Since the
potential is proportional to the electric field squared, for lower
laser intensities the depths are proportionally reduced. Hence,
the potential wells may be thought of as sufficiently deep, and
the trap should operate effectively. For other values of α the
obtained depths are accordingly modified.

For the blue-detuned wave the polarizability reverses its
sign, so the atoms should gather in the space between Bessel
rings (dark regions). That it is actually the case may be
seen from numerical calculations presented in Fig. 3. As
mentioned in the Introduction, this situation applies as well
(in the qualitative sense) to charged particles in the pondero-
motive potential created by the Bessel beam [44]. Similar
trajectories were also obtained in [45] without referring to the
ponderomotive potential. However, the trapping mechanism
for charged particles considered in these two cited works is
entirely different from that considered in the present work in
the context of neutral atoms. For the case of microparticles
the resembling accumulation in the Bessel rings was observed
experimentally in [42,47].

Larger objects (for instance, of the size of micrometers)
are subject to Brownian motion, which can result in hopping
between various rings as seen in experiments [47]. On the
other hand, for small particles the tunneling effect can come
into play when solving the problem in quantum mechanics.
However, this phenomenon seems to be negligible due to the
thickness of the barrier between subsequent rings. In any case,
both effects can be minimized either by dilution of the air or
cooling down particles, which makes the barrier even thicker
and higher and, naturally, by manipulating the intensity of the
waves.

The motion in the ζ direction is subject to small (and
fast) oscillations, which, however, can be smoothed out if
the above-discussed approximation has been applied. This is

FIG. 4. A typical 3D trajectory of a neutral polarizable particle
moving in the Bessel beam obtained by solving equations (10). The
values of the parameters are the same as in Fig. 2.

reflected by the fact that, due to the time averaging, potential
(9) is no longer ζ dependent. Therefore, in the considered
case the motion in the direction parallel to the principal axis
is uniform. Therefore, the motion whose projection on the
(ξx, ξy) plane is shown in Figs. 2 and 3 in reality runs along
a helix, which, however, does not have a fixed character as it
depends on the particle initial state. A typical 3D trajectory
obtained from the numerical calculations is depicted in Fig. 4.
In the next section it will be shown that the superposition
of a Bessel beam with a plane wave leads to the appearance
of fixed helices whose dimensions in space are unequivocally
determined and not affected by the atom’s initial conditions.

III. ATOMS IN THE BESSEL BEAM
AND PLANE WAVE FIELD

A. Potential

Interesting potential structures arise if a Bessel beam is
subject to the superposition with a plane wave of the same
ω propagating along the same axis. For charged particles
moving in the ponderomotive potential, they were generated
in [44] by the similar arrangement of waves. As we shall see,
choosing both frequencies to be identical allows us to get rid
of the time dependence and obtain the nontrivial conservative
potential Va. In the case of small detuning, one can produce
the slowly varying potential (the helices to be spoken of below
start to rotate at about the ζ axis), which can turn out to
be useful for manipulating particles but remains outside the
scope of interest of this work.

Let us assume the electric field of the plane wave in the
form

E = qE0[ex cos(kz − ωt + ψ ) − χey sin(kz − ωt + ψ )],

(16)
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with q standing for the measure of the relative strength of both
fields and the choice of χ fixes the polarization (the value χ =
1 corresponds to positive helicity, χ = −1 to negative, and

χ = 0 to linear polarization along the x axis). According to
(2), the potential governing the motion of polarizable particles
can be written as

V (ξ, ζ , τ ) = −κ2
−J2

M+1(ξ ) − κ2
+J2

M−1(ξ ) − 2JM+1(ξ )JM−1(ξ ) cos[2(ζ + τ + Mϕ)] − 4J2
M (ξ ) sin2(ζ + τ + Mϕ)

− qκ−JM+1(ξ )

[
(1 + χ ) cos

(
1 + σz

σz
ζ − 2τ + (M + 1)ϕ + ψ

)
+ (1 − χ ) cos

(
1 − σz

σz
ζ − (M + 1)ϕ + ψ

)]

− qκ+JM−1(ξ )

[
(1 − χ ) cos

(
1 + σz

σz
ζ − 2τ + (M − 1)ϕ + ψ

)
+ (1 + χ ) cos

(
1 − σz

σz
ζ − (M − 1)ϕ + ψ

)]

− q2

[
1 + (χ2 − 1) sin2

(
1

σz
ζ − τ + ψ

)]
, (17)

where again the dimensionless quantities (6) have been introduced. After time averaging in order to get rid of the rapid
oscillations the potential simplifies to

Va(ξ, ζ ) = 〈V (ξ, ζ , τ )〉τ
= −κ2

−J2
M+1(ξ ) − κ2

+J2
M−1(ξ ) − 2J2

M (ξ ) − 1 + χ2

2
q2 − q(1 − χ )κ−JM+1(ξ ) cos

(
1 − σz

σz
ζ − (M + 1)ϕ + ψ

)

− q(1 + χ )κ+JM−1(ξ ) cos

(
1 − σz

σz
ζ − (M − 1)ϕ + ψ

)
, (18)

where q2(1 + χ2)/2 is an inessential constant and may be
omitted. Since κ+ � 1 � κ−, the further simplification of this
expression is possible as in the previous section, leading to

Vas(ξ, ζ ) = −κ2
+J2

M−1(ξ ) − q(1 + χ )κ+JM−1(ξ )

× cos

(
1 − σz

σz
ζ − (M − 1)ϕ + ψ

)
. (19)

This formula holds both for χ = 1 and χ = 0. It is then seen
that in this approximation the (positive) circular polarization
and the linear polarization will lead to the identical motion
of the particle, and χ = 1 merely entails the modification
of the parameter q (q �→ 2q), which eventually allows us to
appropriately reduce the plane-wave intensity. Therefore, in
our numerical analysis the value χ = 0 is simply set, and to
account for the circular polarization one simply divides q by
2. This rule is exact for the potential (19) and almost exact in
the case of (18).

The simplified form is better suited for a qualitative analy-
sis, but the numerical calculations in Sec. III B are performed
with the use of the full form (17). As it was in the case of
the pure Bessel beam, they are in perfect harmony with each
other.

When the circular polarization of the plane wave is nega-
tive with respect to the direction of the beam, then the large
term with (1 + χ ) disappears and Vas takes the form

Vas(ξ, ζ ) = −κ2
+J2

M−1(ξ ) − 2qκ−JM+1(ξ )

× cos

(
1 − σz

σz
ζ − (M + 1)ϕ + ψ

)
. (20)

However, in order to justify the approximation applied one
should have qκ− � 1, which implies q � 20 for the data used
in the present work. If this is not satisfied, only the first term
survives. From a practical point of view this case is, then,

uninteresting, since it virtually gives the same results as the
potential (15).

For a fixed ζ (for instance, for ζ = 0) the extremes of Vas

can be found by requiring ∂Vas/∂ξ = 0 and ∂Vas/∂ϕ = 0.
The more detailed analysis is completed in a way very similar
to that given in Sec. III C (but with the role of variables ϕ and
ζ interchanged and for arbitrary M) and leads to the following
general conclusions:

(1) Deep minima of Vas are located at a maxima of the
Bessel function JM−1(ξ ) and for (M − 1)ϕ + ψ = 2nπ (for
integer n) and also at a minima of the Bessel function and
(M − 1)ϕ + ψ = (2n + 1)π . Higher values of ϕ (exceeding
2π ) must be allowed due to the ζ dependence in (19).

(2) The strong maxima of Vas are located at minima of the
Bessel function and for (M − 1)ϕ + ψ = 2nπ or at maxima
of the Bessel function and (M − 1)ϕ + ψ = (2n + 1)π . From
a practical point of view, they correspond to low energy
concentrations and can serve to trap atoms in the blue-detuned
case.

For considered values of q the additional shallow minimum
appears at first maximum of the Bessel function, but this is
inessential for the conclusions of our work. All observations
can be confirmed when looking at Fig. 5.

In order to reproduce the spatial character of the potential
valleys, the diagrams shown in Fig. 6 are prepared. The phase
ψ which, to some extent, can serve to manipulate guided
atoms but is not an important issue from the point of view
of the present work is henceforth set to zero. The diagrams
represent intersections of the function Vas(ξ, ζ ) for M = 2
with horizontal planes for sequentially increasing values of ζ .
As earlier, bright regions correspond to high energy concen-
trations, i.e., the potential dimples (from the point of view of
atoms in a red-detuned wave). It is visible from the grayscale
level that subsequent minima are shallower, which stays in
agreement with the plot of Fig. 5. On the first diagram all
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FIG. 5. Radial dependence of the Bessel function JM−1 and of
the potential Va in the particular case of M = 2 for ζ = 0, q = 10
and ϕ = 0 (solid line) or ϕ = π (dashed line). It is visible that for
ϕ = 0 the minima of the potential correspond to the maxima of the
Bessel function and to the minima of the Bessel function for ϕ = π .
In turn, the maxima of the potential are localized close to the minima
of the Bessel function for ϕ = 0 and conversely for ϕ = π . The only
exception appears close to the first maximum of the Bessel function,
but it is getting shallower as q is growing and finally disappears for
q > 20. For greater clarity, the Bessel function values are scaled 100
times.

the brightenings are located on the ξx axis in line with our
former analysis. On the subsequent diagrams when raising
the horizontal plane the rotation of the potential minima is
observed. Since, in fact, ζ is a continuous variable, instead of
isolated points these have the form of the entire helix system.

Similar conclusions can be formulated in relation to dark
regions corresponding to the low energy density connected
with the maxima of Vas. They are also arranged in the form of
helices, which allow atoms to be guided when blue-detuned.

FIG. 6. The surface graphics representing the cuts of the function
Vas(ξ, ζ ) with the planes: ζ = 0, 300, 600, 900, for M = 2 and q =
10 (or q = 5 in the case of the circular polarization.)

FIG. 7. Cut of the graph of the function Vas(ξ, ζ ) with the plane
ξy = 0. Other parameters are identical as in Fig. 6. The arrows show
the path of the potential valley.

Figure 7 shows the cut of the graph of Vas(ξ, ζ ) made with
the vertical plane (ξy = 0). When rotating the diagram around
the ζ axis according to the right-hand rule, all bright regions
are moving up (as marked with arrows in the figure). The
situation would be opposite if the Bessel beam carried the
negative vorticity (i.e., for M − 1 < 0).

The identified potential valleys in the form of helices can
serve to guide neutral atoms. For each helix the value of the
pitch can be obtained from (19) in the form of

pitch = 2π (M − 1)
σz

1 − σz
, (21)

i.e., it depends exclusively on the parameters characterizing
the Bessel beam and not a guided particle. Since σz is close
to 1, the helix pitch is a large number. For instance, taking
σ⊥ = 0.1 one gets

σz =
√

1 − σ 2
⊥ =

√
0.99 ≈ 0.995,

and pitch ≈ 1247 × (M − 1) (22)

in units of k−1
z , which means that the pitch amounts to a

few hundreds of micrometers. This constitutes a significant
difference with respect to helices obtained in [48] by com-
bining two Bessel beams. In that case the pitch was given as
comparable to the wavelength, i.e., it was very small, which
makes it harder to simultaneously guide multiple atoms (as
will be discussed below) without considering their mutual
interactions. The helices then become extremely tight, as can
be seen in Fig. 6 of [48]. This feature practically eliminates
the possibility of guiding micro-objects.

It should be particularly emphasized that these helices (and
consequently the trajectories of particles) are fixed in space.
They are not affected by the initial conditions as was that of
Fig. 4. They even do not depend on which atoms one is dealing
with. Neutral particles are guided along the identical potential
valleys as long as their initial energy is not too great to spoil
the entire trap. Naturally the potential depth is atom dependent
due to different values of polarizability.
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FIG. 8. The surface graphics representing the cuts of the function
Vas(ξ, ζ ) with the plane ζ = 0 and q = 10 for the Bessel beams
carrying vorticity 0, 1, 2, and 3 (i.e., M = 1, 2, 3, 4). It is visible that
exactly the same number of potential valleys is generated. They are
schematically drawn in Fig. 9.

The form of the potential valleys shown in Fig. 6 is typical
for the Bessel function with vorticity 1. For such a wave,
there is only one bright area on the inner ring and only one
helix is built on it. On each subsequent ring there is also only
one helix (corresponding, however, to the shallower potential
valley). The corresponding diagrams are shown in Fig. 8 and
in a schematic way in Fig. 9. It can be seen that, in general,
on each Bessel ring as many helical tubes, which surround
each other, are built as the vorticity of the beam amounts.
Each helical tube corresponds to the potential valley and can
serve to guide atoms of positive polarizability. Similar tubes,
but corresponding to weaker potential wells, are located on
the outer rings. They can be shifted along the ζ axis by
modifying the relative phase ψ in (16). This property can
help to manipulate the trapped objects. An identical (helical)
structure as sketched in Fig. 9 can be drawn for dark regions,
i.e., for the potential valleys of the atoms in the blue-detuned
beam.

FIG. 9. Schematic representation of potential valleys for the
Bessel beam of vorticity 1, 2, and 3 (M = 2, 3, 4).

When superposing two Bessel beams propagating in op-
posite directions, the whole system of similar helical tubes
occurs [48] with all the aforementioned differences. If these
beams are perpendicular, a true 3D trap can be obtained (for
charged particles) [44].

It should be noted that the helical potential tubes are not the
exclusive property of Bessel beams. A comparable potential
pattern for a two-level atom was found for the superposition of
two counterpropagating Laguerre-Gaussian beams of opposite
helicity [49]. Such atoms can then be transported if the entire
helical structure is made to rotate due to the slight detuning
of the beam frequencies [50]. The same effect in our case was
mentioned at the beginning of this section. Similarly as for the
superposition of Bessel beams, the emerging helices are very
tight. This can be seen in Fig. 1 of [49].

B. Helical motion

When a Bessel beam interferes with a plane wave, the
“screw” symmetry connected with the simultaneous shift of
ζ and ϕ which led to the constant of motion (12) in the pure
Bessel case is lost. There occurs only an approximate constant
stemming from the form of the potential (19):

Cas = 1

β
(ξx ξ̇y − ξ̇xξy) + 1

γ
(M − 1)

σz

1 − σz
ζ̇ . (23)

Comparing (12) and (23) one can notice that the plane
wave contributed one unit of AM and presently Cas reduces to
the ζ component of the particle’s AM for M = 1. This is not
strange, since (23) is derived from the short-time averaged
potential for which, as was discussed previously in the pure
Bessel case, this component of the particle’s AM is conserved
[see (15)]. Consequently, the only contribution in this limit has
to come from the interference between the plane and Bessel
waves, which becomes ϕ independent only if the Bessel beam
is not carrying any vorticity (i.e., for M = 1). If the particle
accelerates upward for the positive beam vorticity, its AM
decreases; if the vorticity is negative, it increases. This transfer
of the angular momentum to or from the atoms is the effect
that can help in manipulating them.

Apparently, the conservation of the particle’s AM seems
not to depend on the strength of the plane wave, since in
Cas there is no explicit q dependence. This, however, is not
true, because the deviation from the uniform motion in the ζ

direction is related to the value of q. For a weak plane-wave
field ζ̇ is almost a constant (in the above-discussed average
sense), leading to the similar conclusion as in the pure Bessel
case. For stronger fields the interference effects become more
relevant.

In Fig. 10 the trajectory of an atom in the red-detuned
Bessel beam of M = 2 interfering with a plane wave is
drawn. It is obtained by means of the numerical integration
of equations (10) with the full potential (17) on the right-hand
sides. Apart from the local deviations the atom is forced to
follow the helical potential valley shown in the first picture
of Fig. 9. As already told before, contrary to the helix of
Fig. 4 whose radius was set by the extension of the Bessel
ring but the motion along the beam was entirely unrestricted
and depended on the initial state of the particle, the helix of
Fig. 10 is fixed by the parameters of interfering waves only.
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FIG. 10. The trajectory of an atom in the red-detuned Bessel
beam of M = 2 interfering with the linearly polarized plane wave.
Here β = 10−5, σ⊥ = 0.1, q = 10.

For instance, the pitch of any trajectory exactly equals the
value (22).

It would be interesting to see how this trajectory is affected
by the initial data of the atom. Comparing the results of
numerical calculations presented in Fig. 10 and in Fig. 11,
which have been obtained for different initial states but for
the identical combination of fields, it can be easily observed
that the modifications apply to only the local motion of
the atom. Microscopically the atom moves along a different
trajectory, but in both cases in a visible way the particles
are guided strictly along the same helical valleys of the
potential determined by the approximate equation (19). This
phenomenon is of practical significance for maintaining atoms
in stable trajectories. Naturally, if the initial energy were too
large, this property would be nullified and the particle would
escape from the trap. The depth of this potential well can
be estimated. For instance, for the laser beam of intensity
I = 1011 W/cm2 and for q = 10 (or q = 5 in the case of
circular polarization) it amounts to about 8.4 eV.

Maxima of the potential Vas, i.e., minima of the energy
density (dark regions shown in Figs. 6 and 8) can serve as
traps for atoms in blue-detuned fields. In the case of charged
particles they correspond to the minima of the ponderomotive
potential [44]. The system of potential valleys is, in this
case, quite analogous to that shown in Fig. 9. The exemplary
trajectory of an atom in the potential V for β < 0, i.e., for
the blue-detuned Bessel beam (of vorticity 1) is presented in
Fig. 12. As one can see, atoms follow similar trajectories, but
the depth of the potential well can be estimated to be about
half of what was obtained for the red-detuned beam.

FIG. 11. Same as Fig. 10, but for different initial conditions for
the atom.

FIG. 12. The trajectory of an atom in the blue-detuned Bessel
beam of M = 2 interfering with the linearly polarized plane wave.
Here β = −10−5, σ⊥ = 0.1, q = 10.

The opposite twist of helices, if needed, is not achieved in
this setup by modifying the initial state of particles (as would
be in the case described in Sec. II), on which we have little
control. To this goal one should rather use a Bessel beam with
negative vorticity. Figure 13 shows the trajectory of an atom
with the same initial state as that of Fig. 10 (obviously, its
initial position must fit to the new potential valley) in the case
of the Bessel beam with vorticity equal to −1. Note that the
atom is forced to follow a new helix with the opposite twist
created by the new combination of electromagnetic fields.
This provides us with the ability to steer the motion of trapped
particles.

The system of potential minima as shown in Figs. 8 and 9
allows multiple atoms to be conducted simultaneously, each
along its own potential valley. In the case of neutral atoms the
interaction between one another is much weaker than that of
charged particles moving in the ponderomotive potential and
seems to be a real practical possibility. Figure 14 shows the
trajectories of three atoms obtained by numerically solving
equations in the potential with M = 4. They precisely reflect
the structure of the potential tubes for a Bessel beam with
vorticity 3.

FIG. 13. The trajectory of an atom with the same initial data as
in Fig. 10 but placed in the Bessel beam of vorticity −1 (M = 0)
interfering with a plane wave.

063412-8



MANIPULATING NEUTRAL PARTICLES IN BESSEL BEAMS: … PHYSICAL REVIEW A 100, 063412 (2019)

FIG. 14. Three particles performing independent motion along
three helices created by the Bessel beam of vorticity 3 (M = 4)
interfering with a plane wave.

C. 3D traps

According to the expression (21), the pitch of the helical
potential valleys is proportional to M − 1. For smaller values
helices are more tight and finally become entirely degenerated
if M = 1 (no vorticity). Instead of extended helices, the po-
tential wells now have the character of true three-dimensional
rings (and not of cylindrical structures as in Sec. II). They are
depicted in Fig. 15. Each of these visible rings can serve as a
real 3D trap for neutral atoms in the red-detuned case. Similar
toroidal structures can be obtained by interfering two Bessel
beams [48].

The spatial position of these ring-shaped minima can be
found by fixing ϕ and solving the set of equations (φ is set to
zero for simplicity):

∂Vas

∂ξ
= −κ+J ′

0(ξ )

[
2κ+J0(ξ ) + q cos

(
1 − σz

σz
ζ

)]
= 0,

(24a)

∂Vas

∂ζ
= qκ+J0(ξ )

1 − σz

σz
sin

(
1 − σz

σz
ζ

)
= 0. (24b)

Leaving aside the manifestly contradictory case, it is clear that
the following obvious possibilities occur:

J0(ξ ) = 0 and cos

(
1 − σz

σz
ζ

)
= 0, or (25a)

J ′
0(ξ ) = 0 and sin

(
1 − σz

σz
ζ

)
= 0, or (25b)

sin

(
1 − σz

σz
ζ

)
= 0 and (25c)

J0(ξ ) = − q

2κ+
cos

(
1 − σz

σz
ζ

)
.

Analyzing these equations together with the matrix of sec-
ond derivatives of Vas, it can be shown that there emerge two
kinds of the ring-shaped potential minima (both numbered
with an integer n):

(1) Those deeper, located at

ζ = (2n + 1)π (σz )/(1 − σz ) (26)

with the depth

V (1)
min = −κ+J0(ξmin)[κ+J0(ξmin) − q], (27)

where ξmin ≈ 3.832 stands for the position of the first mini-
mum of the Bessel function J0, and

(2) Those shallower, located at ζ = 2nπ (σz )/(1 − σz )
with the depth

V (2)
min = −κ+J0(ξmax)[κ+J0(ξmax) + q], (28)

where ξmax ≈ 7.016 is the position of the first (nonzero)
maximum of the Bessel function J0.

FIG. 15. Schematic representation of the potential valleys for a Bessel beam of vorticity −2, −1, 0, 1, 2 interfering with a plane wave.
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FIG. 16. Trajectories of four atoms independently trapped in four
ring-shaped potential valleys of the third diagram in Fig. 15 (i.e., for
M = 1). The values of parameters are identical as before: β = 10−5,
σ⊥ = 0.1, q = 10.

For the data used throughout the paper (q = 10, σ⊥ = 0.1)
it can be found that

V (1)
min ≈ 144.9 at ζ = 623.6, 1870.8, . . . , (29a)

V (2)
min ≈ 95.7 at ζ = 0, 1247.2, . . . , (29b)

which entirely agrees with Figs. 15 and 16. Assuming as
before the intensity of the beam to be I = 1011 W/cm2, one
gets that the depths of these minima can be estimated to 5.22
and 3.44 eV, correspondingly.

Figure 16 shows the trajectories of several atoms simulta-
neously trapped in ring-shaped potential wells. The obtained
trajectories in the visible way correspond to the potential rings
of the third diagram in Fig. 15.

The mutual interaction of dipole moments of polarized
neutral atoms trapped in different rings are negligible, be-
ing many orders of magnitude weaker than the interaction
with electromagnetic fields. The spatial separation of subse-
quent ring-shaped traps is of order of �z ≈ �ζ c ω−1, which
amounts to hundreds of micrometers for ω � 1015 Hz. As
compared to the rings obtained in [48], they are thousands
of times further apart from each other [see Eq. (11) in the
quoted work]. Therefore, in the presently proposed fields
configuration, one can truly consider the parallel guiding or

trapping atoms in their individual two- or three-dimensional
traps. This situation would not be so comfortable for charged
particles in a ponderomotive potential, where their interaction
has to be taken into account.

IV. SUMMARY

The present work is concerned with the motion of neutral
polarizable particles (atoms) in the field of a pure Bessel beam
and in the combined fields of a Bessel beam and a plane wave
propagating in the same direction. The interaction potential
is proportional to E2. This causes the particles with positive
polarizability (red-detuning) to be dragged into the areas of
high energy density, and those with negative polarizability
(blue-detuning) to be pushed out of them. It is known that in
the Bessel beam alone there arise concentric rings in the plane
perpendicular to the propagation axis, where the density of
electromagnetic energy is raised, and between them rings with
lower energy density are formed. The trajectories of particles
obtained from the equations of motion by the numerical
integration show that atoms are captured in the former when
red-detuning occurs and otherwise in the latter ones. Each
of the rings can serve as a kind of a 2D trap, although the
outer rings offer the shallower potential wells. The motion in
the direction of the wave propagation is unrestricted, within
a good approximation, which allows for the guidance of
particles along the beam captured at (almost) fixed distance
from the beam core.

The superposition of a Bessel beam and a plane wave
of the precisely tuned frequencies leads to other interesting
structures that can serve as traps as well. There emerge poten-
tial valleys in the form of helices inside which particles are
guided independently of their initial energy or velocity within
reasonable limits (i.e., kinetic energies not exceeding a few
electronvolts, naturally depending on the laser intensity). Each
Bessel ring develops as many helices as the topological vortex
index amounts. The pitch of a given helix and the direction of
its twist (and simultaneously of the atom’s trajectory) is also
fixed by the value of this index. By changing the vorticity into
an opposite one, the same particle can be forced to follow
either a right-twisted or left-twisted path. These properties
can serve to manipulate guided atoms in space. The helices
depend on the relative phase of both fields, so this parameter
can serve as a separate tool for the precise guidance of atoms
as well.

In the special case of a Bessel beam carrying no vorticity
all the helices become degenerate. Instead of them there arises
a series of true 3D traps in the form of rings perpendicular to
the direction of propagation of both waves. The trajectories of
atoms in these traps have been obtained in the numerical way.

The rich structure of potential valleys creates the possibil-
ity to simultaneously guide atoms along the multihelix system
or to capture them in different ring traps, forming a kind
of optical lattice. The interaction between neutral polarized
atoms is marginal in this case. A similar framework has
been observed for charged particles (for instance electrons)
subject to ponderomotive force stemming from the analogous
combination of fields or in the case of neutral particles in
the potential generated by two counterpropagating Bessel
beams. However, their mutual interactions are not negligible
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either due to electric forces or the extremely tight form of
helices.

In conclusion, it should be pointed out that superposing a
Bessel beam with other waves opens the possibility to manip-
ulate neutral particles thanks to the polarization mechanism.
Several parameters which are at our disposal (vorticity topo-
logical number, field strength, relative phase, z component

of the wave vector, etc.) allow us to modify the particle’s
trajectories, within a certain class. One can also think of slight
detuning of both waves or the relative inclination of their wave
vectors. For larger objects the incorporation of the Brownian
motion led to hopping between Bessel rings [47]. On the
quantum level the tunneling effect should also be estimated,
although it seems negligible in the proposed setup.

[1] A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[2] K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787

(2004).
[3] K. Dholakia, P. Reece, and M. Gu, Chem. Soc. Rev. 37, 42

(2008).
[4] M. Dienerowitz, M. Mazilu, and K. Dholakia, J. Nanophoton.

2, 021875 (2008).
[5] A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).
[6] A. Ashkin and J. M. Dziedzic, Science 187, 1073 (1975).
[7] A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 28, 333 (1976).
[8] N. B. Delone and V. P. Krainov, Phys.-Usp. 42, 669 (1999).
[9] S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, Phys. Rev.

Lett. 57, 314 (1986).
[10] J. D. Miller, R. A. Cline, and D. J. Heinzen, Phys. Rev. A 47,

R4567 (1993).
[11] C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu,

Phys. Rev. Lett. 74, 3577 (1995).
[12] N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu,

Phys. Rev. Lett. 74, 1311 (1995).
[13] D. Sheng, J. Zhang, and L. A. Orozco, Phys. Rev. A 87, 063412

(2013).
[14] N. Friedman, A. Kaplan, and N. Davidson, Adv. At., Mol., Opt.

Phys. 48, 99 (2002).
[15] C. S. Adams and E. Riis, Prog. Quant. Electr. 21, 1 (1997).
[16] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, Adv. At.,

Mol., Opt. Phys. 42, 95 (2000).
[17] D. J. Stevenson, F. J. Gunn-Moore, and K. Dholakia, J. Biomed.

Opt. 15, 041503 (2010).
[18] F. M. Fazal and S. M. Block, Nat. Photon. 5, 318 (2011).
[19] Optical Tweezers: Methods and Applications, edited by M.

Padgett, J. Molloy, and D. McGloin, Series in Optics and
Optoelectronics (CRC Press, Boca Raton, FL, 2010).

[20] M. Woerdemann, Structured Light Fields: Applications in
Optical Trapping, Manipulation, and Organisation (Springer,
Berlin, 2012).

[21] R. W. Bowman and M. J. Padgett, Rep. Prog. Phys. 76, 026401
(2013).

[22] D. G. Grier, Nature (London) 424, 810 (2003).
[23] D. S. Bradshaw and D. L. Andrews, Eur. J. Phys. 38, 034008

(2017).
[24] S. Sundbeck, I. Gruzberg, and D. G. Grier, Opt. Lett. 30, 477

(2005).
[25] D. L. Andrews, Structured Light and Its Applications: An

Introduction to Phase-Structured Beams and Nanoscale Optical
Forces (Academic Press, New York, 2008).

[26] S.-H. Lee, Y. Roichman, and D. G. Grier, Opt. Express 18, 6988
(2010).

[27] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P.
Woerdman, Phys. Rev. A 45, 8185 (1992)

[28] M. Padgett, J. Arlt, N. Simpson, and L. Allen, Am. J. Phys. 64,
77 (1996).

[29] J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
[30] J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, Phys. Rev. Lett. 58,

1499 (1987).
[31] K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J.

Arlt, and K. Dholakia, J. Opt. B 4, S82 (2002).
[32] J. C. Gutierrez-Vega, R. M. Rodriguez-Dagnino, M. D. I.

Castillo, and S. Chavez-Cerda, in Proceedings of the SPIE,
Optical Pulse and Beam Propagation III (SPIE, Bellingham,
WA, 2001), Vol. 4271.

[33] G. A. Siviloglou, J. Broky, A. Dogariu, and D. N.
Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).

[34] M. Babiker, D. L. Andrews, and V. E. Lembessis, J. Opt. 21,
013001 (2019).

[35] Non-Diffracting Waves, edited by H. E. Hernandez-Figueroa,
E. Recami, and M. Zamboni-Rached (Wiley-VCH, Weinheim,
2014).
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