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Fully differential cross sections for single ionization of helium by fast proton impact in different kinematical
regimes in the scattering plane were recently measured in a high-precision experiment [O. Chuluunbaatar et al.,
Phys. Rev. A 99, 062711 (2019)] and calculated using the first Born approximation. We use the nonperturbative
wave-packet convergent close-coupling approach to calculate this process more accurately in all the kinematical
regimes considered in the experiment. The obtained results show that the coupling between channels and
multiple-scattering effects, combined with a more accurate treatment of the target structure, significantly
improves the agreement between theory and experiment, especially in the apparently most difficult regions away
from the so-called Bethe ridge, where the deviation in the positions of the binary peak observed in the experiment
and calculated using the first Born approximation is largest. We also present fully differential cross sections in
the same kinematical regimes but for incident projectile energies of 500 keV and 2 MeV. Corresponding results
for the so-called perpendicular and azimuthal planes are also exhibited.
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I. INTRODUCTION

Studies of fully differential cross sections (FDCSs) play
an important role in understanding the dynamics of ion-atom
collisions, since these cross sections carry the most detailed
information about the collision process. The recently devel-
oped reaction microscope known as cold target recoil ion
momentum spectroscopy (COLTRIMS) [1], which allows one
to measure the three-dimensional momentum distribution of
electrons emitted during the collision process in coincidence
with the residual ion, has been used to obtain high-precision
kinematically complete data [2–6].

There has been considerable progress in the theory of ion-
atom collisions as well. A number of theoretical approaches
have been developed over the past few decades, which are
capable of producing the total ionization cross section in
acceptable agreement with experimental measurements over a
wide range of impact energies for various collision processes
[7–22]. However, when it comes to the FDCS, even the most
sophisticated approaches encounter various challenges for
certain kinematical regimes.

The worst case is observed for single ionization of helium
induced by 100-MeV/amu C6+ ion impact when the elec-
tron is ejected in the plane perpendicular to the momentum-
transfer direction [2]. Most of the existing theoretical models
completely fail (with a disagreement of almost a factor of
10) to reproduce the experimental data, both qualitatively and
quantitatively (see, e.g., Ref. [23] and references therein).
A recent work by Igarashi and Gulyás [24] showed that
the convolution of their continuum-distorted-wave–eikonal-
initial-state results by the experimental momentum resolution

leads to good agreement with the measured FDCS data in
this perpendicular plane. Another case is the FDCS for single
ionization of helium by 75-keV protons in the perpendicular
plane, defined by the initial projectile momentum and the
vector normal to the scattering plane, where the available
theoretical results are in disagreement with the experiment
[3]. Notably, the various theoretical predictions also disagree
with each other (see Refs. [25,26] and references therein).
This disagreement is more pronounced for higher momentum
transfers.

A recent COLTRIMS-based experiment [27] produced
ultrahigh-resolution data on the FDCS for single ionization of
helium induced by 1-MeV proton impact in 12 different kine-
matical regimes in terms of momentum transfer and electron
ejection energies. The authors stated [6] that their apparatus
allowed them to definitely rule out possible experimental
sources for disagreement between theory and experiment as
they achieved the highest resolution ever reported in such an
experiment. Accordingly, the results should serve as an ideal
test bed for theoretical calculations.

In addition to presenting their measured data, these authors
reported their theoretical calculations obtained using various
forms of the first Born approximation (FBA). In particu-
lar, they employed the plane-wave FBA, as well as models
based on the so-called three-Coulomb (3C) wave function
(3C model) and effective charges, including the first-order
diagrams with semiclassical postcollision interaction. In their
simple FBA approach, both the incident and scattered projec-
tile states were described with plane waves. The 3C model
goes somewhat beyond the FBA theory by describing the
final asymptotic three-body state with the 3C wave function.

2469-9926/2019/100(6)/062708(9) 062708-1 ©2019 American Physical Society

https://orcid.org/0000-0002-9844-4966
https://orcid.org/0000-0002-5804-8811
https://orcid.org/0000-0001-7554-8044
https://orcid.org/0000-0001-6215-5014
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.062708&domain=pdf&date_stamp=2019-12-18
https://doi.org/10.1103/PhysRevA.99.062711
https://doi.org/10.1103/PhysRevA.99.062711
https://doi.org/10.1103/PhysRevA.99.062711
https://doi.org/10.1103/PhysRevA.99.062711
https://doi.org/10.1103/PhysRevA.100.062708


I. B. ABDURAKHMANOV et al. PHYSICAL REVIEW A 100, 062708 (2019)

In the model based on effective charges, the authors of [27]
studied the effect of varying Sommerfeld parameters of the
3C function on the final results for the FDCS. In this way, a
distortion of the intermediate plane waves is achieved.

The model based on semiclassical postcollision interaction
investigates the effect of including the postcollisional inter-
action in the 3C model. As a result of these studies, it was
found that the FBA results are reasonable within the Bethe
ridge [28], which reaches its maximum when the energy and
momentum transfers correspond to the kinematical regime
of a free ion-electron collision and can be clearly identified
at large momentum-transfer values. The Bethe ridge deter-
mines the phase-space region where the FBA gives the largest
contributions to the ionization yield, while away from this
region one might expect other, higher-order contributions to
come into play. This region is given by q2/2 = Ee + |ε1s|,
where q is the momentum transfer of the projectile, Ee is
the electron ejection energy, and ε1s is the energy of the
active electron in the ground state of helium atom. Beyond
that, a combination of the 3C model with a semiclassical
postcollision interaction effect improved the agreement with
experiment. However, none of the considered models was able
to explain the ratio of the recoil- to binary-peak intensity.
The 3C model agreed slightly better with experiment in the
recoil-peak position, but in the case of the binary peak, a
discrepancy of a several degrees with the measured position
still remained. It was concluded that all the FBA-like theories
have limitations in the kinematical regimes far from the Bethe
ridge, even at impact energies as high as 1 MeV. This warrants
further investigation of the origin of the disagreement between
theory and experiment, employing more sophisticated meth-
ods that can couple all possible reaction channels, incorporate
multiple-scattering effects, and treat the target structure more
accurately by accounting for the electron-electron correlations
in the ground and all included states of the two-electron He
atom.

In this work we go beyond the perturbative model and
apply the wave-packet convergent close-coupling (WP-CCC)
approach [22] to study the problem under consideration.
When compared to other close-coupling models, a distinct
feature of the WP-CCC approach is its ability to generate
the target continuum pseudostates with arbitrary ejection en-
ergies and the required density in the most relevant region
of the spectrum. The energies of the generated continuum
pseudostates are aligned across different angular momenta
of the target electron, which greatly improves the accuracy
of differential ionization studies. Therefore, this approach
is ideal for calculating the most detailed fully differential
cross sections. At sufficiently high impact energies, where
the probability of electron capture is negligible, the method is
capable of solving the ionization problems virtually exactly.

II. THE WP-CCC APPROACH

Let us briefly overview the basics of the WP-CCC ap-
proach to proton-impact single ionization of helium [22]. We
start from the exact four-body Schrödinger equation gov-
erning the proton-helium collision system and expand the
total scattering wave function in a basis of orthogonal target-
centered pseudostates with some unknown coefficients. For

the projectile energy of 1 MeV considered in this work, the
p-He ionization problem can safely be considered without
accounting for the electron-capture channels, as at such high
energies the probability of electron transfer is negligible in
comparison with the probability of direct scattering and ion-
ization. (For the case when electron capture is important, the
two-center WP-CCC approach was recently developed and
described in Ref. [29].) After the expansion and the use of
a semiclassical approximation, the Schrödinger equation is
converted to a set of first-order differential equations for the
time-dependent expansion coefficients. This set of equations
is solved by the standard Runge-Kutta method.

The basis of orthogonal target-centered pseudostates is
formed from the combination of eigenstates describing the
active electron of the helium atom and wave-packet pseu-
dostates. Both the eigenstates and the pseudostates are
generated numerically. First, following the configuration-
interaction approach, the helium wave function is expressed as
a linear combination of products of two one-electron orbitals,
where one of the helium electrons is confined to the 1s orbital.
In this way we ensure that the electron-electron correlations
in the target are taken into account in the frozen-core approx-
imation. In the next step, this two-electron wave function is
inserted into the Schrödinger equation for the helium target.
This converts the target Schrödinger equation into an integro-
differential equation for the radial function representing the
state of the second electron. For each state of the active elec-
tron this integro-differential equation is solved numerically
subject to appropriate asymptotic boundary conditions. Some
of the radial functions from this set represent continuum states
of the active electron. These states are not normalizable and
consequently are not suitable for close-coupling calculations.
However, this issue can be resolved using the technique
described in Refs. [21,22], which uses one-electron radial
functions representing continuum states in order to generate
normalizable wave packets. All of these wave packets rep-
resent nonoverlapping subregions of the continuum and are
the integrals of continuum functions over the corresponding
subregion. In constructing the wave packets, it is necessary to
use the same grid for different angular momenta. This ensures
the alignment of the wave-packet pseudostate energies across
different angular momenta and greatly simplifies the FDCS
calculations.

Our aim here is to investigate whether or not the nonper-
turbative close-coupling calculations of high-energy proton-
impact single ionization of helium yield significant correc-
tions to the first Born calculations, especially for the kinemat-
ical regimes beyond the Bethe ridge.

The full scattering amplitude can be calculated from the
scattering wave function �+

i according to [30,31]

Tf i(k f , ki ) = 〈�−
f |←−H − E |�+

i 〉, (1)

where k f and ki are the momenta of the scattered and incident
projectile, respectively, �−

f is the asymptotic wave function
describing the final state, and the arrow over the four-body
Hamiltonian operator H indicates the direction of its action.
As discussed in [21], scattering amplitudes for the transi-
tions into bound states of the target are directly defined by
the transition amplitudes T N

f i (k f , ki ), whereas the scattering
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amplitude for ionization of the active electron with momen-
tum κ contains the overlap between the two-electron wave
packet ψWP

f and the active electron’s continuum functions ϕ f .
Accordingly, the ionization amplitude is written as

Tκi(k f , ki ) = 〈
ϕ f

∣∣ψWP
f

〉
T N

f i (k f , ki )

=
lmax∑
l=0

l∑
m=−l

(−i)l eiσlYlm(κ̂)T N
nlm i(k f , ki )

2πκ
√

wn
, (2)

where the index n corresponds to the bin with width wn, σl is
the phase of the helium continuum function, and κ = κn =√

2En, with En the energy of the wave-packet pseudostate
ψWP

nl . Consequently, both excitation and ionization amplitudes
are obtained upon calculation of the transition matrix elements
T N

f i (k f , ki ), which are related to the impact-parameter space
transition probability amplitudes a f (∞, b) through1

T N
f i (k f , ki ) = 1

2π

∫
db eip⊥b[a f (∞, b) − δ f i]

= eim(ϕ f +π/2)
∫ ∞

0
db b[ã f (∞, b) − δ f i]Jm(q⊥b),

(3)

where q = ki − k f , ã f (t, b) = eimφba f (t, b), and b is the im-
pact parameter.

The FDCS is defined as

d5σ (k f , ki, κ)

dEd�ed� f
= μ2 k f κ

ki
|Tκi(k f , ki )|2. (4)

It describes the ionization process when the projectile is
scattered into a solid angle d� f around the direction � f ,
while the electron of the target is ejected into a solid angle d�e

around the direction �e with energy between Ee and Ee + dEe

in terms of the ionization amplitude. For details regarding the
calculation of the ionization amplitude, see Refs. [21,32]. A
slightly different definition, in terms of the polar angle θe and
azimuthal angle φe instead of the solid angle, reads

d5σ (q f , qi, κ)

dEdθedφed� f
= |sin θe|μ2 q f κ

qi
|Tκi(q f , qi )|2. (5)

We refer to this definition as the FDCS*. A similar definition
is used in Ref. [27]. The authors of [27] note that the FDCS* is
informative about the so-called kinks, effects that are difficult
to see in the measurement. As mentioned in Ref. [27], they
appear due to the asymmetry of the FDCS in the angular re-
gions around the forward and backward directions. However,
the main reason for the kinks in the FDCS* appears to be
the presence of |sin θe| that drags the cross section to zero in
the forward and backward directions. Therefore, they hardly
provide any physical information about the process. Here we
use both FDCS* and the traditional definition of FDCS. The
FDCS* results are presented on a logarithmic scale as in
Ref. [27], whereas the FDCS predictions are presented on a
linear scale. The latter scale clearly highlights the deficiencies
of the FBA models that are not clearly noticeable on the
logarithmic scale.

1Since we work with the full interaction potential, the transition
probability amplitudes include the heavy-particle interaction.

III. RESULTS

Here we present the WP-CCC results for single ionization
of helium by proton impact at 1 MeV at several values
of the momentum transfer and energies of electrons ejected
in the scattering, perpendicular, and azimuthal planes. The
azimuthal plane is defined perpendicular to the incident pro-
jectile momentum, while the perpendicular plane is defined by
the initial projectile momentum and the vector normal to the
scattering plane. We compare our results with the experiment
[27] for the corresponding scattering-plane geometries. The
electron ejection angle θe runs from −180◦ to 180◦ relative to
the incident direction of the projectile in all considered cases,
except for the calculations for the azimuthal plane where the
angle φe runs from −180◦ to 180◦ relative to the x axis.

Figure 1 shows our results for the FDCS* in the scat-
tering plane in comparison with the experimental data and
the FBA calculations of Chuluunbaatar et al. [27] for the
ejected-electron energies Ee = 2.5, 5, 10, and 20 eV and
three projectile scattering angles. The projectile scattering
angles are given by the momentum transfer q = 0.5, 1, and
1.75 a.u. We see good agreement with experiment at all elec-
tron emission angles for every kinematical regime considered
here. Furthermore, in comparison with the FBA results, the
present calculations show better agreement with experiment
in all cases displayed. The largest discrepancy between the
present results and the FBA calculations is observed in the
kinematical regimes that deviate from the Bethe-ridge region
the most. Here the disagreement between the previous theories
and experiment was most significant. Thus coupling between
the channels and multiple-scattering effects significantly im-
prove the agreement with the experiment.

There are kinks in the FDCS* near the forward and
backward directions at q = 0.5 a.u. The latter become more
pronounced as the ejection energy increases. Interestingly, the
simple FBA appears to reproduce them. We note that the FBA
results shown in Fig. 1 are convolved with experimental un-
certainties in ejected-electron energy and momentum transfer
while other two, more sophisticated theories are not. One can
see that convolution somewhat fills the depth of the cross
section leading to better agreement with the experiment. Such
kinks appear also in the WP-CCC calculations, but they do
not match the experimental points. It is noteworthy that for the
ejected-electron energy of 20 eV and momentum transfer q =
0.5 a.u., the more accurate 3C plus Roothaan-Hartree-Fock
results of [27], obtained using a model based on the Roothaan-
Hartree-Fock approximation for the helium ground state and
the 3C wave function for the final channel with inclusion of
postcollisional interactions, are in better agreement with our
present WP-CCC calculations near the forward and backward
directions. The observations made above are easier to see
in Fig. 2, which displays the results from Fig. 1 in a more
traditional form. The experimental results for the FDCS were
obtained from the FDCS* data presented in Ref. [27] by divid-
ing the latter by |sin θe| and a kinematic factor reflecting the
difference between the two definitions of the fully differential
cross section.

The present WP-CCC results also yield better agree-
ment with experiment for the positions of the binary and
recoil peaks. Our results are fully convergent (within the
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FIG. 1. Fully differential cross sections (FDCS*) for single ionization of helium by 1-MeV protons in the scattering plane (φe = 0◦) as
a function of the polar angle of the ejected electron for the electron emission energies and momentum transfers indicated in the legend. The
present WP-CCC predictions (shown by blue solid lines) are compared with the experimental data (red dots with error bars), FBA (green dotted
lines), and 3C (brown dashed lines) calculations by Chuluunbaatar et al. [27]. The FBA results of Chuluunbaatar et al. [27] are convolved with
the experimental uncertainties in ejected energy �Ee and momentum transfer �q. The arrow in each panel indicates the direction of the
momentum transfer.

frozen-core approximation). Therefore, we believe that the
remaining small discrepancy in the peak angles could be due
to the frozen-core approximation used. A multicore approach
may lead to better agreement with the experiment. Recent
studies of the FDCS for this collision system indicate that a
better treatment of the helium structure leads to the improved
agreement with experiment. For instance, Chuluunbaatar et al.
[33] obtained good agreement with experiment [6] for the
recoil peaks in coplanar kinematics and the binary- to recoil-
peak ratio in the case of an accurate, strongly correlated
initial function and the 3C final function describing the system
before and after the collision. At the same time, we have to
mention that the experimental resolution for the considered
values of the momentum transfer is reported to be �q =

±0.15, ±0.25, and ±0.4 a.u. for q = 0.5, 1.0, and 1.75 a.u.,
respectively. Hence, the aforementioned discrepancy is very
close to the experimental uncertainty.

As mentioned earlier, the displayed FBA results of Chu-
luunbaatar et al. [27] are convolved with experimental un-
certainties, whereas our present CCC results are not. Chu-
luunbaatar et al. [27] indicated that the convolution of the
calculated data can shift the position of the binary peak
towards the experiment. However, the change of the position
of their FBA binary peak due to the convolution was found to
be small.

Figure 3 presents our predictions for the FDCS in the
scattering plane for He single ionization by 0.5- and 2.0-MeV
protons, in anticipation of experimental data [34] at these
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FIG. 2. Fully differential cross sections (FDCS) for single ionization of helium by 1-MeV protons in the scattering plane (φe = 0◦) as
a function of the polar angle of the ejected electron for the electron emission energies and momentum transfers indicated in the legend. The
present WP-CCC predictions (shown by blue solid lines) are compared with the experimental data (red dots with error bars), FBA (green dotted
lines), and 3C (brown dashed lines) calculations by Chuluunbaatar et al. [27]. The FBA results of Chuluunbaatar et al. [27] are convolved with
the experimental uncertainties in ejected energy �Ee and momentum transfer �q. The arrow in each panel indicates the direction of the
momentum transfer.

impact energies. One can see that with increasing projectile
energy the position of the binary peak moves towards larger
ejection angles. This is due to the change in the direction of
the momentum transfer. The latter shifts towards larger angles
with increasing projectile energy. For a given momentum
transfer, the binary- to recoil-peak ratio reduces as the ejection
energy increases. The same happens for a fixed ejection
energy as the momentum transfer goes up. As a result, there
is no recoil peak at Ee = 20 eV and q = 1.75 a.u.

Figure 4 shows our predictions for the FDCS in the az-
imuthal plane. Gassert et al. [6] performed FDCS measure-
ments in this plane at 1 MeV for Ee = 6.5 eV and q =

0.75 a.u. The WP-CCC approach described the experiment
[22] well. Here we extend these calculations to 0.5 and 2 MeV
and to the kinematical regimes displayed in Figs. 1–3. As the
ejection energy and momentum transfer increase, the differ-
ence in the FDCS at different collision energies decreases. In
addition, here the binary- to recoil-peak ratio decreases again,
as the ejection energy and momentum transfer increase, until
the recoil peak eventually disappears.

Finally, Fig. 5 exhibits our predictions for the FDCS in
the perpendicular plane. This plane corresponds to the one
used by Schulz in experiments for single ionization of He by
75-keV protons [3] and 100-MeV/amu C6+ ions [2]. Here we
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FIG. 3. WP-CCC calculations for the fully differential cross sections for single ionization of helium by 500-keV (red dotted lines) and
2-MeV (green dot-dashed lines) protons in the scattering plane (φe = 0◦) as a function of the polar angle of the ejected electron for the electron
emission energies and momentum transfers indicated in the legend. The arrow in each panel indicates the direction of the momentum transfer.

present calculations for the same kinematical regimes as used
in Figs. 1–4. The FDCS in this plane is significantly smaller
than the FDCS in the other two planes considered. Notably,
we see two peaks, one in the forward direction and the other in
the backward direction, in all kinematic regimes considered.
This is consistent with our earlier calculations for the C6+-He
system. However, according to the measurements by Schulz
et al. [2], the C6+-He FDCS peaks at θe = ±90◦. Gassert et al.
[6] attempted to shed light onto this subject by performing
the aforementioned experiments with 1-MeV protons in the
scattering and azimuthal planes. However, without experi-
ments specifically designed for the perpendicular plane, the
question “whether this disagreement between theory and ex-
periment is due to fundamental reasons that indicate a general
problem in the field of ion-atom collisions” [6] will remain
open.

IV. CONCLUSION

The wave-packet convergent close-coupling method was
applied to calculate the fully differential cross section for
proton-induced single ionization of the helium ground state at
incident projectile energies of 0.5, 1, and 2 MeV in the scat-
tering, perpendicular, and azimuthal planes. Generally very
good agreement with recent experimental data was obtained at
1 MeV for all considered kinematical regimes in the scattering
plane. The advantage of the present WP-CCC approach results
over the FBA-type ones is particularly pronounced for the
kinematical regimes that are further away from the Bethe-
ridge region. The obtained results show that the coupling be-
tween channels and multiple-scattering effects are important
and improve the agreement between theory and experiment,
especially for the position of the recoil peak.

062708-6



FULLY DIFFERENTIAL CROSS SECTIONS FOR SINGLE … PHYSICAL REVIEW A 100, 062708 (2019)

0

20

40

60

80

100
(a) Ee = 2.5 eV

q = 0.5 a.u.

0

20

40

60

80 (b) Ee = 5 eV
q = 0.5 a.u.

0

10

20

30

40

50

60 (c) Ee = 10 eV
q = 0.5 a.u.

0

10

20

30

−180◦−120◦ −60◦ 0◦ 60◦ 120◦ 180◦

(d) Ee = 20 eV
q = 0.5 a.u.

0

5

10

15
(e) Ee = 2.5 eV

q = 1 a.u.

0

5

10

15

(f) Ee = 5 eV
q = 1 a.u.

20

0

5

10

15

(g) Ee = 10 eV
q = 1 a.u.

0

5

10

15

−180◦−120◦ −60◦ 0◦ 60◦ 120◦ 180◦

(h) Ee = 20 eV
q = 1 a.u.

0.0

0.2

0.4

0.6

0.8 (i) Ee = 2.5 eV
q = 1.75 a.u.

0.0

0.2

0.4

0.6

0.8

1.0

1.2 (j) Ee = 5 eV
q = 1.75 a.u.

0.0

0.5

1.0

1.5

2.0
(k) Ee = 10 eV

q = 1.75 a.u.

0.0

1.0

2.0

3.0

4.0

−180◦−120◦ −60◦ 0◦ 60◦ 120◦ 180◦

(l) Ee = 20 eV
q = 1.75 a.u.

F
D

C
S

(1
05

a.
u.

)
F
D

C
S

(1
05

a.
u.

)
F
D

C
S

(1
05

a.
u.

)
F
D

C
S

(1
05

a.
u.

)

electron emission angle, φe (deg) electron emission angle, φe (deg) electron emission angle, φe (deg)

FIG. 4. WP-CCC results for the fully differential cross sections for single ionization of helium by 500-keV (red dotted lines), 1-MeV (blue
solid lines), and 2-MeV (green dot-dashed lines) protons in the azimuthal plane (θe = 90◦) as a function of the azimuthal angle of the ejected
electron for the electron emission energies and momentum transfers indicated in the legend.

We neglected channels representing the possible capture
of the electron by the projectile. However, it is unlikely that
accounting for these channels would significantly change the
present results. At high energies the probability of electron
capture into the bound states and the continuum of the pro-
jectile is negligible. The calculations can be further improved
by refining the description of the target structure by allowing
core-electron excitations. However, this improvement is not
expected to change the physics of the ionization process
significantly.

The next challenge is the intermediate energy region,
where the disagreement between theory and experiment is
substantial. As mentioned earlier, at 75 keV for the FDCS
describing the single ionization of helium in the perpendicu-
lar plane, qualitative and quantitative discrepancies between

experiment [3] and theory remain (see Ref. [26] and ref-
erences therein). This is the energy region where electron
transfer is the dominant channel. Accordingly, the probability
of electron capture into the bound states and continuum of the
projectile cannot be neglected. The recently developed two-
center WP-CCC approach [29] may shed some light onto the
situation. We note that calculations of the doubly differential
cross sections for proton-impact ionization of hydrogen at
75 keV using the two-center WP-CCC approach [35] gave
good agreement with experiment for all ejected-electron ener-
gies where data are available. The convergent close-coupling
method was also succesfully applied to calculate the FDCS for
ionization of helium by electron impact [36] for the full range
of kinematics and collision geometries of practical interest,
including the out-of-plane geometries.
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