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Quantum mechanics and speed limit of ultrafast local control in spin chains
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We study optimization of fidelity for ultrafast transformation of a spin chain via external control of a local

exchange coupling. We show that infidelity of such a process can be dramatically decreased by choosing a proper
control profile in nonadiabatic time domain, predict main features of this profile analytically, corroborate them
numerically with a gradient search algorithm, and discuss the corresponding quantum speed limit. For ultrafast
transformations, the qualitative features of the obtained optimal control are system independent. Moreover, the
main restrictions on its shape do not depend on the transformation time and remain valid up to the adiabatic
limit. Our results can be applied to control a broad variety of quantum systems.
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I. INTRODUCTION

Recent progress in experimental research on quantum
systems described by moderate-size Hilbert spaces, such as
ensembles of qubits, posed fascinating problems of optimal
quantum control [1-5] of these systems. The quantum control
aims at achieving desired quantum states or certain quantum
operations with maximum possible fidelity using limited re-
sources such as time or energy. The dynamics of quantum sys-
tems under external control can be unitary or nonunitary. The
unitary dynamics is driven by a time-dependent controllable
Hamiltonian H (g(?)), where g(¢) is a multicomponent control
function. The controllable nonunitary dynamics is achievable
by system measurements [6—10], via a controllable interaction
with a non-Markovian environment [11-13] or via control of
the unitary part of the evolution of open system [14].

We consider driving a quantum system from a ground state
of initial Hamiltonian H; to achieve at time 7 ground state
of a final Hamiltonian Hy with H(¢t) = H; + g(t)(H; — H;),
where g(0) = 0 and g(T') = 1. Although a high fidelity can
be obtained by an adiabatic process [15] driven by a slowly
varying H(t) with, e.g., g(t) =t/T, this method requires a
long evolution while optimized g(#) can permit achieving a
demanded quantum state for a relatively short 7.

A possible approach to the quantum control, where the
transitions occur between the ground states of H (¢), is based
on the shortcut to adiabaticity [16-20]. However, this tech-
nique requires a control of all parts of a complex quantum
system. Implementation of such a shortcut can be a part of
quantum computation in arrays of quantum dots [21,22], or in
quantum annealing [23], such as applied in D-Wave computer
[24]. Here, by focusing on high fidelity ultrafast processes, we
analytically obtain properties of optimal local control in the
ultrashort time domain for a particular many-body system and
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corroborate our reasoning by a direct numerical optimization.
We show that several properties of the finite time quantum
control (even for the ultrashort time) can be explained by
requiring a smooth passage to the adiabatic protocols, thus
connecting these two limits. Although the reported results are
obtained for spin chains, the proposed heuristic reasoning and
numerical approach can be extended to a much broader class
of quantum systems.

II. ULTRAFAST LOCAL CONTROL: THE
PROBLEM SETTING

We concentrate on a local control acting only on a small
part of a complex system, being a natural tool for cutting
or stitching links between its parts, thus modifying its size
and/or topology. We consider an Ising chain with N spins, as
shown in Fig. 1, described by the Hamiltonian

N-1 N

H(0) =7 XXoy1 +B Y Zy+ ) X1 Xy, (1)

n=1 n=1

where X, Z; are corresponding Pauli matrices of the kth
spin and B is a magnetic field. It is useful to rewrite
Hamiltonian (1) in a short form: H(t) = Hy + g(¢)V, where
V =JX, Xy. We assume antiferromagnetic interaction and
set J = 1. The last term in (1) connects the first and last
spins in the chain. By assuming g(0) =0 and g(T) =1,
we perform a transformation from an open to a ring-shaped
chain via “stitching” a single link between the spins (see
Fig. 1). Now we define initial and final Hamiltonians: H; =
H(g(0)) and Hy = H(g(T')). The corresponding ground states
of these Hamiltonians are |¢;) and |@y): H;|@;) = &; |¢;) and
Hylor) = &7 |@r). The state of the system during the evolu-
tion is [y (¢)) = U(t) | (0)), where

U@)="T exp <—i/ H(g(s))ds), 2)
0

©2019 American Physical Society


https://orcid.org/0000-0003-0017-8880
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.063401&domain=pdf&date_stamp=2019-12-02
https://doi.org/10.1103/PhysRevA.100.063401

PYSHKIN, SHERMAN, AND WU

PHYSICAL REVIEW A 100, 063401 (2019)

FIG. 1. Spin chain with one variable link strength in magnetic
field B || z axis.

T is the time-ordering operator, and we set /i = 1 and the time
unit as 1/J. We assume that the initial state |y (0)) = |¢;) and
study the controlled state-transition process with the following
target fidelity fr and infidelity Rr:

Jr =Wy (M), Rr=1-—fr. 3)

Adiabatic theorem allows us to have an ideal state-transition
protocol:

Ry = 0, forT — oo, €]

when g(¢) = t/T. Note that the protocol (4) is valid only in
the absence of level crossing for an arbitrary g(¢) € (0, 1). In
this work we assume that the evolution time belongs to one of
three domains: ultrashort one (7 < 1), short time (7" ~ 1),
and adiabatic one (T > 1), where the adiabatic theorem is
valid. We will concentrate mainly on the physics of the op-
timal control in the ultrashort domain and analyze the general
features being common for all three domains. Such ultrafast
control can be achieved, e.g., by electrical manipulation of
the bonds connecting quantum dots on the time scale much
shorter than global change in the magnetic field strength [22].

If the ground state of H; or Hy is degenerate we select |¢;)
or/and |¢y) from some subspace. In such a case we assume
that |¢;) (|¢r)) is a nondegenerate ground state of Hamiltonian
H(g) (H(1 —6g)) for 6g — 0.

Our task is to find the optimal g(#) to minimize the target
infidelity functional Ry[g(¢)] for a finite time T. Note that
our system (1) doesn’t have complete controllability [25,26]
because of locality of our control. Although the local control
can, in general, be complete (see Ref. [27]), the Hamiltonian
(1) doesn’t satisfy assumptions made in Ref. [27] since iX; Xy
does not generate a Lie algebra in the subspace of first and Nth
spins. Therefore, the result of our optimization is the minimal
nonzero Ry.

In order to deal with a function instead of a functional we
parametrize as follows:

@1 t n . [Tt n . [ 2nt 5)
a,t)= — +a;sin| — apsin | — |,

& T T T 2 T

with a = (ay, ap). Now the target infidelity is a function of
two parameters Ry = Ry (aj, ay). Parametrization (5) can be

considered as a simple particular case of chopped-random-
basis optimization [28,29]. Our task is to find optimal a =

Aop, With Ry (aop) = min, {Rr(a)}. Also we can rewrite state-
ment (4) as Ry — 0 for T — oo and a — 0, and therefore
we expect that a = 0 is a good starting point for gradient
numerical search.

III. OPTIMAL CONTROL FOR ULTRAFAST EVOLUTION

A. Analytical results for singular control parameters

It is possible to use the first two terms of a Dyson series for
approximation of U(T') when T — 0. One can write

U(T) ~ exp(—iHoT)[I — iV G(T)]
~ [1 — iVG(T)] exp(—iHyT),

G(I)Z/ g(a, s)ds, (6)
0

and I is the identity operator. By using (¢f|V]g;) =
(orlHy — Hilgi) = (g7 — &) fo, where fo = {(@r|¢i), we ob-
tain that this approximation leads to a quadratic 7' dependence
of the target fidelity

Ro — Rr ~ |fola(a)T?, (7)

where Ry =1 — |fp|, and « is a coefficient, e.g., «(0) =
(&; — sf)2/8. The quadratic behavior with dRy /dT |r—9 =0
is an understandable feature of the sudden approximation [30],
where the initial state remains almost intact after fast change
in the Hamiltonian. However, Eq. (7) being valid only for
la| < T~! provides an inefficient optimization and, therefore,
one needs to go beyond this condition.

A more convenient way to go beyond the simple sudden
approximation is to apply the following interaction picture:

T
U(T)~ e—l‘VG<T><H —i / e"VG“’Hoe"'VG(”dt), (®)
0

with the validity of the integral expression (8) being not
explicitly related to the magnitude of g(¢). For V = X, Xy we
simplify matrix exponents in (8) as

eHOOXXy — T cos G(t)  iX; Xy sin G(¢t). ©)
Since only two terms, that is BZ; and BZy, in Hy do not com-
mute with exp[£iX; Xy G(?)], by using algebra of Pauli matri-

ces with (XIXN)2 = ]I, XkaXk = —Zk, and Zka = —Xka =
i¥;, we simplify the integral in (8) as

T
/ elVG(l)HOe—lVG(l)dt
0

T
= / [Ho — B(Z, + Zy) + BV (Z, + Zy)e v 6O1dr
0
= [Hy — B(Z1 + Z)IT
+B(Z, + Zy)Br(a) + B Xy + XiYn)yr(a), (10

where
T

T
,37(3)5/ cos[2G(t)]dt, yT(a)E/ sin[2G(t)]dt.
0 0
(11)

Now we analyze the integral terms in (10). If we assume the
control is very weak when, for any given ¢, G(t) — 0, we
arrive at Eq. (7). The opposite case of a strong control should
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be considered in more detail. To get insight into the evolution,
we assume for the moment a pulsed control: g(¢) = g;, for
0<t<T/2and g(t) = g, for T/2 <t < T. In this case we
have G(t) = gt,t < T /2. Part of the last integral in (10) can
be written as

T/2 T
/ sin(2gt)dt = E(ng)_l[l —cos(eiT)],  (12)
0

where we picked out linear proportionality on 7 as in the
other terms in (10). Now we see that the contribution of
this integral goes to zero in two limits: (1) g;7 — 0 and (2)
81T — oo. Thus we have reached an important conclusion
that for effective control one must have g;7 = const for T —
0. The same conclusion can be made for g, by analysis of the
T/2 <t < T interval.

As the next step in our reasoning we require that the
optimal control enhances the fidelity, that is,

Jim [{@7|Uop(T)lei)| 2 Herleil- (13)

In order to satisfy (13) we can require limy_.o G(T) = 0O for
optimal control [see Eq. (8)]. This means that for two pulses
one must have gyop = —giopt- All these conclusions now can
be applied for smooth optimal control function (5) in the
following way:

. . G
}lg})alopt =Cy, }lg})azopt =7 (14)

where constants Cj , are to be obtained by numerical calcula-
tions based on Eq. (10).
Using result (10) we write the target infidelity as

Ro — Ry =~ | folB[(Br(a) — THFy + yr(a)F2],  (15)

* *
F = Imfooz, F =1me”;° : (16)
[ fol | fol
where
fz ={erlZi + Zylei) . fxy = (@l Xi¥y + YiXyle;) .
(17)

Since, without loss of generality, we can assume that the states
lp;) and |@y) are real, we obtain F; = 0, ReF, = 0 and thus
our result does not depend on Sr(a).

Expression (15) was derived using

(@ IUM)|gi) = (@] [T — iB(Zy + Zy)[Br(a) — T
— B\ Xy+X1Ya)yr @)le ™7 ;) + O(T?).

(18)
Here we also assume G(7') =0 for all values of 7. This
assumption means that we chose a; = —m /4 as the optimal

value for any small nonzero 7 [31]. It is important that
optimized function yr(acy) = K, T is linear for small T,
where yr(aqy) = max,{yr(a)}, K, is a system-dependent co-
efficient, and aqy satisfies (14). Thus the linear approximation
to optimal infidelity is

Ry — Ry = |fo|BK, FT. (19)

Linearly decreasing behavior of infidelity (19) under optimal
control gives a big advantage in comparison with quadratic
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FIG. 2. Optimized and nonoptimized infidelity Ry for ultrashort
timescale as a function of the process time 7. The linear approxima-
tion (19) for optimized infidelity is given by the dashed line.

(7) for short time T'. The spatial symmetry of Hamiltonian (1)
assures that F; is an odd function of B, corresponding to the
fidelity independent of the direction of the magnetic field.

B. Numerical examples

To illustrate the above arguments, we study a chain with
N =6 spins and B = 0.9, and relate the results of direct
numerical simulations to expressions (7), (15), and (19).
Although the Ising chain in a transverse field is exactly
solvable [32], we obtain the states |¢;) and |@f) by direct
numerical diagonalization of the corresponding Hamiltonians.
Next, we use a gradient Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm [33] in direct numerical search of aqy (7).
Exact numerical diagonalization was used in order to calculate
a-dependent propagators (2). In Fig. 2 we show nonoptimized
[g(¢) = t/T] and optimized infidelities obtained by direct nu-
merical simulations. To quantify linear approximation for the
optimized fidelity, we first numerically obtain fy = 0.9525,
fz = —1.4090, and fxyy = 0.389i, resulting in F; =0, as
expected, and F>, = 0.408. It is easy to numerically find a
maximum of a function yr(a) for fixed T and a; = —7/4;
the example of dependence yr(ay) for T = 0.005 is depicted
in Fig. 3. From the last line of Table I we find K,, = 0.644 and
obtain BK, F, = 0.237. Additional numerical checks show
that adding the next harmonic in (5) doesn’t considerably
change the optimal fidelity value. Note that expression (19)
being linear in 7 is not linear in B since F; is B dependent.

In Fig. 4 (main panel) we show numerically optimized
values of ayqp, and approximation a,(7) = 3.24/T, which

S C ]
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FIG. 3. Example of the dependence of yr(a) function for fixed
T =0.005 and a; = —n /4. The optimal parameters from direct
numerical BFGS optimization are ajqp = —0.9 and ayqp = 646.8.
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TABLE I. Numerical evidence of linearity of yr (agy).

T 0.005 0.02 0.05 0.1
Gaopt 648.3 162.4 65.2 32.84
Y (@op) 0.00322 0.0129 0.0322 0.0642
V1 (@op)/ T 0.644 0.644 0.643 0.642

follows from expression (14). The coefficient 3.24 can be
obtained by taking product Tasepy from the first column of
Table I. We see a good agreement between analytical and
exact numerical optimization up to 7 ~ 0.1. In the inset of
Fig. 4 we show numerically optimized values of ajop (7) and
see that a; remains finite in the limit 7 — 0 in agreement with
(14), and thus our simplification G(T') = 0 for T — 0 in (15)
was rational. Note, in Fig. 4 we do not have limr_q @1opt =
—m /4 as we used in our analysis. However, the approximation
we made is valid because G(T) = T(1/2 + 2a 05 /7) K 1
for any finite |aop| and T — 0.

Important input of (19) is that the optimal control parame-
ters aqp can be evaluated from analysis of function yr(a) (11),
which, in turn, does not contain information about N and B.
Therefore, we expect that the optimal control g(¢) for different
quantum Ising chains is only very weakly system dependent
in the ultrashort time limit. This universality is confirmed by
Fig. 5(a), where we present the BFGS optimization results for
chains with different parameters.

C. Relation to quantum speed limit

The optimal control (14) produces a strong perturbation,
where the characteristic energy given by the time-energy
uncertainty [34] is proportional to 7~'. Therefore, it is in-
structive to consider the quantum speed limit (QSL) time
Tosi, that is, the minimal possible time required to transform
the initial |¢;) into the final Uyp (T)|g;) state [35]. The Tosi
time is computed as [36]

TosL arccos |{@i| Uopt (T )|¢;) |
=T , (20)
Jo H@ilH(g(aoy, ))lgi)|dt

1000:|||l|llll|llll|llll|:

10||||||||||||||||||.|,

FIG. 4. Values of parameters for optimized control for ultrashort
timescale as a function of the process time 7. Red circles in the
main panel and the solid line in the inset are the result of exact
BFGS optimization; blue solid line in the main panel is analytical
approximation a,(T') = 3.24/T.
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FIG. 5. (a) Optimal T-dependent control parameters for various
values of N and B. This figure shows that in the limit 7 — 0 they are
almost the same for different spin chains and fields B. (b) The ratios
T /Tys1 as functions of T for optimized evolution.

and the ratio T'/Tgs1. can be considered as the efficiency of
the quantum control (see, e.g., Refs. [37,38]). In Fig. 5(b),
where we show T dependence of T'/Ts;., one can see the ratio
T/Tost 2 5, and this relatively large value can be related to
the locality of the control.

IV. FROM ULTRAFAST TO ADIABATIC EVOLUTION

Here we briefly discuss features of optimal control when
the evolution time 7' runs from ultrashort values to the adia-
batic domain. In Fig. 6 we show nonoptimized and optimized
infidelity for an extended interval of 7. As can be seen,
the nonoptimized infidelity goes to zero as a consequence
of adiabaticity (4). Also, the maximal difference between
optimized and nonoptimized infidelity appears at short time
T<1.

As we have shown in Ref. [39] the optimal shape of control
function g(t) is restricted by two requirements: (1) continuous
transition from nonadiabatic to adiabatic time domain and (2)
nonzero time derivative g(¢) at t = 0 and r = 7. These two
assumptions lead to the following conditions:

5 6 7 8 9

—-
o

gt —>0)>0, gt—>T)=>0, 21

0.05 T T T T T T T ]

2 FTTTT | TTTT | TTTT | TTTT | TTT IE :

0.04 > E ERn
—1F = 3

0.03 :} e

& 0E ]
m EI 111 | L1111 | L1111 | 1111 | 111 IE __

o
N}
||||||||||||||||||||

FIG. 6. Optimized (circles) and nonoptimized (squares) infideli-
ties Ry for long timescale as function of the process time 7.
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FIG. 7. Landscape of output fidelity as a function of a; and a, for
T = 0.2. Yellow lines correspond to conditions (22) and cyan cross
is the numerically obtained optimal value.

written in parametrization (5) as
—(1/r +2a) < ay < 1/ + 2a,. 22)

Remarkably, the conditions (22) are 7 independent. It turns
out that ay, from the numerical calculations satisfies (22) for
ultrashort, short, and adiabatic processes, regardless of the
time domain [this statement is as well T independent when
we take more than two harmonics in (5)]. Note that first two
harmonics in (5) provide the simplest efficient parametriza-
tion, which satisfies (21), for a strong energy pumping, with
|g(#)| > 1 at a finite time interval.

In Fig. 7 we show the landscape of output fidelity as a func-
tion of a for T = 0.2. One can see that the high-fidelity “is-
lands” form horizontal equidistant lines. Appearance of these
lines is related to the possibility of the satisfaction of (13)
by letting U(T — 0) =1 with a; = 721/2T (~24.71, | =
+1,42,...) [see Egs. (8) and (9)]. In comparison with the
fidelity of different local maximums we see that initial point
a = ( is the valid choice for a numerical BFGS search in order
to avoid traps [40-44], and our assumption limzy_.o G(T) = 0

is corroborated. Moreover, the universal initial point (0,0)
[which satisfies (22)] for a numerical search connects together
adiabatic and nonadiabatic time domains.

V. CONCLUSION

We demonstrated that properly designed incomplete local
control can greatly decrease infidelity of unitary evolution in
the nonadiabatic time domain, even for ultrafast transition
processes. We presented an approximate analytical solution
for finding the optimal control parameters in the ultrashort 7
domain and showed that optimization can lead to a linear in T
decrease in the infidelity. Rather than achieving zero infidelity,
this linearity is the main benefit of using the unrestricted
energy resource in the case of incomplete local control.

The main features of the optimal control found by heuristic
reasoning and analytical derivations have been confirmed by
direct numerical simulations. Our results show that optimal
control parameters for short 7, being system independent,
are somehow universal. Surprisingly, in our approach one
needs to only analyze one of the extrema of a single-variable
analytical function to find the optimal control parameters in-
stead of the conventional numerical algorithm for computing
propagators. We hope that our findings and approaches will
be useful for further improvements of efficiency in realistic
quantum control in a broad variety of systems.
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