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Inelastic processes in calcium-hydrogen ionic collisions with account for fine structure
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Inelastic processes in low-energy Ca+ + H and Ca2+ + H− collisions accounting for the fine structure
of calcium ions are investigated. The present study is based on ab initio nonrelativistic potentials and on
modification of the potentials by switching the representation from the LS to the JJ coupling scheme. The
nuclear dynamical study is performed by the multichannel Landau-Zener approach for the collisional energy
range 10−4 to 100 eV. The rate coefficients are calculated for the temperature range 1000 to 10 000 K. It is found
that the largest rate coefficients correspond to the neutralization processes into the final channels Ca+(4 f 2F ◦

7/2),
Ca+(6s 2S1/2 ), Ca+(5d 2D3/2,5/2 ), Ca+(6p 2P◦

1/2,3/2 ), and Ca+(7s 2S1/2) + H(1s 2S1/2), at a temperature of 6000 K
they have values exceeding 10−8 cm3 s−1, and the reaction mechanism for these processes corresponds to the
long-range ionic-covalent interaction. The rate coefficients for the Ca II infrared triplet 849.8/854.2/866.2-nm
transitions in collisions with H are found to be small. It is shown that accounting for the fine structure does
not lead to a simple redistribution of rate coefficients obtained within the LS coupling scheme between the
fine-structure levels.
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I. INTRODUCTION

Determination of reaction mechanisms and calculations
of cross sections and rate coefficients of inelastic processes
in atomic collisions are of fundamental importance in mod-
ern atomic and molecular physics since inelastic collision
processes govern properties of gas and plasma medium. In
particular, this detailed and complete information is required
for non–local thermodynamic equilibrium (non-LTE) model-
ings of stellar spectra, which are in turn used for one of the
fundamental problems in modern astrophysics, determination
of stellar absolute and relative chemical abundances (see, e.g.,
reviews [1–4]). It is known that the important processes for
these purposes are those that take place in collisions of heavy
particles with hydrogen atoms and anions due to the highest
abundance of hydrogen in the Universe. The lack of reliable
information on inelastic processes in collisions of atoms and
positive ions of a treated chemical element with hydrogen
atoms and negative ions, causes the main uncertainty in non-
LTE modelings. For a long while, in the absence of quantum
calculations, cross sections and rate coefficients for inelastic
processes in collisions with hydrogen were estimated by the
classical so-called Drawin formula [5–7], until it was recog-
nized that this formula is not reliable [8]: For optically allowed
transitions the formula overestimates cross sections by up to
several orders of magnitude, and for optically forbidden tran-
sitions it underestimates cross sections by up to several orders
of magnitude, compared with full quantum data. Therefore,
it has been commonly realized that H-collision cross sections
obtained by full quantum or model quantum calculations are
needed.

*andrey.k.belyaev@gmail.com

Significant progress has been achieved during the last two
decades through detailed full-quantum H-scattering calcula-
tions, based on accurate quantum chemical data, for the cases
of Na, Li, H, Mg, He, and Ca [9–21]. These calculations have
demonstrated the importance of the ionic-covalent avoided
crossing mechanism, although other reaction mechanisms
have been tested as well. The long-range ionic-covalent mech-
anism determines inelastic H-collision rate coefficients with
large and moderate values, that is, for the processes of im-
portance for non-LTE modelings. Nevertheless, full-quantum
calculations are still rather rare and time-consuming, and
hence, model quantum approaches for treating both electronic
structures and nonadiabatic nuclear dynamics are highly de-
sired. As a result, several quantum approaches have been
developed, in particular, based on long-range ionic-covalent
interactions: the asymptotic semiempirical approach [22], the
asymptotic linear combination of atomic orbitals [23],1 the
simplified method [25,26], the multichannel Landau-Zener
approach [27–29], and the hopping probability current method
[22]. These model approaches have been successfully applied
to a number of inelastic processes in collisions of different
chemical elements with hydrogen: Al, Si, Be, Mn, K, Rb, Ca,
Ca+, Ba, Ba+, Fe, Fe+, Li, O, C, and N (see, e.g., [21], [23],
and [30–36], and references therein).

Within these approaches both electronic structures
and nonadiabatic nuclear dynamics are treated in the
LS-coupling scheme, that is, without accounting for the
fine structure, although transitions between fine-structure
levels are also of astrophysical interest. For example, the Ca
II infrared triplet (849.8, 854.2 and 866.2 nm) is of particular
interest for studying radial velocities and metallicities
of distant stars and stellar systems [37–41]. This triplet

1See [24] for Erratum.
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corresponds to transitions between the following
fine-structure states: Ca+(4p, 2P◦

3/2) → Ca+(3d 2D3/2),
Ca+(4p 2P◦

3/2) → Ca+(3d 2D5/2), and Ca+(4p 2P◦
1/2) →

Ca+(3d 2D3/2). For this reason, special attention is given in
the present work to the inelastic processes in collisions of
calcium ions with hydrogen atoms and anions involving these
fine-structure states of Ca II.

In general, calcium is an important element for astro-
physical observations [1,4]. It is one of the best observable
chemical elements in late-type stars [42–44]. In the case of
extremely metal-poor stars, Ca is the only chemical element
that is visible in the two ionization stages [42]. Calcium is also
important for astrophysical observations because it belongs
to the α-element group and can help us to distinguish stellar
populations in the Galactic disk and halo and to understand
the link to dwarf spheroidal galaxies (see [43], [45], and [46],
and references therein).

Several non-LTE modelings of stellar spectra have been
performed for both the calcium atom [37,42–44,47–56]
and the calcium ion [37,42–44,56–61] (see also refer-
ences therein). Inelastic processes in collisions of hydrogen
with neutral calcium have been studied in several papers
[16,21,23,24,30,62], while collisions of hydrogen with single-
ionized Ca+ have been treated in only one paper [31]. The re-
sults of these studies have been applied to non-LTE modeling
of the Ca I spectrum [37,43,44].2

Although inelastic processes in Ca + H, Ca+ + H−, Ca+ +
H, and Ca2+ + H− collisions were studied in detail, the afore-
mentioned studies did not consider fine-structure levels.

It is useful to point out that in the absence of more accurate
estimates, the common way to take into account the fine struc-
ture in H collisions consists in redistributing the collisional
rate coefficient between fine-structure levels [63]. Another
approach to account for the fine structure is developed in the
present paper. The approach is based on a transformation of
adiabatic molecular potentials upon changing the representa-
tion from the LS coupling scheme to the JJ one. In the present
paper, this approach is applied to accounting for fine-structure
levels in Ca+ + H and Ca2+ + H− collisions.

II. BRIEF THEORY

The present treatment is performed in the framework of
the Born-Oppenheimer approach, which considers a scatter-
ing problem in two steps: (i) the electronic structure of a
corresponding molecule at fixed nuclei and (ii) nonadiabatic
nuclear dynamics. The fixed-nuclei electronic structure can
be determined if diabatic (diagonal) potentials and diabatic
off-diagonal matrix elements of an electronic Hamiltonian are
known. The diabatic representation allows one to determine
the Landau-Zener parameters for avoided-crossing regions
or adiabatic potentials, which also lead to the determination
of Landau-Zener parameters. In the present case, the most
important is determination of long-range off-diagonal ionic-
covalent matrix elements. Accounting for the fine structure

2In these non-LTE modelings, the rates for H + Ca II collisional
processes were determined by the classical Drawin formula or
neglected completely.

is currently proposed by switching from the LS coupling
scheme to the JJ one. This finally leads to determination of
the inelastic transition probabilities, inelastic cross sections,
and rate coefficients accounting for the fine structure. They
are computed as follows.

The present study is based on the ab initio potential en-
ergies of the CaH+ molecular ion computed by Habli et al.
[65,66] in the LS representation. The LS representation deals
with the nonrelativistic electronic Hamiltonian Hnr

e and non-
relativistic electronic wave functions |L�̃SmS〉LS (see, e.g.,
[67]). In the cases of alkali atoms and alkali-earth ions A+
interacting with H, we are interested in ionic A2+(1S) +
H−(1S) and covalent A+(nl 2L) + H(2S) configurations of the
same molecular symmetry with the corresponding molecular
wave functions |0000〉LS and |L000〉LS , respectively. In the LS
representation, the ionic molecular state has 1�+ symmetry,
so only covalent states with the same molecular symmetry are
currently treated. Taking proper nonrelativistic wave functions
for a diabatic representation, one can construct diagonal and
off-diagonal Hamiltonian matrix elements in the form of
diagonal ionic and covalent potentials and off-diagonal ionic-
covalent couplings. Such a representation expresses the long-
range ionic-covalent interaction mechanism. In this approach,
the key point is determination of the off-diagonal coupling
matrix elements 〈0000|Hnr

e |L000〉LS . Within the semiempiri-
cal asymptotic approach [22], these matrix elements can be
determined by the couplings HOlson

LS computed by means of
the semiempirical Olson-Smith-Bauer formula [68]

〈0000|Hnr
e |L000〉LS = HOlson

LS . (1)

Knowing the Hamiltonian matrix in the LS representation,
that is, the diagonal and off-diagonal matrix elements, one
can calculate the nonrelativistic adiabatic potentials, as well
as the nonadiabatic couplings, and this allows one to perform
complete quantum or model quantum treatments of nonadia-
batic nuclear dynamics and, finally, to calculate the inelastic
transition probabilities, cross sections, and rate coefficients.

In order to take into account fine-structure states for the
ionic-covalent interaction, one needs to treat a (quasi-) rela-
tivistic Hamiltonian H rel

e and to use molecular wave functions
in the JJ representation, |J1, J2; J�〉JJ . A (quasi-) relativistic
Hamiltonian deviates from a nonrelativistic one by relativistic
operators V rel, first, the spin-orbit operators V so,

H rel
e = Hnr

e + V rel . (2)

Diagonal matrix elements of the relativistic operators V rel,
Eq. (2), calculated on diabatic molecular wave functions in
the JJ representation, provide fine-structure level shifts in a
diabatic representation. These shifts can be taken from exper-
imental data, e.g., from NIST [64], and this allows one to de-
termine diabatic potentials with proper fine-structure asymp-
totes. Off-diagonal matrix elements of the (quasi-)relativistic
Hamiltonian calculated on the same molecular wave functions
yield ionic-covalent couplings and have the form of the sum
of two terms: matrix elements of a nonrelativistic Hamiltonian
and matrix elements of the relativistic operators. Typically,
the latter are much smaller than the former, and hence, we
assume that the off-diagonal matrix elements of the rela-
tivistic operators can be omitted. Therefore, the off-diagonal
matrix elements of the (quasi-)relativistic Hamiltonian are
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TABLE I. CaH+(k 0+) molecular states (in the JJ representa-
tion), the corresponding scattering channels, their asymptotic ener-
gies with respect to the ground-state level (taken from NIST [64]),
and the statistical probabilities pstat

k for populations of the molecular
states 0+.

k Scattering Asymptotic pstat
k

channels energy
(eV)

1 Ca+(4s 2S1/2) + H(1s 2S1/2) 0.0 0.25

2 Ca+(3d 2D3/2) + H(1s 2S1/2) 1.692408 0.125
3 Ca+(3d 2D5/2) + H(1s 2S1/2) 1.699932 0.0833

4 Ca+(4p 2P◦
1/2) + H(1s 2S1/2) 3.123349 0.25

5 Ca+(4p 2P◦
3/2) + H(1s 2S1/2) 3.150984 0.125

6 Ca+(5s 2S1/2) + H(1s 2S1/2) 6.467875 0.25

7 Ca+(4d 2D3/2) + H(1s 2S1/2) 7.047169 0.125
8 Ca+(4d 2D5/2) + H(1s 2S1/2) 7.049551 0.0833

9 Ca+(5p 2P◦
1/2) + H(1s 2S1/2) 7.505138 0.25

10 Ca+(5p 2P◦
3/2) + H(1s 2S1/2) 7.514841 0.125

11 Ca+(4 f 2F ◦
5/2) + H(1s 2S1/2) 8.437981 0.0833

12 Ca+(4 f 2F ◦
7/2) + H(1s 2S1/2) 8.437981 0.0625

13 Ca+(6s 2S1/2) + H(1s 2S1/2) 8.762908 0.25

14 Ca+(5d 2D3/2) + H(1s 2S1/2) 9.016407 0.125
15 Ca+(5d 2D5/2) + H(1s 2S1/2) 9.017486 0.0833

16 Ca+(6p 2P◦
1/2) + H(1s 2S1/2) 9.234953 0.25

17 Ca+(6p 2P◦
3/2) + H(1s 2S1/2) 9.239519 0.125

18 Ca+(7s 2S1/2) + H(1s 2S1/2) 9.850331 0.25

19 Ca+(4s 2S1/2 ) + H(2s 2S1/2 ) 10.20165 0.25

20 Ca+(4s 2S1/2) + H(2p 2P1/2) 10.20505 0.25
21 Ca+(4s 2S1/2) + H(2p 2P3/2) 10.20505 0.125

22 Ca2+(3p6 1S0) + H−(1s2 1S0 ) 11.11772 1.0

mainly determined by the off-diagonal matrix elements of the
nonrelativistic Hamiltonian calculated on the molecular wave
functions in the JJ representation. In this representation, the
ionic configuration A2+(1S0) + H−(1S0) has 0+ symmetry, so
the covalent molecular states A+(nl 2Lj ) + H(2S1/2) included
in consideration should have the same symmetry. Table I
lists the molecular states with this symmetry and treated in
the present work. Both ionic and covalent molecular wave
functions can be expressed via the single-electronic wave
functions. It turns out that the off-diagonal matrix elements
calculated on the molecular wave functions in the LS and in
the JJ representations are proportional to each other [69],

〈0, 0; 0 0 | He
rel | j, 1/2; J 0〉JJ = C 〈0000|Hnr

e |L000〉LS ,

(3)
where the proportionality factors C are equal to

C = 1√
2

([
j 1/2 J

1/2 -1/2 0

][
l 1/2 j

0 1/2
1/2

]

−
[

j 1/2 J

-1/2
1/2 0

][
l 1/2 j

0 -1/2 -1/2

])
, (4)

where the brackets denote the Clebsch-Gordan coefficients.
The proportionality factors for several fine-structure states are

TABLE II. Proportionality factors C between off-diagonal matrix
elements in the JJ and in the LS representations for several fine-
structure levels.

L j J C L j J C

S 1/2 0 1 P 1/2 0 0
1/2 1 0 1/2 1 −√

1/3

3/2 1
√

2/3
3/2 2 0

D 3/2 1 0 F 5/2 2 0
3/2 2 −√

2/5
5/2 3 −√

3/7

5/2 2
√

3/5
7/2 3

√
4/7

5/2 3 0 7/2 4 0

listed in Table II. Note that J is the total electronic angular
momentum quantum number for a covalent configuration,
A+(nl 2Lj ) + H(2S1/2), of a (quasi-)molecule AH+ at present
and is obtained as the sum of two atomic total angular mo-
menta with the quantum numbers j and 1/2.

The diabatic potentials in the JJ representation can be
taken in the same way as those in the LS representation,
but the asymptotes of the covalent potentials coincide with
the corresponding fine-structure levels. Thus, knowing the
diabatic diagonal and off-diagonal matrix elements of the
electronic Hamiltonian allows one to calculate the adiabatic
(quasi-)relativistic potentials based on the long-range ionic-
covalent interaction and, therefore, to compute the inelas-
tic state-to-state probabilities, cross sections, and rate co-
efficients, e.g., by the asymptotic multichannel approach.
It is noteworthy that the number of molecular states in
the JJ representation is greater than the number of states
in the LS representation due to splitting of nonrelativis-
tic levels into fine-structure levels. An important feature is
that both the off-diagonal ionic-covalent matrix elements
〈0, 0; 0 0 | He

rel | j, 1/2; J 0〉JJ (which determine the Landau-
Zener parameters) and the energy splittings in the avoided-
crossing regions are smaller in the JJ representation than in
the LS one [see Eqs. (3) and (4) and Table II]. One can see
another feature: due to the properties of the Clebsch-Gordan
coefficients, for (nearly) degenerate covalent 0+ states the
following relation is fulfilled at a fixed L:

∑
j

〈0, 0; 0 0 | He
rel | j, 1/2; J 0〉2

JJ = 〈0000|Hnr
e |L000〉2

LS .

(5)
Note that C = 0 for the 0− symmetry. Due to Eq. (5), the out-
ermost adiabatic potentials in a nonadiabatic region created by
an ionic state and two fine-structure covalent states in the JJ
representation coincide with the similar adiabatic potentials
in the LS representation, but in the JJ representation there is
an additional potential in between (see the example shown in
Fig. 1).

In the present case, the adiabatic ab initio CaH+ potentials
have been calculated in the LS representation of Habli et al.
[65,66]. Using their potentials, the inelastic processes in low-
energy Ca+ + H and Ca2+ + H− collisions have been studied
in a recent paper [31] without accounting for fine-structure
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FIG. 1. Adiabatic potentials for the molecular states k = 11, 12,
and 13 (see Table I) in the JJ representation (solid lines, with account
for the fine structure), as well as in the LS representation (dotted
lines, without the fine structure).

states. It was shown in that paper that large-valued rate coeffi-
cients correspond to processes based on the long-range ionic-
covalent interaction. Thus, in order to take the fine structure
into account for the most important processes (with large rate
coefficients) one can use the approach described above and
apply it to the long-range nonadiabatic regions.

In order to account for the fine structure, the ab initio
CaH+(1�+) potentials in the LS representation are used
to determine the diabatic diagonal and the off-diagonal
〈0000|Hnr

e |L000〉LS matrix elements of the electronic Hamil-
tonian in each long-range avoided-crossing region. In the JJ
representation, the long-range electronic Hamiltonian matrix
is constructed in the following way: (i) the diabatic diagonal
elements are taken in the same way as the corresponding dia-
batic potentials in the LS representation, but split and shifted
to the proper fine-structure level asymptotes; and (ii) the
diabatic off-diagonal elements 〈0, 0; 0 0 | He

rel | j, 1/2; J 0〉JJ
are calculated by means of Eq. (3) via the factors C in
Eq. (4) (see Table II) and the nonrelativistic matrix elements
〈0000|Hnr

e |L000〉LS . The latter can be either determined by
the adiabatic potential splittings in the LS representation or
calculated directly, e.g., by Eq. (1). Note that the number of
fine-structure scattering channels is greater than the number
of LS channels due to the splittings of the LS levels. In the
present work, we take into account 22 fine-structure scattering
channels producing the molecular states of 0+ symmetry, 21
covalent, Ca+(nl 2Lj ) + H(2S1/2), and one ionic, Ca2+(1S0) +
H−(1S0) (see Table I), which are based on the 14 scattering
channels in the LS representation, 13 covalent and one ionic.

It is noteworthy that the present consideration does not in-
clude states corresponding to Ca + H+ channels. First, inelas-
tic processes involving these states correspond to two-electron
transitions with cross sections and rate coefficients typically
being low if other reaction mechanisms are not involved. Sec-
ond, these states do not correspond to alkaline-like–neutral-
hydrogen interactions, so the wave function transformation
[69] is not directly applicable to Ca + H+ collisions.

If the Hamiltonian diabatic matrix is known in the JJ
representation, one can calculate the adiabatic potentials with

account for the fine structure. Figure 1 shows an example of
the adiabatic potentials with and without accounting for the
fine structure for molecular states asymptotically correlating
with the Ca+(4 f 2F ◦) + H and Ca+(6s 2S) + H scattering
channels. One can see that in the LS representation two poten-
tials (dotted lines) create one avoided-crossing region due to
the ionic-covalent interaction, while in the JJ representation
the system has three molecular states (11, 12, and 13, with
account for the fine structure) and these three potentials (solid
lines) create two avoided-crossing regions. Thus, the nonadi-
abatic nuclear dynamics in the fine-structure molecular states
is more complicated than the dynamics in non-fine-structure
molecular states. Ultimately, this results in different values of
state-to-state transition probabilities, inelastic cross sections,
and inelastic rate coefficients.

It is noteworthy that the asymptotes of some calculated
LS potentials [65,66] deviate from the experimental en-
ergies [64]. In order to improve the inelastic cross sec-
tions and rate coefficients, we adjusted the diabatic po-
tentials obtained from the ab initio adiabatic ones accord-
ing to their experimental asymptotes, for example, for the
Ca+(5d 2D3/2,5/2) + H(1s 2S) and Ca+(6p 2P◦

1/2) + H(1s 2S)
molecular states. These shifts also affect the parameters of
nonadiabatic regions.

Known off-diagonal matrix elements of the electronic
Hamiltonian matrix in the JJ representation and, finally,
fine-structure adiabatic potentials in avoided-crossing regions
allow one to calculate the nonadiabatic transition probabilities
by means of the Landau-Zener model in each nonadiabatic
region. Originally the model was formulated in a diabatic
representation, but if the potentials are known in the adia-
batic representation, then the adiabatic-potential-based for-
mula [70] allows one to compute the Landau-Zener probabil-
ities from information about adiabatic potentials only. In the
present work the Landau-Zener parameters are calculated via
the off-diagonal matrix elements, Eq. (3). With the long-range
nonadiabatic regions located in a particular order, one can
use the multichannel formulas for calculating the state-to-state
inelastic transition probabilities Pkn(E , Jt ) [27–29], E being a
collision energy and Jt a total angular momentum quantum
number.

The multichannel Landau-Zener is applicable when several
nonadiabatic regions are located in a particular order, for
example, when both the centers and the average potentials
of avoided-crossing nonadiabatic regions are continuously
increasing (see [27] for details). If so, incoming and, later,
outgoing probability currents traverse such nonadiabatic re-
gions in a well-defined order, and it is possible to derive
the analytic formulas for the state-to-state inelastic transition
probabilities Pi f for a given initial i and a given final f
channel in the multichannel case [27–29]. Assuming that the
nonadiabatic regions are separated from each other, one can
express Pi f analytically via the nonadiabatic transition proba-
bilities pk in each nonadiabatic region k after a single traverse
of this region (see [27–29], and references therein). If the
probabilities pk are evaluated by means of the Landau-Zener
model, the approach is called the multichannel Landau-Zener.
The multichannel Landau-Zener approach accounting for both
tunneling and probability-current oscillations is employed in
the present work.
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Inelastic cross sections and rate coefficients can then be
calculated in the usual way as follows. For exothermic pro-
cesses k → n (we consider excitation energies Ek > En), the
cross sections σkn(E ) and the rate coefficients Kkn(T ) are
computed by the formulas

σkn(E ) = π h̄2 pstat
k

2μE

∞∑
Jt =0

Pkn(E , Jt ) (2Jt + 1) , (6)

Kkn(T ) =
√

8

πμ(kBT )3

∫ ∞

0
E σkn(E ) exp

(
− E

kBT

)
dE ,

(7)

where pstat
k is the statistical probability for the population of

channel k, μ is the reduced nuclear mass, T is the temperature,
and kB is the Boltzmann constant. For endothermic processes
n → k, the cross sections σnk (E ) and the rate coefficients
Knk (T ) can be calculated by the detailed balance expressions

σnk (E ) = σkn(E − �Ekn)
pstat

n

pstat
k

E − �Ekn

E
, (8)

Knk (T ) = Kkn(T )
pstat

n

pstat
k

exp

(
−�Ekn

kBT

)
, (9)

�Ekn = Ek − En being an energy defect between channel k
and channel n.

III. Ca+ + H AND Ca2+ + H− COLLISIONS

A. Fine-structure treatment

In the present work, the cross sections and rate coefficients
are calculated for the excitation, de-excitation, neutralization,
and ion-pair formation processes in Ca+ + H and Ca2+ +
H− collisions taking the fine structure into account for the
collision energy range from 10−4 to 100 eV and for the
temperature range from 1000 to 10 000 K. The calculated
rates are available upon request. In addition, Fig. 2 shows
a graphical representation of the calculated rates at temper-
ature T = 6000 K, and the most valuable rates at the same

FIG. 2. Graphical representation of the rate coefficients for the
partial processes of excitation, de-excitation, neutralization, and ion-
pair formation in Ca+ + H and Ca2+ + H− collisions at temperature
T = 6000 K. The key labels are presented in Table I.

temperature are listed in Table III (for the channels k = 6–18
and 22).

Similarly to other processes in collisions with hydrogen,
the computed rate coefficients can be separated into three
groups:

(i) rate coefficients with the highest values (exceeding
10−8 cm3 s−1; red squares in Fig. 2);

(ii) rate coefficients with moderate values (between 10−12

and 10−8 cm3 s−1; orange, yellow, green, and light-blue
squares in Fig. 2); and

(iii) rate coefficients with low values (less than
10−12 cm3s −1; blue squares in Fig. 2).

The first group consists of neutralization processes with the
final scattering channels from Ca+(4 f 2F ◦

7/2) + H(1s 2S1/2) to
Ca+(7s 2S1/2) + H(1s 2S1/2) (channels k = 12–18 in Table I)
with values from 1.11 × 10−8 to 9.21 × 10−8 cm3 s−1 at tem-
perature T = 6000 K. The highest rate corresponds to the neu-
tralization in the final channel Ca+(6p 2P◦

3/2) + H(1s 2S1/2)
(k = 17). These neutralization processes are based on the
long-range ionic-covalent interaction mechanism with the
final-channel binding energies from the optimal reaction win-
dow (see [25] and [26] for details).

The second group consists of many processes of excitation,
de-excitation, neutralization, and ion-pair formation. At tem-
perature T = 6000 K, the highest rate coefficients from this
group correspond to the (de-)excitation processes 13 → 12,
13 → 11, 16 → 15, 16 → 17, 14 → 15, 15 → 14, 14 → 13,
13 → 14, 12 → 11, 11 → 12, 18 → 17, 22 → 11, 17 → 15,
and 17 → 16, with the values exceeding 10−9 cm3 s−1 (see
Table I for the labels and Table III for the rates). The highest
(de-)excitation rate, with the value 5.61 × 10−9 cm3 s−1 at
T = 6000 K, corresponds to the process Ca+(6s 2S1/2) +
H(1s 2S1/2) → Ca+(4 f 2F ◦

7/2) + H(1s 2S1/2) (13 → 12). The
highest (de-)excitation rate is one order of magnitude lower
than the highest neutralization rate. The processes in the
second group are also mainly based on the long-range ionic-
covalent reaction mechanism, with binding energies for both
the initial and the final scattering channels belonging to the
optimal window (see Fig. 2 and Table III). The processes
in these two groups are the most important for non-LTE
applications.

The third group consists of processes involving the ground-
state channel, k = 1, the low-lying channels 2–5 [except
several (de-)excitation processes], the high-excited channels
19–21 (but not the neutralization into these channels), and
some others with rates below 10−12 cm3 s−1. It should be
noted that the rate coefficients for these processes may show
a significant increase (up to several orders of magnitude) due
to the loop reaction mechanism if short-range nonadiabatic
regions are taken into account, as shown in [31]. High-lying
states are more sensitive to these effects, because usually there
are many nonadiabatic regions created by high-lying states.

An interesting feature is the dependence of the rate coeffi-
cients on the excitation energies of the Ca II ion in the final
scattering channels Ca+(nl 2Lj ) + H. Such a dependence for
the neutralization processes, the processes with the highest
rate coefficients, with accounting for the fine structure (that is,
in the JJ representation) is plotted by open triangles in Fig. 3
for the temperature T = 6000 K. It is shown that the rate
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TABLE III. Rate coefficients for the inelastic processes in Ca+ + H and Ca2+ + H− collisions between the scattering channels k = 6–18
and k = 22 at T = 6000 K. The key labels are listed in Table I. Numbers in Square brackets represent the power of 10.

6 7 8 9 10 11 12 13 14 15 16 17 18 22

6 — 5.14[−11] 6.33[−12] 4.51[−13] 3.62[−14] 1.04[−16] 9.57[−17] 8.91[−17] 3.55[−17] 3.23[−17] 3.95[−18] 7.18[−18] 1.05[−18] 2.01[−17]
7 7.88[−11] — 2.75[−10] 9.83[−12] 5.48[−13] 1.04[−15] 9.27[−16] 8.25[−16] 3.09[−16] 2.70[−16] 3.35[−17] 6.07[−17] 9.04[−18] 1.29[−16]
8 6.50[−12] 1.85[−10] — 4.64[−11] 1.84[−12] 2.62[−15] 2.28[−15] 1.98[−15] 7.13[−16] 6.07[−16] 7.59[−17] 1.37[−16] 2.07[−17] 2.56[−16]
9 3.35[−12] 4.77[−11] 3.36[−10] — 2.31[−10] 1.72[−13] 1.43[−13] 1.16[−13] 3.86[−14] 3.14[−14] 3.94[−15] 7.10[−15] 1.08[−15] 1.02[−14]
10 1.37[−13] 1.35[−12] 6.80[−12] 1.18[−10] — 1.40[−12] 1.06[−12] 7.72[−13] 2.24[−13] 1.70[−13] 2.13[−14] 3.80[−14] 5.72[−15] 4.02[−14]
11 1.56[−15] 1.02[−14] 3.84[−14] 3.48[−13] 5.56[−12] — 1.51[−09] 5.00[−10] 7.90[−11] 4.35[−11] 4.84[−12] 8.21[−12] 1.10[−12] 3.59[−12]
12 1.08[−15] 6.83[−15] 2.51[−14] 2.17[−13] 3.17[−12] 1.17[−09] — 7.18[−10] 9.62[−11] 5.07[−11] 5.53[−12] 9.34[−12] 1.23[−12] 3.88[−12]
13 7.54[−15] 4.56[−14] 1.63[−13] 1.32[−12] 1.73[−11] 2.99[−09] 5.61[−09] — 1.87[−09] 9.31[−10] 9.53[−11] 1.58[−10] 2.00[−11] 5.76[−11]
14 2.45[−15] 1.40[−14] 4.79[−14] 3.59[−13] 4.09[−12] 3.63[−10] 5.90[−10] 1.63[−09] — 2.58[−09] 2.04[−10] 3.23[−10] 3.47[−11] 7.41[−11]
15 1.49[−15] 8.13[−15] 2.73[−14] 1.95[−13] 2.07[−12] 1.33[−10] 2.07[−10] 5.09[−10] 1.73[−09] — 4.14[−10] 6.23[−10] 5.78[−11] 1.05[−10]
16 8.35[−16] 4.62[−15] 1.56[−14] 1.12[−13] 1.19[−12] 6.79[−11] 1.04[−10] 2.39[−10] 6.38[−10] 1.96[−09] — 5.41[−09] 2.45[−10] 2.06[−10]
17 7.65[−16] 4.22[−15] 1.43[−14] 1.02[−13] 1.07[−12] 5.85[−11] 8.87[−11] 2.02[−10] 5.06[−10] 1.45[−09] 2.73[−09] — 2.51[−10] 2.17[−10]
18 7.34[−16] 4.16[−15] 1.42[−14] 1.02[−13] 1.06[−12] 5.11[−11] 7.63[−11] 1.65[−10] 3.51[−10] 8.74[−10] 8.09[−10] 1.64[−09] — 8.15[−10]
22 6.47[−13] 2.72[−12] 8.01[−12] 4.42[−11] 3.42[−10] 7.67[−09] 1.11[−08] 2.19[−08] 3.45[−08] 7.30[−08] 4.62[−08] 9.21[−08] 3.90[−08] —

coefficient dependence has a maximum for the Ca+(6p 2P◦
3/2)

state and decreases in both directions. This is a general
form for such dependences [25,26]. The maximum for this
particular final channel is the result of the fact that the binding
energy of Ca II in this channel is located in the most optimal
window. This fact confirms that the reaction mechanism of the
neutralization processes with large-valued rates corresponds
to the long-range ionic-covalent interaction. Accounting for
the fine structure yields a scatter of the rates, since the rates of
the Ca II fine-structure levels have different values. The ratios
between the rates of the fine-structure levels are also different
for different Ca II states (see Fig. 3). This is the result of
relation (3), which determines the Landau-Zener parameters
and the CaH+ electronic structure in the JJ representation.
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FIG. 3. Rate coefficients for the neutralization processes at T =
6000 K as a function of the excitation energy of the Ca+ ion
(measured from the ground-state level) in the final channels. The
rates are computed in the JJ (open blue triangles) and in the LS (red
stars) representations, that is, with and without accounting for the
fine structure. The calculations are performed by the multichannel
Landau-Zener approach.

The similar dependence of the rate coefficients on the exci-
tation energies of the Ca II states in the final scattering chan-
nels for the (de-)excitation processes is shown in Fig. 4; the
initial scattering channel is Ca+(6p 2P◦

1/2) + H. This depen-
dence is in agreement with the general dependence predicted
by the simplified model [25,26]. The maximal values for the
(de-)excitation processes from this initial channel correspond
to the final channels Ca+(6p 2P3/2) + H (the transition be-
tween the fine-structure levels) and Ca+(5d 2D5/2) + H, and
this is the result of the fact that the excitation energies of the
Ca+(6p 2P3/2) and Ca+(5d 2D5/2) states belong to the most
optimal window as well, and hence, the reaction mechanism
also corresponds to the long-range ionic-covalent interaction.

As mentioned in Sec. I, the Ca II infrared triplet
849.8/854.2/866.2 nm is of particular interest. It
corresponds to the transitions between the fine-structure
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FIG. 4. Rate coefficients for the de-excitation and excitation
processes as a function of the excitation energy of the Ca+ ion in
the final channels at T = 6000 K. The rates are calculated in the
JJ (open blue triangles) and in the LS (red stars) representations,
that is, with and without account for the fine structure. The initial
channel is Ca+(6p 2P◦

1/2) + H. The calculations are performed by the
multichannel Landau-Zener approach.
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FIG. 5. Temperature dependence for the processes
Ca+(4p 2P◦

3/2) + H → Ca+(3d 2D3/2) + H (transition 5 → 2),
Ca+(4p 2P◦

3/2) + H → Ca+(3d 2D5/2) + H (transition 5 → 3), and
Ca+(4p 2P◦

1/2) + H → Ca+(3d 2D3/2) + H (transition 4 → 2) and
their inverses.

states: Ca+(4p 2P◦
3/2) → Ca+(3d 2D3/2) (the transition

5 → 2), Ca+(4p 2P◦
3/2) → Ca+(3d 2D5/2) (5 → 3), and

Ca+(4p 2P◦
1/2) → Ca+(3d 2D3/2) (4 → 2). For this reason,

the inelastic processes in collisions of calcium ions with
hydrogen atoms leading to transitions between these
fine-structure states are of importance. Figure 5 presents
the temperature dependence of the rate coefficients of the
processes for the Ca II triplet transitions in collisions with H
and their inverses. One can see that the rate for the 4 → 2
de-excitation process weakly depends on the temperature,
while the others depend strongly on it. It is shown that the
rate coefficients for these processes are mainly low, although
one process has a moderate rate, namely, the de-excitation
process 4 → 2, with the maximum slightly exceeding the
value of 1.4 × 10−11 cm3 s−1 at T = 6000 K.

The calculated rate coefficients at T = 6000 K for the exci-
tation and de-excitation processes with transitions between the
low-lying fine-structure channels 2–5 are listed in Table IV,
including the Ca II infrared triplet transitions. One can see that
the rate coefficients of these processes are low as well; only
one of them has the moderate value of 1.62 × 10−10 cm3 s−1

(the 4 → 3 transition), several processes have rates exceeding
the value of 10−11 cm3 s−1 (2 → 3, 3 → 2, and 4 → 2), and
the others are much lower. The low values of the rate coeffi-
cients for the processes with transitions between the low-lying

TABLE IV. Rate coefficients for (de-)excitation processes in-
volving scattering channels 2–5 at T = 6000 K. The key labels are
listed in Table I. Numbers in Square brackets represent the power
of 10.

2 3 4 5

2 — 3.58[−11] 4.49[−13] 1.87[−18]
3 2.42[−11] — 3.45[−12] 5.84[−18]
4 1.43[−11] 1.62[−10] — 3.96[−15]
5 3.15[−17] 1.46[−16] 2.10[−15] —

states are the results of large splittings between the LS adia-
batic potentials. In particular, the adiabatic-potential splitting
in the center of a nonadiabatic region between the LS states
Ca+(4p 2P◦) + H and Ca+(5s 2S) + H is ≈ 2.245 eV. This
large energy gap cuts off the lowest-lying states (k � 5) from
other states, which are above the Ca+(5s 2S) + H state (k = 6)
in the LS representation. The minimal energy splitting be-
tween the ground-state potential (k = 1) and the first-excited-
state potential (k = 2) is ≈ 1.55 eV, and this gap separates the
ground state from other states. In the JJ representation, the
fine-structure levels split and the adiabatic-potential splitting
in the center of the nonadiabatic region between the fine-
structure states Ca+(4p 2P◦

1/2) + H and Ca+(4p 2P◦
3/2) + H is

≈ 1.587 eV. This leads to large values for the off-diagonal ma-
trix elements [see Eq. (3)] and, finally, to low transition prob-
abilities, low inelastic cross sections, and low rate coefficients
for the processes Ca+(4p 2P◦

3/2) + H → Ca+(3d 2D3/2,5/2) +
H, the processes corresponding to the Ca II infrared triplet
transitions (see Fig. 5 and Table IV).

B. Comparison of rate coefficients with and without account for
the fine structure

The rate coefficients for the inelastic processes in Ca+ + H
and Ca2+ + H− collisions calculated in the present work
accounting for the fine structure should be compared with the
rates computed without accounting for the fine structure. The
latter are calculated in [31] in the LS representation by means
of both the multichannel Landau-Zener approach and the
probability current method. The results for the neutralization
processes are presented in Figs. 3 and 6. Figures 4 and 7 show
a similar comparison for the (de-)excitation rate coefficients
calculated with and without accounting for the fine structure.
First, one can see in Figs. 6 and 7 that the large-valued rate
coefficients [for processes with the final channels higher than
the channel Ca+(5p 2P) + H] calculated by the multichannel
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FIG. 6. Comparison of the rate coefficients for neutralization
processes at T = 6′00 K as a function of the excitation energy of
the Ca+ ion in the final channels for the three data sets: (i) rates
obtained by the probability current method in the LS representation
(black circles); (ii) rates computed by the multichannel approach in
the LS representation (red stars); and (iii) rates calculated by the
multichannel approach in the JJ representation and summed over
fine-structure states (blue triangles).
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FIG. 7. Comparison of the rate coefficients for the de-excitation
and excitation processes at T = 6000 K as a function of the exci-
tation energy of the Ca+ ion in the final channels for the results
obtained by (i) the probability current method in the LS representa-
tion (black circles), (ii) the multichannel Landau-Zener approach in
the LS representation (red stars), and (iii) the multichannel Landau-
Zener approach in the JJ representation and summed over fine-
structure states (blue triangles), that is, with and without accounting
for the fine structure. The initial channels are Ca+(6p 2P◦

1/2,3/2 ) + H,
and the fine-structure results are summed over the fine-structure
levels of the initial and the final channels.

approach agree well with the rates calculated by the probabil-
ity current method. This means that the dominant mechanism
for the processes with large-valued rates is the long-range
ionic-covalent interaction. The processes with lower-lying
final channels, below the channel Ca+(5p 2P) + H, have rates
calculated by the probability current method larger than those
calculated by the multichannel approach. The point is that
the multichannel approach takes into account only long-range
nonadiabatic regions, while the probability current method
accounts for both short- and long-range nonadiabatic regions,
and this affects the rates for transitions between low-lying
states, especially rates with low values. Nevertheless, the
multichannel approach yields reasonable rate coefficients for
important processes.

Second, it is shown in Figs. 6 and 7 that there are different
cases in comparison of the rates obtained by the multichannel
approach with and without accounting for the fine structure:
for some processes the rates obtained with and without ac-
counting for fine structure are approximately equal [e.g., for
the 5p (neutralization), 4 f , and 6p states], for some processes
the rates with fine structure are lower than those without fine
structure (e.g., for 5s, 4d , and 6s), and for some others the
rates with fine structure are higher than the rates without fine
structure [e.g., for 5p (de-excitation), 5d , and 7s]. Sometimes
the rate coefficient for one of two fine-structure processes is
higher than the rate for the corresponding LS state (see Figs. 3
and 4, e.g., for the 5d state).

As mentioned in Sec. I, the common way to take the fine
structure into account in collisions with hydrogen consists
in redistributing the collisional rate between fine-structure
levels. The present calculations and analysis show that such

a redistribution could be fulfilled accidentally, but this is not
a general rule. The correct way to take the fine structure into
account consists in performing a dynamical calculation based
on an electronic structure constructed in the JJ representation.
One should also note the different statistical probabilities pstat

k
for populations of molecular states of the 0+ and of the 1�+
symmetries, that is, in the JJ and in the LS representations.

IV. CONCLUSIONS

The present paper reports the developed method for tak-
ing the fine structure into account in collisions of alkaline
atoms and alkaline-like ions with hydrogen, as well as the
application of the method to the processes in Ca+ + H and
Ca2+ + H− collisions. The method is based on the modifica-
tion of the adiabatic potentials by switching the representation
from the LS to the JJ coupling scheme. The key point of
this transformation is the determination of the off-diagonal
matrix elements of the ionic-covalent interaction in the JJ
representation via similar elements in the LS representation.
It turns out that these matrix elements are proportional to each
other [69] [see Eq. (3)].

The ab initio potentials for the 13 covalent Ca+ + H states
of 1�+ molecular symmetry and the one ionic Ca2+ + H−

state of the same symmetry calculated in the LS representation
are taken from [65] and [66]. These potentials are used for
construction of the adiabatic potentials for the 22 molecular
states of 0+ symmetry in the JJ representation taking the
fine structure of Ca+ and H(2p) into account. Then the
nonadiabatic nuclear dynamics is studied on the constructed
0+ potentials by means of the multichannel Landau-Zener
approach for the collisional energy range 10−4 to 100 eV.
Finally, the rate coefficients are calculated for the temperature
range 1000 to 10 000 K.

The treated processes in Ca+ + H and Ca2+ + H− colli-
sions can be separated into three groups: (i) processes with
the largest rate coefficients, typically exceeding the value of
10−8 cm3 s−1; (ii) processes with moderate rates, between
10−12 and 10−8 cm3 s−1; and (iii) processes with low rates,
below 10−12 cm3 s−1.

It is found that the largest rate coefficients correspond
to the neutralization processes in the final channels
Ca+(4 f 2F ◦

7/2), Ca+(6s 2S1/2), Ca+(5d 2D3/2,5/2),
Ca+(6p 2P◦

1/2,3/2), and Ca+(7s 2S1/2) + H(1s 2S1/2) and
have values in the range (1.11–9.21) × 10−8 cm3 s−1

at temperature 6000 K. It is shown that the reaction
mechanism for these processes corresponds to the
long-range ionic-covalent interaction. It is also shown
that accounting for the fine structure does not lead
to a simple redistribution of rate coefficients obtained
within the LS coupling scheme between the fine-structure
levels.

The rate coefficients for the Ca II infrared triplet
849.8/854.2/866.2-nm transitions in collisions with H are
found to be small. The only moderate rate coefficient is found
in the range 9.06 × 10−12 to 1.93 × 10−11 cm3 s−1 for tem-
peratures between 1000 and 10 000 K and corresponds to the
transition Ca+(4p 2P◦

1/2) → Ca+(3d 2D3/2) in H collisions.
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The rate coefficients for the transitions Ca+(4p 2P◦
3/2) ↔

Ca+(3d 2D3/2,5/2) are found to have values below 1.8 ×
10−15 cm3 s−1 for the treated temperature range.

Processes with large and moderate values of the rate co-
efficients are likely to be important in non-LTE modeling of
stellar atmospheres.

Supplemental Material present the calculated rate coef-
ficients (in units of cm3 s−1) for the inelastic processes in

Ca+ + H and Ca2+ + H− collisions for temperatures from
T = 1000 K to T = 10 000 K [71].
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