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Pseudopotentials for two-dimensional ultracold scattering
in the presence of synthetic spin-orbit coupling
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We derive a pseudopotential in two dimensions (2D) with a 2D Rashba spin-orbit coupling (SOC), following
in the same spirit of the frame transformation by Guan and Blume [Q. Guan and D. Blume, Phys. Rev. A 95,
020702(R) (2017)]. The frame transformation correctly describes the nontrivial phase accumulation and partial-
wave couplings due to the presence of SOC, which modifies the original Fermi pseudopotential in free space,
even when the length scale of the SOC is significantly larger than the two-body potential range. As an application,
we apply our pseudopotential within the Lippmann-Schwinger equation to obtain an analytical scattering matrix.
To demonstrate the validity of our approach, we compare our results with a numerical scattering calculation of
the finite-range potential that shows excellent agreement over a wide range of scattering energies and SOC
strengths. Our pseudopotential is applicable in the cases of a strong energy-dependent s-wave scattering length
and/or non-negligible p-wave interaction, where the original free-space pseudopotential fails. It sets an ideal
starting point to explore many-body physics in the presence of synthetic SOC in cold atoms.
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I. INTRODUCTION

Modeling fundamental two-body interactions is one of
the most critical steps in investigating the complex quantum
physics of many-body systems. In particular, for systems with
short-range interactions at low energies, such as ultracold
quantum gases, the two-body interaction can be replaced by
a zero-range pseudopotential giving the same wave func-
tion outside the original potential. One only needs energy-
dependent scattering lengths obtained via a partial expansion
of the two-body scattering to characterize the strength of such
a pseudopotential. For example, in many cases, the s-wave
scattering dominates at near-zero temperature, and the Fermi
pseudopotential [1,2] gives a highly accurate description of
the behavior of degenerate quantum gases. For higher tem-
peratures beyond the Wigner-threshold regime, generalizing
the Fermi pseudopotential with an energy-dependent s-wave
scattering length gives a quantitative description [3], when
the contribution from the higher partial wave is negligible.
However, further generalization is needed near resonances of
higher partial waves, when the s-wave scattering length van-
ishes, or when spin-orbit effects couple higher partial waves.
These regimes become particularly interesting in the field of
quantum gases where interactions can be engineered at will
via Feshbach resonances [4]. Even during the initial develop-
ment of the pseudopotential in the 1950s, Yang and Huang
made an early attempt to tackle the generalization to higher
partial waves [2]. However, they made an algebraic mistake
in their original work, leading to an incorrect prefactor that
was discovered and later corrected [5–7]. With the corrected
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prefactor, the mean-field energy shift of interacting fermions
in a trap accurately matches experimental measurements [8].

Extensions of pseudopotentials to lower dimensions for
arbitrary partial waves [9] have been of recent interest due to
exciting developments in the field of ultracold quantum gases:
the creation of low-dimensional systems, which has allowed
for the study of various quantum phases and phenomena
[10–17]. Another significant development in ultracold quan-
tum gases has been the realization of synthetic gauge fields
[18–21], which provide an essential ingredient, namely, spin-
orbit coupling (SOC), for the study of nontrivial topological
phenomena [22,23].

In previous theoretical studies, the original free-space
pseudopotential (obtained from two-body scattering without
SOC) is directly applied to the SOC system [19,20]. The
justification is based on the argument that the characteristic
wavelength of the synthetic SOC is much larger than the
inverse of the interaction range. Therefore, SOC is assumed
to have no impact on the the wave function at short interpar-
ticle distances, and the original pseudopotential remains valid
from a perturbation point of view. However, in a foresighted
study, Cui [24] pointed out that the presence of SOC at short
distances intrinsically mixes different partial waves via the
couplings of spin, which leads to a nontrivial influence on
the short-range wave function and pseudopotentials. Since
this seminal work, several studies have carefully calculated
two-body scattering with the presence of three-dimensional
(3D) [25–31] or 2D [27,32] SOC. One particularly enlight-
ening study carried out by Guan and Blume [33] revealed
that a frame transformation approach (that we will detail
later) can correctly calculate the scattering phase accumu-
lated at short distances modified by SOC. However, their
approach is difficult to extend to many-body studies and a
proper zero-range or δ-shell pseudopotential that includes the
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nonperturbative effects of SOC at short range and correctly
reproduces scattering observables is still missing.

In this paper, we derive an analytical form of the pseudopo-
tential in 2D with the presence of 2D Rashba SOC, following
in the same spirit of the frame transformation of Ref. [33]. To
test the validity of the pseudopotential, we use the Lippmann-
Schwinger equation to obtain the analytical scattering matrix
and compare it with a numerical scattering calculation with a
finite-range potential.

II. 2D PSEUDOPOTENTIAL WITHOUT SOC

We first give a brief review of the 2D pseudopotential in
free space without the presence of SOC. We consider two
identical particles (n = 1, 2) of mass m confined in a 2D x-y
plane with position vectors rn. Separating out the center-of-
mass (COM) motion, the Hamiltonian of the relative motion
is given by H fs = p2/2μ2b + U (ρ), where μ2b = m/2 is the
two-body reduced mass, r = {ρ, φ} is the relative position
in polar coordinates, and p = −ih̄{∂ρ, ρ

−1∂φ} is the relative
momentum in 2D. We also assume the potential U (ρ) is
isotropic and short range, i.e., vanishes beyond a small radius
ρ0. The isotropic symmetry allows the wave function to be
expanded as �fs(r) = ∑

m�
Rfs

m�
(ρ)�m�

(φ), where �m�
(φ) =

eim�φ/
√

2π and Rfs
m�

(ρ) satisfies the radial Schrödinger
equation,[

− h̄2

2μ2b

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− m2

�

ρ2

)
+ U (ρ) − E

]
Rfs

m�
(ρ) = 0,

(1)

which has an asymptotic form Rfs
m�

(ρ) ∝ Jm�
(kρ)− tan[δm�

(k)]
Nm�

(kρ) for ρ > ρ0. Here, E = h̄2k2/2μ2b and Jm�
(kρ) and

Nm�
(kρ) are the Bessel functions of the first and second

kind, respectively. δm�
(k) are the energy-dependent phase

shifts, satisfying the threshold law tan[δ0(k)] ∝ 1/ log k and
tan[δm�

(k)] ∝ 1/k2|m�| for |m�| � 1. Reference [9] shows that
replacing U (ρ) by a pseudopotential V fs

m�
(ρ) can give the

same asymptotic wave function, and hence reproduce the
low-energy observables of the original finite-range potential.
The explicit form of V fs

m�
(ρ) in free space is given by

V fs
m�

(ρ, k) = − h̄2

μ2b

tan
[
δm�

(k)
]

cm�
k2m�ρm�

[
δ(ρ − s)

2πρ
Ôm�

(ρ, k)

]
s→0+

,

(2)

where cm�
= (2m�)!/[
(m� + 1)]222m� and 
(·) is the gamma

function. The form of delta shell δ(ρ − s) of radius s ap-
proaches a contact potential δ(ρ) in the limit s → 0, and
allows us to deal with the divergence of the regularized
operator rigorously. The regularized operator reads

Ôm�
=

{ 2
1−tan[δ0(k)] f0(k,ρ)

∂
∂ρ

ρ, m� = 0
2

1−tan[δm�
(k)] fm�

(k,ρ)
∂2m�

∂ρ2m�
ρm� , m� > 0,

(3)

where

fm�
(k, ρ) =

{
2
π

[
1 + γ + log

(
1
2 kρ

)]
, m� = 0

2
π

[ ∑2m�−1
n=0

1
2m�−n − ψ̄ + log

(
1
2 kρ

)]
, m� > 0.

(4)

Here, 2ψ̄ (m�) = ψ (1) + ψ (m� + 1), where ψ denotes the
digamma function. For m� < 0, the pseudopotential in Eq. (2)
takes the same form, but with m� replaced by |m�|. In contrast
to the 3D pseudopotential, the tan [δm�

(k)] dependence in the
denominator of the regularized operators is unique in 2D and
originates from the fact that ∂

∂ρ
ρN0(kρ) and ∂2m�

∂ρ2m�
ρm�Nm�

(kρ)
does not vanish at ρ → 0. This constitutes a major difficulty
in deriving a pseudopotential with SOC, as we shall discuss
below.

III. 2D PSEUDOPOTENTIAL WITH SOC

We consider a 2D Rashba SOC, under which each particle
feels a potential, H (n)

SO = kSOpn · sn/m, with pn and sn being
the 2D momentum and spin operator of particle n, respec-
tively. Following the method of Refs. [28–31,33], we focus on
the scattering in the COM frame, where the relative Hamil-
tonian can be written as Hrel = H fs + V SO, where V SO =
kSO� · p/2μ2b describes the SOC effect, and � = s1 − s2 is
the relative spin operator. Here, kSO defines the strength of
SOC coupling and gives an energy scale ESO = h̄2k2

SO/2m.
A formal way to solve the corresponding relative

Schrödinger equation is to write it as a multichannel problem
by expanding the τ th independent solution as

�SO
τ (r) =

∑
ν

RSO
ντ (ρ)Aν (�), (5)

where the channel functions Aν (�) ≡ 〈�|ν〉 are functions of
� that include all degrees of freedom except for ρ. Defining
the total spin basis |χ〉 ≡ |(s1,s2), S, mS〉 as usual, where mS =
m1 + m2 is the quantum numbers of the projection of the
operator S = s1 + s2 to the quantization z axis, we choose the
channel functions Aν (�) = im��m�

(φ)|χ〉, with m� + mS =
mj and S + m� + s1 + s2 being even or odd for bosons or
fermions, respectively. Due to the azimuthal symmetry, total
angular momentum (along the z axis) mj is a good quantum
number; therefore we use the subindex ν to collectively repre-
sent the quantum numbers {m�, S, mS; mj}. Here we omit the
quantum numbers s1 and s2 in the channel index notation since
they are the same for all channels. At ρ > ρ0, wave functions
can be expressed as a linear combination of the noninteracting
(with the presence of SOC) regular and irregular solutions
RSO = F − GK, where RSO is the matrix form of the radial
solution RSO

ντ (ρ) [34]. The matrix elements of the regular
solutions F can be written as Fντ (ρ) = NτCντ

√
kτ Jm�

(kτ ρ),
where Cντ , kτ , and Nτ can be obtained by diagonalizing
the noninteracting Hamiltonian using the same procedure as
Ref. [29] and will be provided later for a specific example.
The corresponding irregular solutions can be obtained as
Gντ (ρ) = NτCντ

√
kτ Nm�

(kτ ρ). The scattering K matrix K
determines the scattering observables and is related to the
more familiar S matrix by S = (I + iK)(I − iK)−1. Our goal
is to replace the potential U (ρ) by a pseudopotential V (mj )(ρ)
that acts only at ρ = 0, and gives the same asymptotic wave
function and hence the same K matrix. Here the underline
indicates that V (mj )(ρ) is a matrix and not necessarily diagonal
due to the presence of SOC.

To derive the pseudopotential, we apply a frame
transformation approach in the same spirit of Ref. [33].
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Defining a unitary transformation U1 = exp(−ikSO� · r/2h̄),
the “rotated” Hamiltonian H temp ≡ U−1

1 HrelU1 = H fs +
εtemp + O(ρ) is introduced as an intermediate step. Here,
we neglect terms of order ρ and higher, denoted by O(ρ),
since the pseudopotential will only act at ρ = 0. The constant
term εtemp is given by εtemp = −ESO(�2

x + �2
y + SzLz )/2h̄2,

where �x (�y) is the x (y) component of �, Sz is the z
component of total spin operator S, and Lz = −ih̄∂φ is the
2D angular momentum operator. For two spin-1/2 particles,
this operator expanded by the channel functions Aν (�) gives
a diagonal matrix εtemp. For higher spins, εtemp is, in general,
not diagonal, where the nonzero matrix elements are the
ones which couple channels with the same mS and hence the
same m�. Therefore, one can introduce another ρ-independent
unitary transformation U2 that is block diagonal in m�

subspace and satisfies ε = U−1
2 εtempU2, which is diagonal.

Automatically, U−1
2 H fsU2 = H fs is also diagonal. Therefore,

we find a unitary transformation U = U2U1 that leads to a set
of uncoupled radial Schrödinger equations that are at least
valid near the origin ρ = 0, which is given by[
− h̄2

2μ2b

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− m2

�

ρ2

)
+ U (ρ) − Eν

]
R̃SO

νν (ρ) = 0,

(6)

where Eν ≡ E + εν , and εν are the diagonal matrix ele-
ments of SOC-induced energy shift ε. Comparing with the
free-space Schrödinger equation in Eq. (1), a pseudopoten-
tial Ṽ

(mj )(ρ, k) with diagonal matrix elements Ṽ
(mj )
νν (ρ, k) =

V fs
m�

(ρ, kν ), where kν = √
2μ2bEν , can reproduce the wave

function R̃SO
νν (ρ) in the rotated frame. The pseudopotential in

the original frame can therefore be obtained by an inverse
rotation,

V (mj )(ρ, k) = UṼ
(mj )(ρ, k)U−1. (7)

Once we have obtained V (mj )(ρ, k) for all mj (or up to a cutoff
in practice), the total pseudopotential can be expressed in a
general form as

V (ρ, k)�SO(r) =
∑
mj

∑
νν ′

Aν (�)
∫

dρ ′δ(ρ − ρ ′)V (mj )
νν ′ (ρ ′, k)

×
∫

d�′A∗
ν ′ (�′)�SO(r′). (8)

IV. AN ILLUSTRATIVE EXAMPLE

Here, we consider two spin-1/2 fermions in the mj = 0
subspace, and omit the notation of mj hereafter unless oth-
erwise specified. The basis is denoted by ν ≡ {m�, S, mS} =
{−1, 1, 1}, {0, 0, 0}, {1, 1,−1}. In this order of the basis, the
rotational matrix can be written out explicitly,

U =

⎡
⎢⎢⎣

cos2
(

λρ

2

) − sin(λρ)√
2

− sin2
(

λρ

2

)
sin(λρ)√

2
cos(λρ) sin(λρ√

2

− sin2
(

λρ

2

) − sin(λρ)√
2

cos2
(

λρ

2

)
⎤
⎥⎥⎦, (9)

where λ = kSO/2 is introduced for convenience. After
rotation, the SOC-induced energy shift is given by
ε = diag[0, h̄2λ2/μ2b, 0], where diag[·] represents a

diagonal matrix. The energy shift determines the pseudo-
potential in the rotated frame as Ṽ (ρ, k) = diag
[V fs

1 (ρ, kp),V fs
0 (ρ, ks),V fs

1 (ρ, kp)], where ks = √
k2 + 2λ2

and kp = k. We then apply Eq. (7) to obtain the
pseudopotential in the original frame as a summation of
s- and p-wave contributions with notations δs ≡ δ0 and
δp ≡ δ1:

V = − h̄2

μ2b

{
δ(ρ − s)

2πρ

[
tan δs(ks)Os + tan δp(kp)

k2
p

Op

]}
s→0

,

(10)

where

Os =

⎡
⎢⎣

0 0 0

− λ√
2
Ô0ρ

1
ρ

Ô0 − λ√
2
Ô0ρ

0 0 0

⎤
⎥⎦ (11)

and

Op =

⎡
⎢⎢⎢⎣

1
ρ

Ô1
(
1 − λ2ρ2

4

)
λ

ρ
√

2
Ô1ρ − 1

ρ
Ô1

λ2ρ2

4

λ√
2
Ô1

(
1 − λ2ρ2

2

)
λ2Ô1ρ

λ√
2
Ô1

(
1 − λ2ρ2

2

)
− 1

ρ
Ô1

λ2ρ2

4
λ

ρ
√

2
Ô1ρ

1
ρ

Ô1
(
1 − λ2ρ2

4

)

⎤
⎥⎥⎥⎦.

(12)

Terms higher than the order of ρ can be ignored with
the consideration that the pseudopotential only contributes
to the K matrix with terms proportional to F ∗

ν ′τ ′ (s)Vν ′ν
(s, k)Fντ (s)s→0 and F ∗

ν ′τ ′ (s)Vν ′ν (s, k)Gντ (s)s→0 [see Eqs. (15)
below]. Comparing with the free-space pseudopotential
diag[V fs

1 (k, ρ),V fs
0 (k, ρ),V fs

1 (k, ρ)], there are two important
differences. One is that the SOC-induced energy shift leads to
a different s-wave phase shift δs(ks). The other is the nondiag-
onal terms from the rotational transformation, which describes
the intrinsic partial-wave mixing at short distances induced
by the SOC. As we will see, both of these differences play a
significant role in correctly producing scattering observable.

V. LIPPMANN-SCHWINGER EQUATION

To verify the validity of the above pseudopotential, we
apply the Lippmann-Schwinger equation to calculate the
K matrix. The Lippmann-Schwinger equation is the inte-
gral form of the Schrödinger equation �τ (r) = �0(r) +∫

G(r, r′)U (r′)�τ (r′)dr′ or, equivalently, in matrix form,

RSO(ρ) = F (ρ) +
∫

G(ρ, ρ ′)U (ρ ′)RSO(ρ ′)ρ ′dρ ′. (13)

Here, G(ρ, ρ ′) is the matrix representation of the Green’s
function G(r, r′) = ∑

νν ′ Aν (�)G
νν ′ (ρ, ρ ′)A∗

ν ′ (�′), which is
given by

G
(
ρ, ρ ′) = π

{
F (ρ)G†(ρ ′), ρ < ρ ′

G(ρ)F †(ρ ′), ρ > ρ ′.
(14)

Replacing the potential U (ρ ′) by a pseudopotential V (ρ ′) ∝
δ(ρ ′) from Eq. (10), the K matrix can then be obtained by
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K = (I + B)−1A, where

A = −π
∫

ρ ′dρ ′F †(ρ ′)V (ρ ′)F (ρ ′),

B = −π
∫

ρ ′dρ ′F †(ρ ′)V (ρ ′)G(ρ ′).
(15)

Notice that a special property of 2D is that the matrix B
does not vanish since ∂

∂ρ
ρN0(kτ ρ) and ∂2m�

∂ρ2m�
ρm�Nm�

(kρ) does
not vanish at ρ → 0 [35]. As a direct consequence of this
property, the K matrix, in general, cannot be written as a
summation of s- and p-wave contributions, in contrast to the
3D case as shown in Eq. (11) of Ref. [33].

For our example of two spin-1/2 fermions in the mj = 0
subspace, the regular F and irregular solutions G can be
determined by the coefficients Cντ in matrix form,

C =

⎡
⎢⎣

−1/2 −1/2 1/
√

2

−1/
√

2 1/
√

2 0

1/2 1/2 1/
√

2

⎤
⎥⎦, (16)

where the column index τ corresponds to canonical momen-
tum {kτ } ≡ {k1, k2, k3} = {kb + λ, kb − λ, k} and normaliza-
tion {h̄2N2

τ /μ2b} = {1/kb, 1/kb, 1/k}, where kb = √
λ2 + k2.

One can identify τ = {1, 2, 3} corresponding to three different
configurations |−,−〉, |+,+〉, and |−,+〉, where − (+) indi-
cates the helicity, i.e., whether the spin is antiparallel (parallel)
to the direction of current [28].

Inserting F and G into Eq. (15) gives A and B, which
determines K. We find that the K matrix is block diagonal
and can be expressed as

K =
[
K(+) 0

0 K(−)

]
, (17)

where K(−) = tan[δp(kp)], and K(+) is a 2 × 2 matrix.
The block-diagonal structure can be understood by study-
ing the PT symmetry of

∑
ν Fντ (ρ)Aν (�) in the mj = 0

subspace, where P is defined as φ → φ + π and T is
defined as |sn, mn〉 → |sn,−mn〉 for both n = 1, 2. Defin-
ing PT [

∑
Fντ (ρ)Aν (�)] = �τ [

∑
Fντ (ρ)Aν (�)], one finds

that �τ = +1/−1 for τ = {1, 2}/{3}, leading to the block-
diagonal structure [36]. The elements of K(+) are analytical
but quite cumbersome, and hence we only give the full expres-
sion in the Supplemental Material [35] and illustrate them in
Figs. 1 and 2 as two numerical examples near s- and p-wave
resonances, respectively. In these two examples, the energy-
dependent phase shifts δs(k) and δp(k) are obtained from a
free-space scattering calculation with Lennard-Jones potential

U (ρ) = −C6
ρ6 (1 − r6

0
ρ6 ), where C6 defines a length scale rvdW =

(2μ2bC6/h̄2)1/4/2 and r0 controls the short-range physics,
which is used to tune zero-energy scattering phase shifts.
The analytical results show good agreement with the full
numerical scattering calculation [31], which is carried out
by solving time-independent coupled Schrödinger equations
with Lennard-Jones potential as shown in the Supplemental
Material [35].

Near an s-wave resonance, p-wave scattering is negligible
and the scattering matrix can be simplified as

K(s) = T0

[
k1 −k

−k k2

]
, (18)

101

102

103

10-4

10-1

102

10-4 10-2

10-3

10-1

101

10-4 10-2

10-3

10-1

101

FIG. 1. Results near s-wave resonances with λrvdW = 0.01. The
free-space scattering phase shifts are obtained from a Lennard-Jones
model potential with parameter r0 = 0.58rvdW that leads to as(0) ≈
21.777rvdW. (a),(b) Partial cross sections. (c),(d) K-matrix elements.
The curves represent analytical results and the symbols are obtained
by numerical scattering calculations.

where T0 = tan[δs(ks)]/2kbαs and αs = 1 + 2
π

tan[δs(ks)]
(log k

ks
+ λ

kb
tanh−1 λ

kb
). The S matrix can be obtained via

S (s) = (I + iK(s) )(I − iK(s) )−1 and determines the scat-
tering cross section σ

(s)
ττ ′ = 2|S (s)

ττ ′ − δττ ′ |2/kτ , which are
given by σ

(s)
11 = σ

(s)
21 = k18T 2

0 /(1 + 4T 2
0 k2

b ) and σ
(s)
12 = σ

(s)
22 =

k28T 2
0 /(1 + 4T 2

0 k2
b ). As a result, σ

(s)
21 /σ

(s)
12 = k1/k2 > 1 indi-

cates that particles are preferentially scattered into the lower-
energy helicity “−” state. The validity of Eq. (18) near an
s-wave resonance can be seen in Fig. 1. In the zero-energy
limit, we find λσ

(s)
11 → 4/(1 + {γ + 2

π
log [λas(

√
2λ)]}2),

where as(k) is the generalized energy-dependent s-wave

101

103

10-4

100

104

10-4 10-2

10-3

10-1

101

10-4 10-2

10-3

10-1

101

FIG. 2. Results near p-wave resonances with λrvdW = 0.01. The
free-space scattering phase shifts are obtained from a Lennard-Jones
model potential with parameter r0 = 0.552981rvdW that leads to
Ap ≈ −8.577 × 105r2

vdW. (a),(b) Partial cross sections. (c),(d) K-
matrix elements. The curves represent analytical results and the
symbols are obtained by numerical scattering calculations.
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FIG. 3. Scattering results at zero scattering energy for the same
Lennard-Jones potential of Fig. 1. (a) Scaled partial cross section
λσ11 as a function of λ. (b) K-matrix element K11 as a function of λ.
The blue solid curves are the analytical results, and the red dashed
curves are determined by the s-wave only approximation in Eq. (18),
which are indistinguishable from the solid curves on the scale that is
shown. The purple dash-dotted curves are calculated using the free-
space pseudopotential directly. The green crosses are results from a
numerical calculation using the same Lennard-Jones potential with
the presence of SOC. (c) The blue solid curve shows rvdW/[as(ks ) −
ares] as a function of λ, while the purple dash-dotted curve shows
rvdW/[as(0) − ares].

scattering length defined by cot[δs(k)] = 2
π

log[kas(k)] + γ ,
and the rescaled cross section therefore reaches a maxi-
mum when as(ks) equals ares ≡ e−πγ /2/λ. In comparison, if
we replace U (ρ) directly by diag[0,V fs

0 (k, ρ), 0], i.e., the free-
space pseudopotential with s-wave scattering only, and apply
the Lippmann-Schwinger equation, the resulting K matrix
will be the same as Eq. (18), with ks replaced by k. Conse-
quently, the rescaled cross section reaches a maximum when
as(0) = ares. In Fig. 3(a), we show this comparison, where one
can see that the SOC-induced energy shift that leads to ks �= k
is crucial to characterize the two-body scattering correctly,
especially near the maximum of λσ11.

Near p-wave resonances, the p-wave phase shift can no
longer be neglected. Nevertheless, a simplified formula can be
obtained in the low-energy limit k → 0, where tan[δs(ks)] →
−As ≡ − tan[δs(

√
2λ)] and tan[δp(kp)] → −Apk2, and the K

matrix is given by

lim
k→0

K(+) = 1

d

[
b11 b12k/λ

b21k/λ b22k2/λ2

]
. (19)

Here, d and bτ ′τ are constants, where d = 1 −
2(log

√
2)As/π − 2λ2Ap/π + 4λ2ApAs[(log

√
2) − 1]/π2,

0

2

4

10-3 10-2 10-1
-3

-2

-1

0

(a)

(b)

FIG. 4. Scattering results at zero scattering energy for the same
Lennard-Jones potential in Fig. 2. (a) Scaled partial cross section
λσ11 as a function of λ. (b) K-matrix element K11 as a function of
λ. The blue solid curves are the analytical results, and the yellow
dashed curves are determined by the s-wave only approximation in
Eq. (18). The red crosses are results from a numerical calculation
using the same Lennard-Jones potential with the presence of SOC.

b11 = −As(1/2 − λ2Ap/π ), b12 = b21 = As(1/2 + λ2Ap/π ),
and b22 = −As/4 − λ2Ap − λ2ApAs(3/2 − log 2)/π . When
|λ2Ap| � 1, p-wave scattering gives a significant contribution
as shown in Fig. 4, where Eq. (18) is no longer valid.
However, the threshold laws for cross-section and K-matrix
elements are valid for all situations, as shown in Figs. 1
and 2. Interestingly, the elastic scattering rate ∝ k1σ11,
which determines thermalization, remains constant in the
zero-energy limit, in contrast to the vanishing 1/(log k)2

rate without the presence of SOC. We also remark here
that using the free-space pseudopotential including the
p-wave contribution diag[V fs

1 (k, ρ),V fs
0 (k, ρ),V fs

1 (k, ρ)]
will incorrectly give a vanishingly small K matrix due to a
log(s)|s→0 term in the denominator of all the matrix elements
of K(+), reflecting the importance of the nondiagonal terms in
the pseudopotential.

VI. SUMMARY

We have derived a pseudopotential in the COM frame
with the presence of SOC in 2D using a frame-transformation
approach. We found that the s-wave scattering phase shift
changes due to an SOC-induced energy shift and the frame
transformation introduces nondiagonal terms, which are es-
sential to reproduce the correct two-body scattering observ-
ables. We applied the pseudopotential within the Lippmann-
Schwinger equation to obtain the analytical scattering matrix
and compare it with a numerical scattering calculation with a
finite-range potential. Our pseudopotential is valid even near
s- or p-wave resonances for λrvdW � 1, which is usually
well satisfied in ultracold quantum gases. Our results indicate
that if we consider s-wave scattering only (which usually
implies scattering near an s-wave resonance), and the energy
dependency of as(k) is very weak (which usually implies a
very broad resonance) so that as(

√
2λ) ≈ as(0), the free-space

pseudopotential gives a good approximation, i.e., within the
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regime of previous studies in Refs. [27,32]. On the other
hand, if the energy dependency of as(k) is strong or the
p-wave interaction is non-negligible, our pseudopotential has
to be adopted in order to reproduce the correct two-body
scattering.

Our approach can easily be applied in 3D and reproduce
Eq. (11) of Ref. [33], which we will detail elsewhere. Our

results are also useful for investigating universal relations and
Tan’s contacts for SOC quantum gases in 2D [37] and might
eventually be applied in many-body studies. In particular, we
expect that the interesting intrinsic partial-wave mixing at
short range induced by SOC represented by the off-diagonal
matrix elements in our pseudopotential might lead to interest-
ing many-body effects.
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Phys. 83, 1523 (2011).

[23] N. Goldman, G. Juzeliunas, P. Öhberg, and I. B. Spielman, Rep.
Prog. Phys. 77, 126401 (2014).

[24] X. Cui, Phys. Rev. A 85, 022705 (2012).
[25] P. Zhang, L. Zhang, and Y. Deng, Phys. Rev. A 86, 053608

(2012).
[26] Z. Yu, Phys. Rev. A 85, 042711 (2012).
[27] L. Zhang, Y. Deng, and P. Zhang, Phys. Rev. A 87, 053626

(2013).
[28] H. Duan, L. You, and B. Gao, Phys. Rev. A 87, 052708

(2013).
[29] S.-J. Wang and C. H. Greene, Phys. Rev. A 91, 022706 (2015).
[30] Q. Guan and D. Blume, Phys. Rev. A 94, 022706

(2016).
[31] J. Wang, C. R. Hougaard, B. C. Mulkerin, and X.-J. Liu, Phys.

Rev. A 97, 042709 (2018).
[32] P. Zhang, L. Zhang, and W. Zhang, Phys. Rev. A 86, 042707

(2012).
[33] Q. Guan and D. Blume, Phys. Rev. A 95, 020702(R) (2017).
[34] Throughout this paper, underline implies matrix form.
[35] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevA.100.062713 for the details of (I) the tech-
nical details of the Lippman-Schwinger formalism in 2D, (II)
the full analytical expression of the K matrix, and (III) technical
details of our numerical method .

[36] For mj �= 0 subspaces, sign(mj ) and PT cannot simultaneously
be good quantum numbers.

[37] C.-X. Zhang, S.-G. Peng, and K. Jiang, arXiv:1907.11433.

062713-6

https://doi.org/10.1007/BF02959829
https://doi.org/10.1007/BF02959829
https://doi.org/10.1007/BF02959829
https://doi.org/10.1007/BF02959829
https://doi.org/10.1103/PhysRev.105.767
https://doi.org/10.1103/PhysRev.105.767
https://doi.org/10.1103/PhysRev.105.767
https://doi.org/10.1103/PhysRev.105.767
https://doi.org/10.1103/PhysRevA.66.013403
https://doi.org/10.1103/PhysRevA.66.013403
https://doi.org/10.1103/PhysRevA.66.013403
https://doi.org/10.1103/PhysRevA.66.013403
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/PhysRevLett.94.023202
https://doi.org/10.1103/PhysRevLett.94.023202
https://doi.org/10.1103/PhysRevLett.94.023202
https://doi.org/10.1103/PhysRevLett.94.023202
https://doi.org/10.1103/PhysRevA.72.044701
https://doi.org/10.1103/PhysRevA.72.044701
https://doi.org/10.1103/PhysRevA.72.044701
https://doi.org/10.1103/PhysRevA.72.044701
https://doi.org/10.1103/PhysRevLett.96.013201
https://doi.org/10.1103/PhysRevLett.96.013201
https://doi.org/10.1103/PhysRevLett.96.013201
https://doi.org/10.1103/PhysRevLett.96.013201
https://doi.org/10.1103/PhysRevA.64.043603
https://doi.org/10.1103/PhysRevA.64.043603
https://doi.org/10.1103/PhysRevA.64.043603
https://doi.org/10.1103/PhysRevA.64.043603
https://doi.org/10.1103/PhysRevA.73.060701
https://doi.org/10.1103/PhysRevA.73.060701
https://doi.org/10.1103/PhysRevA.73.060701
https://doi.org/10.1103/PhysRevA.73.060701
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1038/nature02530
https://doi.org/10.1038/nature02530
https://doi.org/10.1038/nature02530
https://doi.org/10.1038/nature02530
https://doi.org/10.1126/science.1100700
https://doi.org/10.1126/science.1100700
https://doi.org/10.1126/science.1100700
https://doi.org/10.1126/science.1100700
https://doi.org/10.1038/nature04851
https://doi.org/10.1038/nature04851
https://doi.org/10.1038/nature04851
https://doi.org/10.1038/nature04851
https://doi.org/10.1103/PhysRevLett.102.170401
https://doi.org/10.1103/PhysRevLett.102.170401
https://doi.org/10.1103/PhysRevLett.102.170401
https://doi.org/10.1103/PhysRevLett.102.170401
https://doi.org/10.1103/PhysRevA.82.013609
https://doi.org/10.1103/PhysRevA.82.013609
https://doi.org/10.1103/PhysRevA.82.013609
https://doi.org/10.1103/PhysRevA.82.013609
https://doi.org/10.1103/PhysRevLett.110.235301
https://doi.org/10.1103/PhysRevLett.110.235301
https://doi.org/10.1103/PhysRevLett.110.235301
https://doi.org/10.1103/PhysRevLett.110.235301
https://doi.org/10.1103/PhysRevA.92.020504
https://doi.org/10.1103/PhysRevA.92.020504
https://doi.org/10.1103/PhysRevA.92.020504
https://doi.org/10.1103/PhysRevA.92.020504
https://doi.org/10.1038/nature09887
https://doi.org/10.1038/nature09887
https://doi.org/10.1038/nature09887
https://doi.org/10.1038/nature09887
https://doi.org/10.1142/97898145901740002
https://doi.org/10.1142/97898145901740002
https://doi.org/10.1142/97898145901740002
https://doi.org/10.1142/97898145901740002
https://doi.org/10.1088/0034-4885/78/2/026001
https://doi.org/10.1088/0034-4885/78/2/026001
https://doi.org/10.1088/0034-4885/78/2/026001
https://doi.org/10.1088/0034-4885/78/2/026001
https://doi.org/10.1103/PhysRevLett.108.225304
https://doi.org/10.1103/PhysRevLett.108.225304
https://doi.org/10.1103/PhysRevLett.108.225304
https://doi.org/10.1103/PhysRevLett.108.225304
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1103/PhysRevA.85.022705
https://doi.org/10.1103/PhysRevA.85.022705
https://doi.org/10.1103/PhysRevA.85.022705
https://doi.org/10.1103/PhysRevA.85.022705
https://doi.org/10.1103/PhysRevA.86.053608
https://doi.org/10.1103/PhysRevA.86.053608
https://doi.org/10.1103/PhysRevA.86.053608
https://doi.org/10.1103/PhysRevA.86.053608
https://doi.org/10.1103/PhysRevA.85.042711
https://doi.org/10.1103/PhysRevA.85.042711
https://doi.org/10.1103/PhysRevA.85.042711
https://doi.org/10.1103/PhysRevA.85.042711
https://doi.org/10.1103/PhysRevA.87.053626
https://doi.org/10.1103/PhysRevA.87.053626
https://doi.org/10.1103/PhysRevA.87.053626
https://doi.org/10.1103/PhysRevA.87.053626
https://doi.org/10.1103/PhysRevA.87.052708
https://doi.org/10.1103/PhysRevA.87.052708
https://doi.org/10.1103/PhysRevA.87.052708
https://doi.org/10.1103/PhysRevA.87.052708
https://doi.org/10.1103/PhysRevA.91.022706
https://doi.org/10.1103/PhysRevA.91.022706
https://doi.org/10.1103/PhysRevA.91.022706
https://doi.org/10.1103/PhysRevA.91.022706
https://doi.org/10.1103/PhysRevA.94.022706
https://doi.org/10.1103/PhysRevA.94.022706
https://doi.org/10.1103/PhysRevA.94.022706
https://doi.org/10.1103/PhysRevA.94.022706
https://doi.org/10.1103/PhysRevA.97.042709
https://doi.org/10.1103/PhysRevA.97.042709
https://doi.org/10.1103/PhysRevA.97.042709
https://doi.org/10.1103/PhysRevA.97.042709
https://doi.org/10.1103/PhysRevA.86.042707
https://doi.org/10.1103/PhysRevA.86.042707
https://doi.org/10.1103/PhysRevA.86.042707
https://doi.org/10.1103/PhysRevA.86.042707
https://doi.org/10.1103/PhysRevA.95.020702
https://doi.org/10.1103/PhysRevA.95.020702
https://doi.org/10.1103/PhysRevA.95.020702
https://doi.org/10.1103/PhysRevA.95.020702
http://link.aps.org/supplemental/10.1103/PhysRevA.100.062713
http://arxiv.org/abs/arXiv:1907.11433

