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Impact of ion motion on atom-ion confinement-induced resonances in hybrid traps
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We investigate confinement-induced resonances in atom-ion quantum mixtures confined in hybrid traps for
small atom-ion mass ratios. Specifically, we consider an ion confined in a time-dependent radio-frequency Paul
trap with linear geometry, while the atom is constrained to move into a quasi-one-dimensional optical waveguide
within the ion trap. We evaluate the impact of the ion intrinsic micromotion on the resonance position. Thus, we
solve the atom-ion dynamics semiclassically, namely, the atom dynamics is governed by the three-dimensional
time-dependent Schrödinger equation, whereas the ion motion is described by the classical Hamilton equations.
We find that the energy of the ion provided by the oscillating radio-frequency fields can affect the resonance
position substantially. Notwithstanding, the peculiar phenomenology of those resonances regarding perfect
transmission and reflection is still observable. These findings indicate that the intrinsic micromotion of the ion is
not detrimental for the occurrence of the resonance and that its position can be controlled by the radio-frequency
fields. This provides an additional means for tuning atom-ion interactions in low spatial dimensions. The
study represents an important advancement in the scattering physics of compound atomic quantum systems
in time-dependent traps.
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I. INTRODUCTION

Compound atom-ion systems afford a new platform to
study quantum physics in which multienergy and multilength
scales are involved. In particular, atom-ion systems allow
investigating condensed-matter systems more closely. For
instance, an important component of a solid-state system is
the electron-phonon coupling, which is mimicked naturally
in an atom-ion system. Indeed, the atom-ion interaction has
the effect that the passage of an atom in the proximity of an
ion crystal influences the state of the ions via the exchange of
phonons as in a real solid-state system. This feature is absent
in ultracold atoms trapped in an optical lattice, where there
is no backaction of the atoms on the lattice. Furthermore,
with such compound system, it is also possible to study the
formation of mesoscopic molecular ions [1,2] and charge
transport [3,4], to mention a few examples (for a detailed
overview, see Ref. [5]). The realization of compound atom-
ion systems in the laboratory, however, is quite challenging
since it combines different trap technologies such as radio-
frequency traps for ions and optical dipole traps for atoms
and this fundamentally limits the attainable temperatures.
Albeit the s-wave collisional quantum regime (i.e., the s-
wave regime) has not yet been reached in current atom-ion
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laboratories, a significant experimental effort has been put
forward in very recent years. Specifically, it has been shown
that submicrokelvin temperatures can be attained when ion-
izing a Rydberg atom in a Bose-Einstein condensate [6] and
that the required collisional energies to enter the s-wave limit
in radio-frequency traps are attained when choosing a small
atom-ion mass ratio [7–11], which is within experimental
reach [12]. Furthermore, proof-of-principle experiments have
demonstrated laser-controlled atom-ion interactions [13–15],
therefore opening new possibilities for controlling interac-
tions and developing light-matter interfaces for quantum in-
formation processing [16,17]. We underscore that the attain-
ment of the s-wave regime is crucial for the observation
of atom-ion Feshbach resonances [18] as well as for quan-
tum technological applications with atom-ion systems such
as quantum gates [19], quantum simulation of the electron-
phonon coupling [20], and for reaching the strong-coupling
polaron regime [21].

Confinement-induced resonances (CIRs) [22–27] have
been pivotal in entering the regime of strongly correlated
atomic matter [28]. A CIR occurs in an atomic trap when
the atom-atom scattering length in free space, as, becomes
comparable to the transversal width a⊥ of the trap: a⊥/as →
1.4603 [22]. At that ratio, the bound state in the closed chan-
nel, that is, the first-excited state of the transverse confine-
ment, coincides with the collision threshold of the entrance
channel. In this case, the scattering amplitude f (a⊥, as) of the
atom on atom tends to −1, and therefore the transmission T =
|1 + f |2 approaches zero [22–25]. Thus, by varying a⊥ and as
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near the CIR, it is possible to control the effective atom-atom
interaction of the confined atomic system. As for the neutral
atomic counterpart, atom-ion or atom-dipole CIRs can be an
additional “knob” for manipulating the mixture’s interaction
in low spatial dimensions. For instance, CIRs can be utilized
to steer the particle flow in Josephson junctions [9,29,30], to
tune interactions in a Tomonaga-Luttinger liquid in which a
linear ion crystal is immersed [31], for precise magnetom-
etry [32,33], and in quantum simulation [20,34–38]. This
is especially important in the atom-ion setting when state-
dependent atom-ion interactions are needed to perform par-
ticular quantum information processing tasks. Indeed, experi-
ments [39–41] have shown that spin-exchange collisions can
occur after a few Langevin collisions because of spin-orbit
couplings [42]. This effect has a minor impact in a quasi-one-
dimensional geometry.

A first theoretical study investigating the possibility of
realising CIRs in an atom-ion system was done in Ref. [43]
for the case of time-independent atom and ion traps with
identical frequencies. In Ref. [25], the CIRs in atom-ion
hybrid systems were predicted and the conditions for the
atom-ion CIR appearance were obtained in the static ion
approximation, where the ion is pinned in a precise position in
space and cannot move. Interestingly, an isotopelike effect of
the resonance position has been found. While in the neutral
setting the resonance condition is attained when a⊥/as →
1.4603, as previously discussed, in atom-ion systems, when
the effective spatial range R∗ of the polarization potential
−C4/r4 is comparable to a⊥ (or even larger), the position of
the CIR strongly relies on the atom-ion mass ratio [25]. This
effect is much harder to observe in neutral atomic systems, as
it requires large trap frequencies (hundreds of kHz) in order to
produce small trap widths a⊥, while atom-ion systems require
frequencies �100 kHz [25].

In view of the foregoing, it becomes relevant to go beyond
the static approximation in the problem of atom-ion CIR.
So far, however, atom-ion collisions in radio-frequency traps
have been treated either purely classically [7] or within the
Markovian quantum master equation formalism [44]. Both
studies indicated that the most favorable atom-ion species
for reaching the quantum regime is Li/Yb+. In the study
of Ref. [44], however, the atom-ion interaction has been
treated perturbatively, i.e., in the Born approximation, which
omits, for instance, the resonance effects in the atom-ion
scattering. In this work, we go one step further in the quantum
mechanical treatment of atom-ion collisions in Paul traps
and extend the previous work of two of us [25]. Indeed, we
treat the atom dynamics fully quantum mechanically with the
time-dependent Schrödinger equation, whereas the ion motion
is described classically via the Hamilton equations. Such a
semiclassical treatment is well justified when the ion is much
heavier than the colliding atom. As we explain in detail below,
the equations of motion of the atom and the ion are coupled
via the atom-ion interaction. In the atom Schrödinger equa-
tion, the ion position is treated as a time-dependent parameter,
while the interaction in the ion Hamilton equations is averaged
quantum mechanically over the instantaneous quantum state
of the atom.

Towards this aim, the quantum semiclassical compu-
tational method [45–48] specifically designed for particle

collisions, such as the problem of ionization of the helium
ion colliding with protons [47] and antiprotons [48], has been
employed and extended to the time-dependent domain, as our
radio-frequency ionic confinement requires. Moreover, our
analyses focus on the specific Li/Yb+ atom-ion pair since it
is the most promising atomic pair to reach the s-wave regime
in Paul traps and it is currently under intense experimental
investigations [12,40,49]. We note, however, that with regard
to the mass ratio, a good atom-ion pair is also Li/Ca+ [50–52].
Our analysis shows that the intrinsic micromotion of the ion,
which is unavoidable in Paul traps (differently from optical
trapping of ions [53]), is not detrimental for the occurrence
of an atom-ion CIR. We find that the CIR position strongly
relies on the ion kinetic energy. This implies that the atom-
ion interaction can be controlled not only by the short-range
atom-ion physics or by means of magnetic Fano-Feshbach
resonances as well as the width of the atomic waveguide, but
also by the ion kinetic energy, which can be manipulated via
the external driving, e.g., by changing the radio frequency of
the Paul trap.

The paper is organized as follows. In Sec. II, we introduce
our microscopic atom-ion Hamiltonian and the correspond-
ing equations of motion, namely, the coupled Schrödinger-
Hamilton equations. In addition, we discuss how to determine
the scattering amplitude in the time-dependent scenario. In
Sec. III, we present our findings and discuss the physical
implications. In Sec. IV, we draw our conclusions and provide
an outlook for future work.

II. PROBLEM FORMULATION AND METHODOLOGY

In this section, we theoretically describe the atom-ion
system, including the equations of motion for the atom and
the ion, and determine how to face the scattering problem in
time-dependent radio-frequency traps, and what the scattering
quantities of interest are in order to assess the CIR position in
reliance of the ion kinetic energy and atomic waveguide width.
A schematic view of the system under investigation is given
in Fig. 1.

A. The atom quantum Hamiltonian

The atom is described by the Hamiltonian

Ĥa(r̂a, t ; ri ) = − h̄2

2ma
∇2

a + maω
2
⊥

2

(
x̂2

a + ŷ2
a

)+ Vai(|r̂a − ri(t )|),

(1)

where r̂a ≡ (x̂a, ŷa, ẑa) and ri ≡ (xi, yi, zi ) are the atom po-
sition operator and ion position vector, respectively, ma is
the atom mass, and ∇2

a ≡ ∂x2
a
+ ∂y2

a
+ ∂z2

a
is the Laplacian

operator (∂xa denotes the partial derivative, for instance, in
the xa direction). The second term in Eq. (1) describes the
harmonic potential of frequency ω⊥ due to the waveguide,
whereas along the longitudinal direction za, the atom does
not experience any confinement. The transverse potential is
assumed to be so tight to render the atom motion quasi one
dimensional (quasi 1D). We note that in the Hamiltonian (1),
we explicitly introduced the parametric dependence on the ion
position.
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FIG. 1. Pictorial illustration of the system under investigation
in this study. The light- and dark-gray electrodes (the big bars in
the figure) of the Paul trap generate the time-dependent electric
fields needed to confine the ion (red sphere) transversally, whereas
longitudinally a static voltage is applied to ensure confinement (not
shown). The atom (green sphere) is injected from the right to the
left into a waveguide (light blue), whose center hosts the ion. The
waveguide is orientated along the longitudinal axis z of the linear
Paul trap. In the transverse directions x, y, the confining potential
both for the atom and the ion is strong.

The last term in Eq. (1), Vai(|r̂a − ri(t )|), describes the
interaction between the atom and ion, whose asymptotic be-
havior at large atom-ion separations r(t ) ≡ |r̂a − ri(t )| → ∞
has the form

Vai(r(t )) � − C4

r(t )4
, (2)

i.e., it behaves as the polarization potential. The dispersion
coefficient is given by C4 = αe2

2
1

4πε0
(in SI units) with α being

the static atom polarizability, e the electron charge, and ε0

the vacuum permittivity. At short-range distances, when the
two electronic clouds do overlap, the potential is repulsive,
albeit its form is generally unknown. For the sake of numerical
convenience, we use the regularized potential [44],

Vai(r(t )) = − [r2(t ) − c2]

[r2(t ) + c2]

C4

[r2(t ) + b2]2
. (3)

This potential reproduces at large distances the polarization
potential (2), whereas at r = 0 it assumes a large, but finite
numerical value, contrary to the typically employed C12/r12

potential. Variation of the two parameters b and c permits
one to tune the atom-ion interaction for any value −∞ <

as < +∞ of the atom-ion scattering length in free space in
the zero-energy limit. We note that the time dependence of
the Hamiltonian (1) enters via the ion trajectory ri(t ) in the
atom-ion interaction (3). The ion trajectory is obtained by
simultaneously solving the classical equations of motion for a
charge particle in a Paul trap, as explained in the next section.

B. The ion classical Hamiltonian

The ion is assumed to be confined in a linear Paul trap,
whose electric fields read as [54]

Es = mi

2|e|ω
2
i (xi, yi,−2zi ),

Er f = mi�
2
rf q

2|e| cos(�rft )(xi,−yi, 0). (4)

Here, mi is the ion mass, �rf is the radio frequency (rf),
ωi = �rf

√
a/2, and q and a are dimensionless geometric

parameters (i.e., qz = 0, qy = −qx ≡ q, −az/2 = ax = ay ≡
a, and a 
 q2 < 1). Hereafter, we assume that the axis of
the waveguide, in which the colliding atom is traveling, is
precisely the z axis of the Paul trap (see, also, Fig. 1). The
corresponding nonconservative potential is given by

U (ri, t ) = miω
2
i

2

(
z2

i − x2
i + y2

i

2

)

+ mi�
2
rf

2
q cos(�rft )

(
y2

i

2
− x2

i

2

)
. (5)

Hence, the classical Hamiltonian describing an ion in a Paul
trap is given by

H trap
i (pi, ri, t ) = p2

i

2mi
+ U (ri, t ). (6)

C. The atom-ion equations of motion

When the atom is confined in the waveguide within the
Paul trap, the ion will experience its presence via the atom-
ion interaction modeled by Eq. (3). The full classical ion
Hamiltonian is therefore given by

Hi(pi, ri, t ; ra) = H trap
i (pi, ri, t ) + 〈Vai(|r̂a − ri(t )|)〉, (7)

where

〈Vai(|r̂a − ri(t )|)〉 = 〈�(ra, t ; ri )|Vai(|r̂a − ri(t )|)|�(ra, t ; ri )〉
(8)

is the quantum mechanical average of the atom-ion interac-
tion. As for the atom case, for the ion Hamiltonian we also
explicitly emphasize the parametric dependence on the atom
position.

The atom wave function �(rA, t ) is governed by the time-
dependent Schrödinger equation

ih̄
∂

∂t
�(ra, t ; ri ) = Ĥa(r̂a, t ; ri )�(ra, t ; ri ), (9)

where Ĥa(r̂a, t ; ri ) is defined by Eq. (1). Hence, the dynamics
of the ion is governed by the Hamilton equations

d

dt
pi = − ∂

∂ri
Hi(pi, ri, t ; ra),

d

dt
ri = ∂

∂pi
Hi(pi, ri, t ; ra). (10)

This set of classical equations together with the atom
Schrödinger equation (9) form the complete set of dynamical
equations for describing the confined atom-ion collision in
hybrid traps. In the present study, we consider collisions of
a light atom with a much heavier ion in the range of very low
atomic colliding energies Ecoll (ultracold atoms), where the
relation pa = √

2maEcoll 
 pi for their momentums is satis-
fied. In addition, we require that Ei = p2

i /(2mi )  h̄ωi, which
further justifies the application of the classical description
for the ion. Additionally, because of the separation of energy
(i.e., time) scales among the ion and atom dynamics, in the
Hamilton equations (10) we neglect the functional derivatives
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owed to the parametric reliance of the atom wave function on
the ion position, that is,

∂

∂ξi
�(ra, t ; ri ) ≡ 0, ξi = xi, yi, zi. (11)

In order to simultaneously integrate Eqs. (9) and (10), we
need proper initial conditions with physical significance. At
the beginning of the collisional process, the atom and the ion
are assumed to be far away from each other such that they do
not interact (Vai = 0). In particular, the atom is initially in the
ground state of the atomic trap with the low longitudinal col-
liding energy, that is, Ecoll 
 2h̄ω⊥, whereas the ion performs
fast (with respect to atom motion) oscillations in the Paul
trap with mean transversal Ē⊥ and longitudinal Ē‖ energies.
Since the atom approaches the region of interaction with the
ion very slowly (Ecoll/h̄ 
 ω⊥ 
 ωi,�rf ), the initial position
of the ion does not influence the scattering process itself,
which depends only on Ē⊥ and Ē‖. Specifically, the classical
solution of the ion equations of motion (Mathieu equation)
in the Paul trap (without the atom) are well approximated by
Aj cos(ωit + φ j )[1 + q j cos(�rft )/2] ∀ j = x, y, z [55]. The
associated kinetic energy depends on the amplitude Aj , but
not on the phase φ j [68]. Therefore, we choose, without loss
of generality, the ion position at the initial time t = 0 in the
trap center with transversal energy E⊥ and longitudinal energy
E‖. This can be summarized with the following set of initial
conditions:

ri(t = 0) = (0, 0, 0), pi,x(t = 0) =
√

2miE⊥,

pi,y(t = 0) = 0, pi,z(t = 0) = √
2miE‖. (12)

These initial conditions set the mean values of the ion
transversal and longitudinal energies as Ē⊥ = 1.64E⊥ (calcu-
lated numerically for an ytterbium ion in a trap with �rf =
2π × 2 MHz, ωi = 2π × 63 kHz, a = 0.002, and q = 0.08)
and Ē‖ = E‖/2, which is in qualitative agreement with the
estimate

Ē⊥ = E⊥
2

[
1 +

(
q�rf

2ωi

)2
]

� 1.3E⊥ (13)

from the first-order solution of the Mathieu equation [55,56].
We also note that such a choice for the initial transversal
momentum orientation, that is, along the x axis, is not relevant
for the scattering problem we are interested in. Indeed, as we
have verified in our numerical simulations, the final result is
invariant relative to the initial orientation of the ion transversal
momentum pi,⊥(t = 0) in the x-y plane. This fact is also a
consequence of the cylindrical symmetry of both the atomic
waveguide and the linear Paul trap. Hence, we can safely
assume that along the y axis, the initial energy is zero.

As far as the initial condition for the atom wave function is
concerned, we use the following ansatz [24]:

�(ra, t = 0) = Nϕ0(ρa)e
− (za−z0 )2

2a2
z eikza

= Nϕ0(ρa)χ (za − z0)eikza . (14)

Here, N is a normalization constant, ρa = ra sin θa with ra � 0
and θa ∈ [0, π ), h̄k = √

2maEcoll is the initial momentum,
and z0 is the position of the initial wave packet χ , which

is far from the ion location, that is, at za = z0 the atom and
ion do not interact: Vai(za = z0, ri ) → 0. The longitudinal
width of the initial wave packet (14) is chosen sufficiently
broad according to az � 30 − 40R∗ (R∗ = √

2μC4/h̄ is the
characteristic length scale of the atom-ion interaction and μ

denotes the atom-ion reduced mass) to satisfy the demand
of sufficient monochromaticity of the wave packet along the
z direction, Dk (t = 0) = 〈�(t = 0)|(k − k̄)2|�(t = 0)〉 → 0.
This choice of az provides insignificant deformation of the en-
velope χ during scattering due to the small dispersion Dk (t ) of
the wave packet [24]. The above initial condition is interpreted
as follows: Initially, the atom and ion are far from each other
such that the atom is initially prepared in the ground state
of the transverse confinement, that is, in the ground state ϕ0

of the two-dimensional harmonic oscillator as well as in the
ground state of an optical dipole trap that is approximated by
a harmonic potential of frequency h̄/(maa2

z ). At times t > 0,
the atomic longitudinal confinement is suddenly switched off
and an initial momentum kick is imparted to the atom (e.g.,
via a Raman configuration of lasers) such that the atom wave
packet is moving towards the ion trap center with velocity
v0 = h̄k/ma.

For details on the numerical implementation of the inte-
grators of the atom-ion equations of motion, we refer the
interested reader to the Appendix.

D. Determination of the scattering amplitude

In the course of the collisional process, the atom wave
packet splits up into two parts, with each of them moving in
opposite directions, za → ±∞. Asymptotically, we encounter
the following behavior [22,24,57]:

�(ρa, za, t → +∞) −→
za→+∞ �+(ρa, za, t )

= [1 + f +(k)]Nϕ0(ρa)χ̃ [za − (z0 + vt )]eik f za ,

�(ρa, za, t → +∞) −→
za→−∞ �−(ρa, za, t )

= f −(k)Nϕ0(ρa)χ̃[−za − (z0 + vt )]e−ik f za . (15)

Here, f ±(k) are the atom-ion forward and backward scattering
amplitudes in the presence of the external confining potential
due to the atomic waveguide and the ion radio-frequency
trap. The function χ̃ (zA, t ) describes the atom motion in the
longitudinal z direction, namely the spreading of the initial
Gaussian wave packet.

Our goal is to determine the forward-scattering amplitude
f +(k). Towards that end, we first solve the atom Schrödinger
equation without the atom-ion interaction, but in the confining
waveguide. The corresponding solution at za → +∞ is

� (0)+(ρa, za) = Nϕ0(ρa) χ̃ [za − (z0 + vt )]eikza , (16)

whereas at distances za → −∞, it is identically zero, that is,
� (0)−(ρa, za) ≡ 0, as a consequence of the fact that there is
no scattering center, i.e., no ion. Because of the sufficient
monochromaticity of the wave packet [see the set of the
envelope χ in the initial condition (14)] and the unitarity of
the Schrödinger equation, it holds that

〈� (0)+(t )|�(t )〉 −→
t→+∞ 1 + f +(k). (17)
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This relation is used to calculate the amplitude f +(k). In order
to arrive at the result on the right-hand side of Eq. (17), we
performed the approximation ei(k−k f )za � 1 within the region
|za − (z0 + vt )| � az, where the wave packets (15) and (16)
do overlap, as a consequence of the smallness of the transmit-
ted momentum during the collision [i.e., 2π/(k − k f ) is much
larger than the width of χ̃]. This approximation has been ver-
ified numerically by evaluating the mean atomic energy after
the collision, Ēa(t → +∞) = lim

t→+∞〈�(t )|Ĥa|�(t )〉, which

did not exceed the threshold of transverse atomic excitations
3h̄ω⊥.

By exploiting the current conservation law, the transmis-
sion T and reflection R coefficients are defined as

T (k) = |1 + f +(k)|2, R(k) = 1 − |1 + f +(k)|2. (18)

We note that the above expression for the reflection coefficient
R(k) holds for elastic-scattering processes only. For inelastic
scattering, the current conservation law is, in general, violated
and one has to replace the reflection coefficient by the expres-
sion R = | f −(k)|2. This occurs, for instance, when the atom
energy is above the energy of the transverse excited state, that
is, larger than 3h̄ω⊥. In our study, however, these processes
are not treated.

Finally, in the s-wave zero-energy limit f + = f −, the
quasi-1D coupling constant is given by [22,58]

g1D = lim
k→0

h̄2k

ma

Re{ f +(k)}
Im{ f +(k)} . (19)

The coupling constant g1D is the most relevant parameter for
analyzing confined scattering close to a CIR, where g1D →
±∞ [22–24,27]. However, simultaneously with g1D, the po-
sition of the CIR is also controlled by checking the condition
T → 0.

The above procedure for determining the scattering param-
eters has already been utilized for ultracold-atomic collisions
in a waveguidelike atomic trap [24]. The high numerical
accuracy of the calculation obtained with this procedure for
the transmission and reflection coefficients in a wide range
of the interactions, including the resonant region of the CIR
appearance, was confirmed by a comparison with simple
estimates obtained from direct calculations of the atomic
probability to be out of the scattering center after the collision.

III. RESULTS

Here we investigate in detail the scattering dynamics of a
ytterbium ion confined in a linear Paul trap and a lithium atom
in a waveguide. Atom-ion experiments with such an atom-ion
pair are currently being investigated intensively [12,40,49].
The atomic trap frequency ω⊥ has been chosen within the
range 2π × (1 − 11) kHz, whereas for the Paul trap parame-
ters, we have chosen �rf = 2π × 2 MHz, ωi = 2π × 63 kHz,
a = 0.002, and q = 0.08 [see, also, Eq. (5)]. All numerical
simulations have been performed with initial longitudinal
atom energy Ecoll/kB = mav

2
0/(2kB) from the region ∼10 nK

of low energies.
We have performed simulations for different values of

the atom-ion interaction Vai(r(t )) by varying it from strong
repulsion (as  0) to strong attraction (as 
 0). Special

-4

-2

0

2

4

x i(
t)/
R
*

-4

-2

0

2

4

y i(
t)/
R
*

0 2 4 6 8 10
-4

-2

0

2

4

t/t⊥

z i(
t)/
R
*

FIG. 2. The calculated evolution in time of the ion trajectory
(left column), being initially at the state with E⊥ = E‖ = 0.25E∗ =
4.25 μK, and the atom probability distribution |ra�(ra, t )|2 (right
column) for the atom-ion attractive interaction giving ratio a⊥/as =
−3.88 and for ω⊥/ω∗ = 0.02.

attention has been focused on the region near the atom-ion
CIR. In the zero-energy limit for the atom and under the static
approximation for the ion, the ratio a⊥/as [a⊥ = √

h̄/(maω⊥)]
approaches the well-known value 1.4603 [22,25] when R∗ 

a⊥. Here, R∗ = √

2μC4/h̄ is the characteristic length scale
of the atom-ion interaction (2). The determination of the
forward-scattering amplitude is performed as follows. For a
chosen pair of parameters b and c of the regularized atom-ion
potential (3), we calculate the corresponding scattering length
as in free space (ω⊥ = 0), which can be easily assessed be-
cause of the separation of the center-of-mass and angular part
of the atom-ion wave function. Thereafter, we fix the value of
transverse frequency ω⊥, i.e., a⊥, as well as use the previously
determined b and c parameters of the interaction potential (3).
Thus, we simulate the time evolution of the atomic wave
packet and the ion trajectory by simultaneously integrating
Eqs. (9) and (10) with the initial conditions (12) and (14).
Numerical integration has been performed in the time domain
from t = 0 to t = 10 t⊥, with t⊥ = 2π/ω⊥ defined by the
lowest frequency of the problem, ω⊥ 
 ωi,�rf .

An example of such an analysis is illustrated in Fig. 2,
where the ion coordinates as a function of time are shown
together with the atomic probability density distribution
|ra�(ra, t )|2 at three different times: before the collision
(t = 0), at the region of the atom-ion interaction (t =
5t⊥), and after the collision (t = 9t⊥, i.e., t → +∞). The
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FIG. 3. The calculated f +(t ), T (t ), and g1D(t ) for the ion being initially at rest (i.e., with zero energy before the collision with the atom)
for three different values of the ratio a⊥/as.

initial conditions and parameters of the atomic trap, that is,
z0 = 70 R∗, az = 30 R∗, and ω⊥/ω∗ = 0.02, as well as the
atom-ion interaction with a⊥/as = −3.88, were chosen in
such a way that the atom at t = 0 does not interact with
the ion [Vai(za = z0, ri ) � −C4/(70R∗)4 → 0]. Here, ω∗ =
2E∗/h̄ and E∗ = h̄2/[2μ(R∗)2]. In this case, the ion is per-
forming stable oscillations in the Paul trap with initial con-
ditions (12) and E⊥ = E‖ = 0.25 E∗ = 4.25kB μK. Here, for
the atom-ion pair 6Li/174Yb+, we have R∗ � 69.77 nm, that
is, z0 � 4.88 μm, while ω∗ = 2π × 357.16 kHz, thus ω⊥ =
2π × 7.14 kHz and t⊥ = 1 ms. As shown in Fig. 2, at time t ∼
t⊥, the ion begins to experience the vicinity of the atom. This is
clearly displayed in the yi component of the ion motion, where
from the initial zero value suddenly large oscillations appear.
This is due to the fact that the ion has been displaced from the
trap center, and therefore it experiences the radio-frequency
fields. Similarly, there is an enhancement of the amplitude
of the oscillations of the xi and zi components of the ion
trajectory. The collision occurs approximately within the time
window t � t⊥ up to t � 5 t⊥. Afterwards, when the atom and
ion leave the range of the atom-ion interaction, they approach
the asymptotic region, that is, the two particles do not interact.
The ion coordinates reach a steady-state solution, namely, the
amplitude of the oscillations is approximately constant, but
essentially they exceeded their initial values. This indicates
that the ion has “heated up.” Such a finding has also been
identified in the master-equation approach [44], and in Monte
Carlo simulations for a trapped ion interacting with classical
buffer gas [59]. On the other hand, the atomic wave packet
splits up in two parts, moving forward and backward. Note
also that the peak in the atomic density distribution remains
near to the origin, that is, at the center of the Paul trap. This
indicates that some part of the initial atomic wave packet is
lost or, in other words, an ionic molecule is formed in the Paul

trap due to atom-ion collision, which is also a consequence
of the negative ratio a⊥/as = −3.88, i.e., attracting atom-ion
interaction. Our estimate gives the value Pmol � 0.14 for the
probability of creation of molecular ions in such confined
atom-ion collisions. Such a phenomenology resembles the
situation of resonant molecule formation in atomic confining
traps suggested in Ref. [60], where the excess energy is
transferred in an excitation of the center of mass of the formed
molecule. Note that the two-body bound state has been not
considered in the study [44], where the Born and Markov
approximations have been performed.

Thereafter, we have extracted the scattering parameters
f +(k), T , and g1D as outlined in Sec. II D. Figures 3 and 4
illustrate the result for two ion energies as well as for three
pairs (b, c) of the atom-ion potential (3): a⊥/as = 1.544,
which corresponds to the case of the atom-ion CIR obtained in
the static ion approximation [25]; a⊥/as = 2.64, i.e., a rather
strong repulsion between atom and ion; a⊥/as = −3.88, that
is, considerable attraction between the atom and the ion. In
Fig. 3, the calculated scattering parameters f +(k), T , and g1D

are presented for the case of the ion being initially (t = 0)
at rest in the center of the Paul trap with zero initial energy
(E⊥ = E‖ = 0). These results demonstrate the efficiency of
the computational procedure outlined in Sec. II D for extract-
ing the scattering parameters for different strengths of the
atom-ion interaction (3) including strong repulsion and attrac-
tion between atom and ion. We underline that our analysis
confirms that if the initial ion energy is zero (E⊥ = E‖ = 0),
we find that the position of the CIR coincides rather well
with the result obtained in the static ion approximation [25].
In the plot of the left panels (i.e., a⊥/as = 1.544) of Fig. 3,
the behavior of the scattering parameters is shown, which is
characteristic of a CIR, i.e., Re[ f +] → −1, Im[ f +] → 0, and
g1D → ±∞ [22,25]. It also shows that away from the CIR
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FIG. 4. The calculated f +(t ), T (t ), and g1D(t ) for an initial ion energy E⊥ = E‖ = 0.25E∗ = 4.25kB × μK (p⊥ = px) for three different
values of the ratio a⊥/as.

position, the effective coupling constant approaches finite val-
ues, i.e., a positive one for the repulsive atom-ion interaction
(a⊥/as = 2.64) and a negative one for the attractive atom-ion
potential (a⊥/as = −3.88). Since the result at a⊥/as = 1.544
corresponds to the resonant scattering near the CIR, here we
observe the dramatic enhancement of the effective coupling
constant g1D with respect to the nonresonant g1D at a⊥/as =
2.64 and −3.88. Strong oscillations in the asymptotic region
t → +∞ observed in g1D at a⊥/as = 1.544 with the time
period ∼2π/(2ω⊥) correspond to virtual transitions between
the entrance channel and the first closed excited state, which
separates by the energy threshold by the amount 2h̄ω⊥. This
is perfectly consistent with the physical interpretation of the
CIR as a resonance in the first closed transverse channel [58].
Then, we have extended our investigation to the case of the ion
oscillating before the collision in the Paul trap with a rather
large energy (E⊥ = E‖ = 0.25E∗ = 4.25 μK). As shown in
Fig. 4, if we increase the ion energy, the position of the CIR is
shifted from the point a⊥/as = 1.544, which corresponds to
the CIR in the case of the ion at rest before the collision. For
these parameters, the atom-ion potential gives a repulsive cou-
pling constant of finite value g1D/(E∗R∗) = 2.7 (see lower left
panel in Fig. 4). Effective coupling constants g1D calculated
for the nonresonant cases a⊥/as = 2.64 and = −3.88 are also
shifted with increasing ion energy with respect to the case of
the ion at rest. We note that the oscillation frequency of the
coupling constant g1D(t ) in all nonresonant cases presented
in Figs. 3 and 4 is considerably smaller than in the resonant
case (CIR) and essentially determined by ωi. On the other
hand, in the case a⊥/as = −3.88, the oscillations of g1D(t )
are determined by �rf of the micromotion.

We continue by analyzing the dependence of the position
of the confinement-induced resonance on the initial (mean)

ion energy in the Paul trap. To this aim, we first investigate
the scenario for the secular time-independent trap,

Usec(ri ) = mi

2

[
ω2

xy

(
x2

i + y2
i

) + ω2
z z2

i

]
, (20)

with the frequencies ωz = 2π × 45 kHz and ωx,y = 2π ×
150 kHz. The positions of the atom-ion CIR were obtained
by looking for the positions of the singular points in the
coupling constant g1D(E⊥, E‖) (19), namely, when the cou-
pling constant diverges. In Fig. 5, we present the calculated

FIG. 5. The calculated position a⊥/as of the atom-ion CIR as
a function of the transversal E⊥ and longitudinal E‖ kinetic energy
of the ion in the secular harmonic trap approximation (20) with
frequencies ωz = 2π × 45 kHz and ωx,y = 2π × 150 kHz.
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FIG. 6. The dependence of the CIR position a⊥/as on the transversal E⊥ and longitudinal E‖ ion energies before the collision for the atomic
trap with ω⊥ = 0.02 ω∗ = 2π × 7.1 kHz. The (blue) arrow in the top left panel (i.e., E⊥ = 0) indicates the atomic CIR position 1.4603 at the
zero-energy limit [22]. Here the results of the calculations with the time-dependent Paul trap (5) are given as black cycles connected by (black)
solid lines. The results obtained in the secular harmonic trap approximation (20) are given as open cycles connected by (red) thin lines.

dependence of the CIR position a⊥/as on the transversal
E⊥ and longitudinal E‖ ion energies. The values of a⊥/as

given in Fig. 5 at E⊥ ∼ E‖ → 0 confirm the result obtained
in Ref. [25] in the static ion approximation in the limit
R∗ 
 a⊥ for which the atom-ion CIR position coincides with
the well-known result a⊥/as = 1.4603 [22]. Moreover, it is
found that the calculated position of the atom-ion CIR is fixed
quite well near the constant value a⊥/as � 1.5 in the square
domain E⊥/kB, E‖/kB � 10 μK. In other words, in the secular
harmonic trap approximation (20), the CIR position is stabi-
lized near the value (1.4603) obtained in the static approxima-
tion for the ion (independent of the ion mean energy) if the ion

transversal and longitudinal initial energies do not exceed the
value of 10 μK (see the almost flat region in Fig. 5), which
is close to the s-wave threshold energy E∗ = h̄2/[2μ(R∗)2] �
6.4 μK [7].

We proceed further with our analysis of the CIR position by
investigating the impact of the time-dependent Paul trap with
the confining potential defined in Eq. (5). We have performed
calculations for two confining atomic trap frequencies ω⊥ =
0.02ω∗ and 0.03ω∗ corresponding to ω⊥ = 2π × 7.1 kHz and
ω⊥ = 2π × 11 kHz, respectively, for the pair 6Li/174Yb+.
The results of the calculation of the CIR positions presented
in Figs. 6 and 7 support the approximation of the secular
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FIG. 7. The dependence of the CIR position a⊥/as on the transversal E⊥ and longitudinal E‖ ion energies before the collision for the atomic
trap with ω⊥ = 0.03 ω∗ = 2π × 11 kHz. The (blue) arrow in the top left panel (i.e., E⊥ = 0) indicates the atomic CIR position 1.4603 at the
zero-energy limit [22]. Here the results of the calculations with the time-dependent Paul trap (5) are given as black cycles connected by solid
lines. The results obtained in the secular harmonic trap approximation (20) are given as open cycles connected by (red) thin lines.

trap in the rectangular domain E⊥ � 1 μK, E‖ � 5 μK. Out-
side this domain, the positions a⊥/as calculated for the time-
dependent Paul trap (5) start to deviate from the values
calculated in the secular harmonic approach (20). Herewith,
the deviation increases with increasing ion energy. Moreover,
out of the above-mentioned energy domain, we have found a
different dependence of the CIR position on the transversal
and longitudinal ion mean energies in the Paul trap. In the
zero-energy limit for the ion initial energy (E⊥, E‖ → 0), we
obtain the value for the CIR position coinciding with the result
obtained earlier in the static ion approximation [25] as well
as the same dependence on the ratio R∗/a⊥ as in the case of
the static ion approximation: with decreasing a⊥ (increasing

ω⊥), the position of the CIR shifts towards larger a⊥/as and
deviates from the value 1.4603 (see the left top panels of
Figs. 6 and 7). However, for larger ion mean energies, outside
the domain E⊥ � 1 μK, E‖ � 5 μK, the CIR position is no
longer captured by the static ion approximation.

The found effect of the ion motion in the radio-frequency
field on the CIR position can be qualitatively interpreted as
follows. Since the atom moves slowly relative to the period
of ion oscillations, it feels the averaged effective interaction
with the ion. At a rather low ion energy (small amplitude
of the ion vibrations), the ion motion only slightly corrects
the aforementioned effective atom-ion interaction and slightly
changes the relative collisional atom-ion energy since we

063406-9



MELEZHIK, IDZIASZEK, AND NEGRETTI PHYSICAL REVIEW A 100, 063406 (2019)

observe perfect reflection near the CIR position a⊥/as = 1.46
obtained in the approximation of a static ion. The CIR position
(the point of perfect reflection) starts to deviate considerably
from the value calculated in the static ion approximation
when the ion energy approaches the s-wave atom-ion col-
lision threshold E∗. Therefore, it is natural to assume here
a considerable contribution of the p wave to the scattering
amplitude f +. In the case of a comparable contribution of s
and p waves, total transmission can be observed due to their
interference—this is the so-called dual CIR predicted by Kim
et al. [23]. However, the question of dual CIRs in hybrid
atom-ion systems demands a separate analysis.

IV. CONCLUSIONS

We have investigated the conditions for the appearance of
atom-ion CIRs in hybrid atom-ion systems. Our analysis has
been done for the Li atom confined in an optical trap situated
within a linear Paul trap for a Yb ion with the realistic parame-
ters and takes into account the motion and micromotion of the
ion. Such a choice for the atom-ion pair is motivated by the
fact that it is very likely the only pair that permits attainment
of s-wave collisions in hybrid traps. The shifts of the CIRs due
to the ion motion were calculated. We found that the energy
of the ion provided by the oscillating radio-frequency fields
can affect the resonance position substantially. However, in a
broad range of the ion kinetic energies, we found that the CIR
position is stable even in the presence of micromotion. These
findings indicate that the intrinsic micromotion of the ion is
not detrimental for the occurrence of the resonance and that its
position can be controlled by the radio-frequency fields. This
provides an additional mean for tuning atom-ion interactions
in low spatial dimensions. It also indicates that experimental
investigation of atom-ion CIRs in hybrid atom-ion systems is
possible. Furthermore, we found a non-negligible probability
(about 14%) of forming an atom-ion molecule, thus indicat-
ing a pathway for producing such two-body compounds by
controlling the confinement of the two atomic species.

The performed study of resonant collisions in the confined
geometry of hybrid atom-ion traps represents an important
advancement in the scattering physics of quantum systems
in time-dependent traps. To this end, we have adopted the
quantum semiclassical approach developed in Refs. [45–48].
Our treatment can be applied for further studies of time-
dependent problems, e.g., for simulations of two-qubit quan-
tum gates [19,61] including the effects of micromotion [8].
An extension of the method to hybrid atom-ion systems with
comparable atom-ion mass ratios requires further work and
will be carried out in the future. In particular, the functional
derivatives (11) will be taken into account. Such studies will
be important for more deeply understanding the reliance of
the CIR position on the atom-ion mass ratio as well as the
impact of the ion micromotion, namely, whether a critical
mass ratio does exist for the occurrence of CIRs. Indeed, in
our study, the small atom-ion mass ratio has played a major
role in the fact that the micromotion is not too detrimental
for the appearance of the CIR. Even more interesting will be
to understand whether the s-wave regime can be attained in
low spatial dimensions more favorably that in 3D for higher
atom-ion mass ratios.
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APPENDIX: COMPUTATIONAL METHOD

In order to integrate the semiclassical atom-ion equations
of motion (9) and (10), we applied the splitting-up method
with a 2D discrete-variable representation (DVR) [62–64].
For an accurate inclusion of the (strong) atom-ion poten-
tial (3) in Eq. (9) at the moment of the resonant atom-ion
collision, a tailored splitting-up procedure in the 2D-DVR
representation has been developed, as we describe below. For
the integration of the Hamilton equations of motion, which
involve three considerably different scales of frequencies,
namely, �rf , ωi, as well as ω⊥ in the quantum mechanical av-
erage 〈�(ra, t ; ri )|Vai(|r̂a − ri(t )|)|�(ra, t ; ri )〉, we employed
the second-order Störmer-Verlet method [65].

To begin with, the atom wave function �(ra, t ) in the
2D-DVR is expanded as [63,64,66,67] (for the sake of sim-
plicity, we omit hereafter the parametric dependence on the
ion position)

�(ra,�, t ) = 1

ra

N∑
j=1

f j (�) ψ j (ra, t ), (A1)

with the 2D basis defined as

f j (�) =
N∑

ν={lm}=1

Yν (�)(Y −1)ν j . (A2)

The latter is defined on an angular grid � j = (θ jθ , φ jφ ) of N
grid points. The number N is equal to the number of basis
functions in the expansion (A1) and the number of terms in
the definition (A2). The coefficients (Y −1)ν j in Eq. (12) are
the elements of the N × N matrix Y −1 inverse to the matrix
given by the values Yjν = Yν (� j ) of the polynomials Yν (�) at
the grid points � j . The construction of the 2D polynomials
Yν (�), which slightly deviate from the classical spherical
harmonics for large ν ∼ N that are orthogonal on the grid
� j , is described in detail in Refs. [63,64,66,67]. We note that
the coefficients ψ j (ra, t ) in Eq. (A1) define the values of the
searching solution �(ra, t ) at the points of the angular grid
� j : ψ j (ra, t ) = ra�(ra,� j, t ).

With the 2D-DVR, the 3D Schrödinger equation (9) is thus
approximated by the system of Schrödinger-like equations
(hereafter h̄ = 1),

i
∂

∂t
ψ̄ j (ra, t ) =

N∑
j′

[
Ĥ (0)

j (ra, t )δ j j′ + Ĥ (1)
j j′ (ra)

]
ψ̄ j′ (ra, t ),

(A3)
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with the Hamiltonian consisting of the diagonal

Ĥ (0)
j (ra, t ) = − 1

2ma

d2

dr2
a

+ 1

2
ω2

⊥r2
a sin2 θ j + Vai(ra,� j, ri(t ))

(A4)
and off-diagonal

Ĥ (1)
j j′ (ra) = − 1

2mar2
a

1√
λ jλ j′

N∑
ν={lm}=1

(Y −1) jν l (l + 1)(Y −1)ν j′

(A5)
parts. Here, λ j are the weights of the Gauss quadratures
related with the (angular) grid � j [67] and ψ̄ j (ra, t ) =√

λ jψ j (ra, t ).
To integrate the system of Eq. (A3), we use the split-

operator method that yields the propagation ψ̄ j (ra, tn) →
ψ̄ j (ra, tn+1), with tn → tn+1 = tn + �t , according to

ψ̄ (tn + �t ) ≈ exp

(
− i

2
�t Ĥ (0)

)
exp(−i�t Ĥ (1) )

× exp

(
− i

2
�t Ĥ (0)

)
ψ̄ (tn) + O(�t3).

(A6)

The fact that the 2D-DVR [i.e., the functions (A2)] gives the
diagonal representation for Ĥ (0)(ra, t ) and the Yν representa-
tion gives the diagonal representations for Ĥ (1), respectively,
has been exploited for constructing an efficient computational
algorithm. Actually, for the first and the last steps of Eq. (A6),
the exponential operators can be approximated according to

exp

[
− i

2
�t Ĥ (0)

j (ra, tn)

]
≈

[
1 + i

4
�t Ĥ (0)

j (ra, tn)

]−1

×
[

1 − i

4
�t Ĥ (0)

j (ra, tn)

]

+ O(�t2). (A7)

Then, we have to solve N-independent second-order differen-
tial equations,[

1 + i

4
�t Ĥ (0)

j (ra, tn)

]
ψ̄

(
tn + 1

2
�t

)

=
[

1 − i

4
�t Ĥ (0)

j (ra, tn)

]
ψ̄ (tn). (A8)

The intermediate step in Eq. (A6) depending on Ĥ (1)
j j′ (ra) is

treated in the basis Yν (� j ), where the matrix operator Ĥ (1)
ν

is diagonal. The transformation with the help of the simple
unitary matrix S jν = λ

1/2
j Yjν between 2D-DVR (A2) and the

Yν representation provides the efficiency of the computational
procedure [63,67]: computational time increases almost lin-
early with increasing number N of the basis functions.

Simultaneously to the forward-in-time propagation tn →
tn+1 = tn + �t of the atom wave packet ψ j (ra, tn) →
ψ j (ra, tn+1), we integrate the Hamilton equations (10), which
describe the dynamics of the ion in the Paul trap. To this end,
we utilize the second-order Störmer-Verlet method [65],

p(n+1/2)
i = p(n)

i − �t

2

∂

∂ri
Hi

(
p(n+1/2)

i , r(n)
i

)
,

r(n+1)
i = r(n)

i + �t

2

{
∂

∂ri
Hi

(
p(n+1/2)

i , r(n)
i

)

+ ∂

∂ri
Hi

(
p(n+1/2)

i , r(n+1)
i

)}
,

p(n+1)
i = p(n+1/2)

i − �t

2

∂

∂ri
Hi

(
p(n+1/2)

i , r(n+1)
i

)
, (A9)

with p(n)
i = pi(tn), p(n+1/2)

i = pi(tn + �t
2 ), and p(n+1)

i =
pi(tn + �t ) and the same definition for r(n)

i .
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