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Phonon contribution in grazing-incidence fast atom diffraction from insulator surfaces
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We study the effect of crystal lattice vibrations on grazing-incidence fast atom diffraction (GIFAD) from
insulator surfaces. To describe the phonon contribution to GIFAD we introduce a semiquantum method named
phonon-surface initial value representation (P-SIVR), which represents the surface with a harmonic-crystal
model, while the scattering process is described by means of the surface initial value representation approach,
including phonon excitations. Expressions for the partial scattering probabilities involving zero- and one-phonon
exchange are derived. In particular, the P-SIVR approach for zero-phonon scattering is applied to study the
influence of thermal lattice vibrations on GIFAD patterns for Ne/LiF(001) at room temperature. It is found that
the thermal lattice fluctuations introduce a polar-angle spread into the projectile distributions, which can affect
the relative intensities of the interference maxima, even giving rise to interference subpatterns depending on the
incidence conditions. Present results are in agreement with the available experiments.
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I. INTRODUCTION

Like in any interference phenomenon, in grazing-incidence
fast atom diffraction (GIFAD or FAD) from ordered surfaces,
the observation of interference patterns depends on the coher-
ence conditions [1–3]. In this regard, since the early reports
of GIFAD [4,5] thermal lattice vibrations were suspected
of deteriorating the coherence, making the observation of
interference structures completely unexpected [6,7]. This was
based on the fact that in typical GIFAD experiments the de
Broglie wavelengths of the projectiles are much smaller than
the mean thermal fluctuations of the surface atoms, which
would suggest a strong coherence loss. However, over the last
decade GIFAD was observed for a wide variety of materials
at room temperature [8–15], indicating that the quantum inter-
ference prevails over the decoherence mechanisms. Moreover,
GIFAD patterns were found to be extremely sensitive to the
projectile-surface interaction, allowing the determination of
surface parameters smaller than the thermal vibration ampli-
tudes, such as rumpling [16] or corrugation [17] distances.

From a theoretical point of view, in spite of the above-
mentioned features, most of the GIFAD models [18–21] con-
sider an ideal and static crystal surface, with atoms or ions
at rest at their equilibrium positions. On the other hand, few
articles deal with the decoherence introduced in GIFAD by
lattice vibrations [6,7,16,22,23], so this issue represents a
problem not fully understood yet.

In this paper we study the effect of lattice vibrations, i.e.,
phonons, on GIFAD distributions from insulator surfaces.
This kind of surface is a good candidate to investigate the par-
tial decoherence introduced by phonons, because the presence
of a wide band gap strongly suppresses the electronic excita-
tions of the target, causing the main source of decoherence
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to come from the vibrational movements of the surface atoms
[24,25].

With a view to describe the collision with a realistic crystal
that enables phonon transitions, we develop a semiquantum
method named the phonon-surface initial value representation
(P-SIVR) approximation. It is based on the previous SIVR
approach for elastic scattering from a rigid surface [20], which
was successfully employed to describe experimental GIFAD
patterns for different collision systems [3,26–28]. The basic
idea of the P-SIVR method is to incorporate a quantum
representation of the surface, given by the harmonic-crystal
model [29], making possible a description of the phonon
effects involved in the GIFAD process.

Within the P-SIVR approximation, the scattering proba-
bility can be expressed as a series in terms of the number n
of phonons emitted or absorbed during the collision. Each
term of the series, named here the Pn-SIVR probability, is
associated with the grazing scattering involving the exchange
of n phonons. Mathematical formulas for the Pn-SIVR proba-
bilities corresponding to n = 0 and n = 1 exchanged phonons
are presented.

In this work the P0-SIVR approach for zero-phonon scat-
tering is applied to study the influence of thermal lattice vi-
brations on GIFAD patterns for Ne/LiF(001) at room temper-
ature. With the aim of examining the thermal contribution, P0-
SIVR results for different incidence conditions are compared
with values derived from the SIVR approach for the static
surface. In all the considered cases, it is found that the thermal
lattice vibrations contribute to the polar-angle spread of the
projectile distributions, in accord with previous predictions
[7]. Furthermore, depending on the incidence conditions, such
thermal fluctuations can affect the relative intensity of the in-
terference peaks, even introducing an interference subpattern,
as it is observed at a high normal energy. We show that present
P0-SIVR results are in very good agreement with the available
experimental data [30]. In addition, results from an incoherent
model to include thermal lattice vibrations are analyzed.
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The article is organized as follows. The P-SIVR approach
is summarized in Sec. II, while details about its derivation are
given in the Appendix. Results are presented and discussed in
Sec. III, and in Sec. IV we outline our conclusions. Atomic
units (a.u.) are used unless otherwise stated.

II. THEORETICAL MODEL

The P-SIVR approximation can be considered as a natural
extension of the SIVR approach [20] to incorporate phonon
effects into the GIFAD description. Summarizing, within the
P-SIVR approximation the atom-surface scattering probabil-
ity corresponding to the transition Ki → K f , with Ki (K f )
being the initial (final) projectile momentum, is evaluated by
adding the partial contributions coming from the different ini-
tial and final crystal states, which are derived from a quantum
harmonic-crystal model [29]. The result is then expanded in
terms of the number n of phonons that are exchanged with
the crystal, giving rise to a series of Pn -SIVR probabilities
associated with n-phonon scattering. In this section we present
mathematical expressions of the Pn-SIVR probability for n =
0 and n = 1, while the general formula for a given value of n,
as well as the steps involved in its derivation, are given in the
Appendix.

The P0-SIVR probability for the transition Ki → K f with-
out phonon exchange, which corresponds to the elastic scat-
tering with Kf = Ki, can be expressed as

dP0

dK f
= ∣∣Anph=0

∣∣2
, (1)

while the P1-SIVR probability for one-phonon scattering
reads

dP1

dK f
=

∑
k,l

[
Nl (k)

ωl (k)

∣∣Anph=−1(k, l )
∣∣2

+Nl (k) + 1

ωl (k)

∣∣Anph=+1(k, l )
∣∣2

]
, (2)

where Anph is the effective transition amplitude for scattering
involving nph = ± n phonons emitted (nph = −n) or absorbed
(nph = +n) by the crystal. In Eq. (2) the sum runs over all
the normal modes of the crystal, with ωl (k) being the phonon
frequency in the branch l , with the wave vector k. The fac-
tor Nl (k) = (exp [ωl (k)/(kBT )] − 1)−1 is the Bose-Einstein
occupation function for (k, l ) phonons in a crystal target at
temperature T , with kB being the Boltzmann constant.

In Eqs. (1) and (2), the effective transition amplitude
Anph (k, l ) reads

Anph (k, l ) =
∫

dRo f (Ro)
∫

dKo g(Ko)

×
∫

duo a(k,l )
nph

(Ro, Ko, uo), (3)

where the function f (g) describes the position (momentum)
profile of the incident wave packet and

a(k,l )
nph

(Ro, Ko, uo) =
∫ +∞

0
dt |JP(t )|1/2eiνt π/2 V (k,l )

n (Rt )

× exp[i(ϕt − Q · Ro + nphωl (k)t )] (4)

represents the partial amplitude associated with the classical
projectile trajectory Rt ≡ Rt (Ro, Ko, uo), which starts at the
position Ro with momentum Ko and is determined by the
spatial configuration uo of the crystal at the initial time t = 0.
That is, the underlined vector uo denotes the 3N-dimension
vector associated with the spatial deviations of the N ions con-
tained in the crystal sample, with respect to their equilibrium
positions, at t = 0 [29].

In Eq. (4), JP(t ) = |JP(t )| exp(iνtπ ) is the Jacobian factor
given by Eq. (A10), ϕt is the SIVR phase at the time t
[Eq. (A14)], and Q = K f − Ki is the projectile momentum
transfer. The function V (k,l )

n (Rt ) is a crystal factor that depends
on the number n of exchanged phonons. For zero-phonon scat-
tering, V (k,l )

0 (Rt ) is independent of (k, l ) and can be expressed
as

V0(Rt ) =
∫

dq
∑

rB

ṽrB (q)exp
[ − WrB (q)

]
× exp[iq · (Rt − rB)], (5)

where ṽrB (q) denotes the Fourier transform of the binary
interaction between the projectile and the crystal ion placed
at the Bravais position rB, with vrB coming from Eq. (A16).
The summation on rB covers all the occupied lattice sites,
and WrB (q) is the usual momentum-dependent Debye-Waller
function, defined by Eq. (A21).

For one-phonon scattering, instead, V (k,l )
1 (Rt ) depends on

(k, l ), reading

V (k,l )
1 (Rt ) =

∫
dq [q · αl (k)]

∑
rB

ṽrB (q)exp
[ − WrB (q)

]
× exp[iq · Rt+i(k − q) · rB], (6)

where αl (k) is the polarization vector corresponding to the
(k, l ) phonon.

From Eq. (5) it can be noted that in the absence of the
Debye-Waller factor, exp[−WrB (q)], V0(Rt ) coincides with
the projectile-surface potential for an ideal crystal, given
by Eq. (A16) with u = 0. Therefore, within the P0-SIVR
approach the contribution of the thermal lattice vibrations
can be seen as an effective screening of the projectile-surface
interaction, given by the Debye-Waller factor, in addition to
the thermal effect on the projectile trajectories that is produced
by the different crystal configurations uo.

III. RESULTS

In this article we investigate the influence of the thermal
lattice vibrations on GIFAD patterns produced by 20Ne atoms
grazingly colliding with a LiF(001) surface at room temper-
ature. Incidence along the 〈110〉 direction, for which exper-
imental spectra were reported [30], is analyzed. Concerning
the atomic projectile, the relatively large mass of neon is ex-
pected to play some role in inelastic processes such as phonon
excitations [23,24]. However, we confine our study to the
P0-SIVR approach, corresponding to zero-phonon scattering,
leaving the investigation of one-phonon excitations, as given
by Eq. (2), for a future work.
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The P0-SIVR probability for scattering in the direction of
the solid angle � f = (θ f , ϕ f ) was derived from Eq. (1) as

dP0/d� f = K2
f

∣∣Anph=0

∣∣2
, (7)

where θ f is the final polar angle, measured with respect to
the surface, and ϕ f is the azimuthal angle, measured with
respect to the axial channel. The transition amplitude Anph=0

was calculated from Eq. (3), where the integration on Ro

was reduced to the plane parallel to the surface, Ro‖, by
considering that at t = 0 all classical trajectories start at a
fixed distance Zo from the surface, chosen as equal to the
lattice constant, for which the projectile is hardly affected
by the surface interaction [3,20]. In turn, the integral on Ko

was solved in terms of the solid angle �o = (θo, ϕo) that
determines the Ko orientation, with Ko = Ki accounting for
the negligible energy dispersion of the incident beam [2,3].
In Eq. (3), the wave-packet profiles f (Ro‖) and g(�o) were
represented by products of Gaussian functions as respectively
given by Eqs. (12) and (14) of Ref. [3]. The widths of these
profiles depend on the collimating setup and the incidence
conditions [3,31]. However, in this work we have used fixed
values for such dispersion widths in order to control their
influence on the GIFAD patterns. Specifically, in Secs. III A
and III B the angular widths were chosen as 	θo = 	ϕo =
0.03 deg, values that are in the range of the experimental
conditions [30].

The projectile-surface interaction was described with the
pairwise additive model of Ref. [32]. In addition, the integral
on uo involved in Eq. (3) was evaluated by considering
that each crystal ion is randomly displaced from its equilib-
rium position following an independent Gaussian distribution,
with a mean-square vibrational amplitude 〈u(rB)2〉. For the
LiF(001) target at temperature T = 300 K, the 〈u(rB)2〉 values
were extracted from Ref. [16] by taking into account the
differences between Li and F ions and between bulk and
surface (topmost layer) sites. Note that while in Ref. [16]
thermal effects were included as an additional negative cor-
rugation of the atom-surface potential, derived by averaging
the interaction potential over randomly displaced positions
of the crystal ions, within the P-SIVR approach such dis-
placed ion positions participate in the projectile dynamics
as well as in the effective screening of the potential along
the projectile path, as given by the Debye-Waller factor
in Eq. (5).

For the calculation of V0(Rt ) [Eq. (5)], the Debye-
Waller function was approximated as WrB (q) � q2〈u(rB)2〉/2
[22,29]. This assumption allowed us to transform the q-
integral involved in Eq. (5) into a space integral, which was
solved together with the Ro‖, �o, and uo integrals of Eq. (3)
by employing the Monte Carlo technique, with more than
6 × 106 points for each incidence condition. Furthermore, for
each integration point the time integral involved in Eq. (4)
was numerically solved by using an adaptive-stepsize method,
with an error lower than 1%. In this respect, the incorporation
of uo into the evaluation of the projectile trajectories leads to
strongly increase the numerical effort necessary to reach the
convergency of the Monte Carlo integration, in relation to that
required within the SIVR approach [20].
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FIG. 1. Two-dimensional projectile distributions as a function of
θ f and ϕ f for Ne atoms impinging on LiF(001) along the 〈110〉
channel, with E = 3.0 keV and θi = 0.47 deg. Results derived within
(a) the SIVR approximation for a static crystal and (b) the P0-SIVR
approach, including thermal vibrations, are displayed.

A. Thermal influence on GIFAD patterns

In Fig. 1 we show SIVR and P0-SIVR two-dimensional
(2D) distributions as a function of the final angles θ f and
ϕ f , for Ne atoms impinging with the kinetic energy E =
K2

i /(2mP ) = 3.0 keV, mP being the projectile mass, and the
incidence angle θi = 0.47 deg, measured with respect to the
surface plane. Results for zero-phonon scattering derived
within the P0-SIVR approximation, displayed in the right
panel of Fig. 1, include the phonon contribution, while the
SIVR distribution, shown in the left panel, was obtained by
considering a static LiF crystal, with its ions at rest at their
equilibrium positions [20]. Within both approaches, the width
of the spatial profile f (Ro‖) was chosen to cover two equiv-
alent parallel channels, which gives rise to Bragg maxima
produced by interchannel interference [3].

In Figs. 1(a) and 1(b) the Bragg maxima look like vertical
strips placed inside an annulus with mean radius θi due to the
energy conservation. Even though the SIVR and P0-SIVR dis-
tributions of Fig. 1 display qualitatively similar interference
patterns, with almost the same ϕ f extension of the spectrum,
the relative intensities of the interference maxima, as well as
the θ f angular spreads, predicted by the two approximations
differ from each other, these discrepancies being indicative of
the effect of the thermal lattice vibrations.

To look with more detail into the projectile distributions
of Fig. 1, in Fig. 2 we plot the corresponding dP0/d
 f

probabilities as a function of the deflection angle 
 f =
arctan(ϕ f /θ f ). These differential probabilities were obtained
by integrating Eq. (7) over a reduced annulus of mean radius
θi and central thickness 0.03 deg, as it is usually done to derive
the experimental projected intensities [33,34]. From Fig. 2
we observe that the angular positions of the Bragg peaks
(indicated with vertical lines in the inset) are not affected
by the thermal vibrations, coinciding for the P0-SIVR and
SIVR approximations. Instead, the relative intensities of the
Bragg maxima are strongly modified by the contribution of
the thermal fluctuations included in the P0-SIVR approach,
which can increase or reduce the SIVR intensity of a given
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FIG. 2. Differential probability as a function of the deflection
angle 
 f for the case of Fig. 1. Red solid line, zero-phonon scattering
probability derived within the P0-SIVR approach; blue dashed line,
SIVR probability for a static crystal. The inset displays a zoomed
view of the central region of the spectrum. Dashed vertical lines
indicate Bragg-peak positions.

Bragg order, as shown in the inset of Fig. 2. Hence, since
the use of GIFAD for surface analysis is commonly based on
the comparison of the relative intensities of the interference
maxima with theoretical models, these results suggest that the
thermal vibrations might play an important role in the GIFAD
technique.

At this point, it is important to take into account that
the Bragg-peak intensities are determined by an intrachannel
factor due to the interference inside a single channel, which
acts as an enveloped function of the interchannel interference
[20]. Therefore, for the purpose of analyzing the influence
of lattice vibrations on the Bragg intensities under different
incidence conditions, hereinafter we restrict our study to pure
intrachannel spectra, which are produced by initial wave-
packet profiles covering a transverse distance equal to the
channel width [31].

B. Thermal effects in the intrachannel interference

GIFAD distributions due to a single coherently illumi-
nated channel are governed by the normal incidence energy,
E⊥ = E sin2 θi, which is associated with the projectile motion
perpendicular to the surface plane [33,35]. In Fig. 3 we display
P0-SIVR and SIVR intrachannel spectra as a function of
the azimuthal angle ϕ f , for E = 1.3 keV and E⊥ = 0.30 eV.
Notice that this normal energy is barely lower than the upper
E⊥ limit of available GIFAD experiments for Ne/LiF(001)
[30]. Both curves of Fig. 3 display equivalent interference
patterns, with rainbow and supernumerary rainbow maxima.
While the rainbow peaks corresponding to the high-intensity
outermost maxima have a classical origin, the supernumerary
peaks are produced by quantum interference, being expected
to be more affected by thermal fluctuations than the rainbow,
which is confirmed in Fig. 3.

The P0-SIVR spectrum of Fig. 3 presents a small angular
shift in the positions of the central supernumeraries with
respect to those corresponding to the SIVR curve. But in
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FIG. 3. Intrachannel distribution as a function of the final az-
imuthal angle ϕ f for E = 1.3 keV and the normal energy E⊥ =
0.30 eV. Lines analogous to Fig. 2. Inset: Zoomed view of the central
region.

addition, it is observed that the thermal vibrations included in
the P0-SIVR approach affect the shape and relative intensity
of the supernumerary peaks, especially in the central region
of the spectrum where a noticeable double-peak structure is
clearly visible in each supernumerary maxima (see the inset of
Fig. 3). Remarkably, this interference subpattern that appears
as a superimposed structure on the P0-SIVR supernumeraries
is mainly produced by the effect of the thermal deviations uo
on the projectile trajectories. When the Rt dependence on uo
is left aside, results derived from Eq. (1) by considering an
ideal and static crystal, but keeping the factor exp [−WrB (q)]
in Eq. (5), fully agree with the SIVR values, indicating that the
Debye-Waller factor plays a minor role in the elastic scattering
at room temperature.

To understand the origin of the interference subpatterns ob-
served in Fig. 3, the corresponding 2D angular distributions,
as a function of θ f and ϕ f , are plotted in Fig. 4. In Fig. 4(a)
the SIVR distribution for the static crystal displays broad in-
terference maxima, which lay on an annulus whose thickness

(a) (b)

FIG. 4. Analogous to Fig. 1 for the case of Fig. 3, i.e., E =
1.3 keV and E⊥ = 0.30 eV.
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FIG. 5. Angular distribution as a function of the deflection angle

 f for the incidence energy E = 1.3 keV and angle θi = 0.55 deg,
i.e., E⊥ = 0.12 eV. Lines, analogous to Fig. 2; gray solid circles,
experimental data from Ref. [30].

is essentially determined by the polar-angle dispersion 	θo of
the atomic beam [3,36]. Instead, in Fig. 4(b) the thermal lattice
vibrations introduce an additional polar-angle spread into the
P0-SIVR distribution, transforming the SIVR interference
spots into vertical strips. The emergence of a polar-angle
broadening as a consequence of thermal fluctuations was
already proposed in Ref. [7]. Furthermore, it is found that
the thermal vibrations give rise to an interference structure
in the P0-SIVR distribution along θ f , which is more evident
around ϕ f ≈ 0. Then the double-peak shape of the internal
P0-SIVR maxima of Fig. 3 corresponds to the projected image
on ϕ f of such a vertical pattern [7], which is produced by
the interference among projectiles running nearly on top of
thermally shifted Li and F rows [16].

C. Experimental comparison

In order to test the reliability of the proposed model, in
Fig. 5 we contrast P0-SIVR and SIVR differential probabili-
ties as a function of the deflection angle 
 f , with the available
experimental spectrum [30] for the incidence conditions E =
1.3 keV and θi = 0.55 deg, which correspond to the normal
energy E⊥ = 0.12 eV. Like in the previous section, in this case
the theoretical and experimental distributions display only su-
pernumerary peaks associated with intrachannel interference,
without any trace of Bragg interference.

In Fig. 5, the P0-SIVR spectrum is very similar to that
for a static crystal derived by means of the SIVR approach,
both showing a very good agreement with the experimental
data. This behavior, together with the absence of interference
substructures in the P0-SIVR supernumeraries, might indicate
that the thermal contribution on GIFAD patterns becomes
smaller as E⊥ decreases, since the atomic projectiles move
farther from the surface plane.

However, notice that the 
 f spectra displayed in Fig. 5
were also obtained by integrating the corresponding 2D an-
gular distributions, shown in Fig. 6, inside an annulus of
central thickness 0.03 deg [30,34]. When the distributions

(a) (b)

FIG. 6. Analogous to Fig. 1 for the case of Fig. 5, i.e., E =
1.3 keV and E⊥ = 0.12 eV.

of Figs. 6(a) and 6(b) are compared, it is found that even
though for this low perpendicular energy there are no visible
signatures of interference substructures, the thermal motion of
the crystal ions still introduces a wide polar-angle dispersion
in the P0-SIVR distribution. It gives rise to a P0-SIVR pattern
formed by elongated vertical streaks instead of the nearly
circular spots of the SIVR distribution, a feature that it is also
observed in the experimental data of Fig. 1(a) of Ref. [30].
By quantitatively contrasting this experimental distribution
with that displayed in Fig. 6(b) we determine that the thermal
effects included in the P0-SIVR approximation can explain
about 60% of the experimental polar-angle spread. This sug-
gests that there might be further mechanisms contributing to
the θ f dispersion of the GIFAD patterns, such as inelastic pro-
cesses involving phonon transitions or the presence of crystal
defects. Also, the collimating conditions of the atomic beam
affect the polar-angle distribution, whose extension depends
on the length of the collimating slit [3,36].

D. Incoherent thermal vibrations

Lastly, we investigate the role of the coherent thermal
contribution involved in the present approach by comparing
the P0-SIVR results with thermally incoherent probabilities
derived from the SIVR approach. Such an incoherent cal-
culation was done by averaging the SIVR probability, i.e.,
the square modulus of the SIVR transition amplitude [20],
for different configurations uo of the crystal target, where
the crystal ions are randomly displaced from their equilib-
rium positions following Gaussian distributions, as considered
within the P0-SIVR model. In Fig. 7 we plot the thermally
incoherent SIVR distribution as a function of θ f and ϕ f

for the case of Fig. 4 corresponding to the normal energy
E⊥ = 0.30 eV. By contrasting Figs. 4(b) and 7 we found
that the incoherent addition of thermal effects destroys the
interference subpattern observed in the central region of the
P0-SIVR distribution of Fig. 4(b). Moreover, the thermally
incoherent approach introduces a significant broadening of
the supernumerary maxima along ϕ f , while the θ f dispersion
is similar to that displayed by the P0-SIVR distribution.
Although there is no available experimental distribution for
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FIG. 7. Two-dimensional projectile distribution as a function of
θ f and ϕ f evaluated with the thermally incoherent SIVR model, as
explained in the text. Results for the case of Fig. 4, corresponding to
E⊥ = 0.30 eV, are displayed.

this case, an analogous calculation for the case of Fig. 6
shows that this noticeable ϕ f widening of the interference
peaks associated with the incoherent thermal contribution
does not agree with the reported experiments [30]. Therefore,
the thermally incoherent SIVR approximation [32] seems to
be unsuitable to reproduce thermal effects on GIFAD patterns.

IV. CONCLUSIONS

We have developed the P-SIVR approximation, which is a
semiquantum method that takes into account the contribution
of the vibrational modes of the crystal to the GIFAD patterns.
The P-SIVR probability was expressed as a sum of partial
scattering probabilities, Pn-SIVR, each of them involving
the exchange of a different number n of phonons. Formulas
for the probabilities corresponding to zero- and one-phonon
scattering have been presented.

The P0-SIVR approach for zero-phonon scattering was
employed to investigate the effect of thermal lattice vibrations
on GIFAD distributions for the Ne/LiF(001) system. At room
temperature it was found that, depending on the incidence
conditions, the relative intensities of the Bragg peaks can be
affected by the thermal fluctuations of the LiF(001) crystal.
Within the P0-SIVR model, the thermal vibrations introduce
a polar-angle dispersion into the angular distributions which
contribute to transform the interference spots into elongated
structures, in concordance with the experimental observations
[30]. For high normal energies, such a polar-angle spread can
also alter the shape of the supernumerary maxima, giving rise
to the appearance of interference subpatterns in the central
region of the GIFAD spectra.

In conclusion, the present P0-SIVR results demonstrate
that thermal vibrations affect the aspect of the GIFAD patterns
from insulator surfaces, a finding that is especially relevant for
the use of GIFAD as a surface analysis technique. But notice
that there are other effects, such as phonon excitations [22,23]
or the presence of terraces in the crystal sample [37], not
considered in this article which can modify the interference
structures too. Therefore, further experimental and theoretical

work to investigate the different decoherence mechanisms in
GIFAD would be valuable.
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APPENDIX: P-SIVR MODEL FOR GRAZING
ATOM-SURFACE SCATTERING

WITH PHONON EXCHANGE

In this Appendix we explain the steps and assumptions
that lead to the P-SIVR approximation for GIFAD from an
insulator target. Let us consider an atomic projectile (P), with
initial momentum Ki, which is scattered from a crystal surface
(S), ending in a final state with momentum K f . The scattering
state of the projectile-surface system at time t , |�i(t )〉, is
governed by the time-dependent Schrödinger equation:[

P2
P

2mP
+ HS + VPS

]
|�i(t )〉 = i

d

dt
|�i(t )〉, (A1)

where PP denotes the momentum operator of the projectile
with mass mP, HS is the unperturbed surface Hamiltonian,
and VPS is the perturbation produced by the projectile-surface
interaction. The Hamiltonian HS reads

HS =
∑

rB

P2(rB)

2m(rB)
+ WS (u), (A2)

where the sum runs over the positions rB of the occupied Bra-
vais lattice sites. In Eq. (A2) P(rB) indicates the momentum
operator of the crystal ion that oscillates about rB and m(rB)
is its mass, with m(rB) = m1 or m2 to include two different
ions in the crystallographic basis. The potential WS (u) repre-
sents the potential energy of the crystal as a function of the
multidimensional vector u, which is determined by the spatial
deviations u(rB) of the crystal ions from their equilibrium
positions rB, for all the occupied lattice sites [29].

As the initial condition, at t = 0, when the projectile is far
away from the surface, the scattering state |�i(t )〉 tends to the
state |χi(0)〉, where

χ j (t ) = eiK j ·RPφ j (u) exp(−iE jt ), j = i( f ) (A3)

is the initial (final) unperturbed wave function with total
energy

Ej = K2
j /(2mP ) + ε j, j = i( f ), (A4)

which satisfies the energy conservation, i.e., Ei = E f . In
Eq. (A3), RP is the position vector of the center of mass of
the incident atom, and the wave function φ j (u), for j = i( f ),
is the initial (final) eigenstate of HS with eigenvalue ε j .

By considering that the surface behaves like a harmonic
crystal, HS can be expressed as a sum of independent
harmonic-oscillator Hamiltonians, each of them correspond-
ing to a different normal mode of the lattice, with wave vector
k, frequency ωl (k), and l denoting the phonon branch. Hence,
the unperturbed crystal state φ j for j = i, f is determined
by the excitation numbers n( j)

k,l of the normal modes, and the
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corresponding crystal energy reads

ε j =
∑
k,l

ωl (k)

[
n( j)

k,l + 1

2

]
, j = i, f , (A5)

where the sum runs over all the (k, l ) normal modes of the
crystal [29].

1. P-SIVR scattering state

Within the P-SIVR method, the scattering state |�i(t )〉
is approximated by means of the IVR method [38]. It is
expressed as

∣∣� (P−SIVR)
i (t )

〉 =
∫

dRo f (Ro)
∫

dKo g(Ko)

×
∫

duo

∫
dp

o
[J (t )]1/2 exp(iKi · Ro)

× exp(iSt )φi(uo)|Rt 〉 ⊗ ∣∣ut

〉
, (A6)

where the position ket |Rt 〉 is associated with the time-evolved
position Rt of the incident atom at a given time t , which
is derived by considering a classical trajectory with starting
position and momentum Ro and Ko, respectively. In a similar
way, the deviation ket |ut 〉 is determined from the classical
deviations ut (rB) of all the crystal ions, starting at t = 0 from
initial deviations and momenta uo(rB) and po(rB), respec-
tively. In Eq. (A6), uo (p

o
) denotes the 3N-dimension vector

determined by such deviations (momenta) for the N ions
contained in the crystal target. In fact, note that we are dealing
with a many-particle problem in which the classical motions
of the projectile and the crystal ions are related through their
mutual interactions. Consequently, the classical trajectories Rt

and ut (rB), for the different rB values, depend on the initial
positions and momenta of all the particles in the system.

Furthermore, in Eq. (A6) the functions f (Ro) and g(Ko)
describe the shape of the position and momentum wave packet
associated with the incident projectile, while St represents the
classical action along the trajectory, reading

St =
∫ t

0
dt ′

[
K2

t ′

2mP
− VPS(Rt ′ , ut ′ )

+
∑

rB

p2
t ′ (rB)

2m(rB)
− WS (ut ′ )

]
, (A7)

where Kt = mPdRt/dt and pt (rB) = m(rB)dut (rB)/dt are
the classical projectile and crystal ion momenta, respectively,
at the time t . The Jacobian factor

J (t ) = det

[
∂Rt∂ut

∂Ko∂p
o

]
(A8)

is a determinant evaluated along the classical path, which
takes into account the motions of the projectile and all the
crystal ions. This Jacobian factor can be related to the Maslov
index [39] by expressing it as J (t ) = |J (t )| exp(iνtπ ), where
|J (t )| is the modulus of J (t ) and νt is an integer number that
increases by 1 every time that J (t ) changes its sign along the
time.

2. P-SIVR transition amplitude

By using the P-SIVR scattering state, given by Eq. (A6),
within the framework of the time-dependent distorted-wave
formalism [40], the P-SIVR transition amplitude reads

A(P−SIVR) = −i
∫ +∞

0
dt〈χ f (t )|VPS

∣∣� (P−SIVR)
i (t )

〉
. (A9)

For the evaluation of Eq. (A9) a meaningful simplification can
be obtained by considering that in GIFAD the interaction time
of the projectile with the crystal surface is much shorter than
the characteristic time of phonon vibrations [29]. Therefore,
we can assume that the crystal ions remain at their initial
positions uo(rB) during the collision, leading to

J (t ) ≈ JP(t ) = det

[
∂Rt

∂Ko

]
. (A10)

Then, by introducing the closure relation for the initial devia-
tions of the crystal ions, the P-SIVR transition amplitude can
be expressed, except for a normalization factor, as

A(P−SIVR) ≡ A[aif ] =
∫

dRo f (Ro)
∫

dKo g(Ko)

×
∫

duo aif , (A11)

where

aif =
∫ +∞

0
dt |JP(t )|1/2eiνt π/2 F (c)

if (Rt , t )

× exp [i(ϕt − Q · Ro)] (A12)

is the partial amplitude associated with the classical path
Rt ≡ Rt (Ro, Ko, uo), which was derived by assuming that the
initial deviations uo are decoupled from φi(u). In Eq. (A12),
the function F (c)

if is defined as

F (c)
if (Rt , t ) = 〈� f (t )|VPS(Rt , u)|�i(t )〉, (A13)

where � j (t ) = φ j (u) exp(−iε jt ) for j = i, f , Q = K f − Ki,
and

ϕt =
∫ t

0
dt ′

[
(K f − Kt ′ )2

2mP
− VPS(Rt ′ , uo)

]
(A14)

is the SIVR phase at the time t [20]. By contrasting Eq. (A12)
with the SIVR partial amplitude for a static surface, given by
Eq. (6) from Ref. [3], notice that, apart from the dependence
of Rt and ϕt on uo, the P0-SIVR partial amplitude differs
from the SIVR one by the substitution of the projectile-
surface potential by the crystal factor F (c)

if , which is related to
the first-order Born amplitude for the crystal-state transition
|φi〉 → |φ f 〉.

3. P-SIVR differential probability

The P-SIVR differential probability for scattering with
final momentum K f , from a crystal surface in the initial state
|φi〉, is obtained from Eq. (A11) as

dP(P−SIVR)
i

dK f
=

∑
f ′

|A[aif ′]|2, (A15)
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where the sum over f ′ involves the addition of all the final
crystal states |φ f ′ 〉 satisfying the total energy conservation.

In order to derive a more easy-to-handle expression
for Eq. (A15), we introduce a pairwise additive model
to represent the projectile-surface interaction. Within the
pairwise model, VPS is built by adding the binary in-
teratomic potentials that describe the interaction of the
atomic projectile with individual ionic centers of the crystal.
It reads

VPS(Rt , u) =
∑

rB

vrB [Rt − rB − u(rB)], (A16)

where vrB
(r) denotes the binary projectile-ion interaction as

a function of the relative vector r, with vrB = v1 or v2 to
consider the two different ions of the crystallographic basis.
Replacing Eq. (A16) in Eq. (A13), the crystal factor can be
expressed as

F (c)
if (Rt , t ) = (2π )−3/2

∑
rB

∫
dq ṽrB (q)eiq·(Rt −rB )

×〈φ f | exp[−iq · Ut (rB)]|φi〉, (A17)

where ṽrB (q) is the Fourier transform of vrB
(r), and Ut (rB) =

exp (iHSt )u(rB)exp(−iHSt ) is the deviation operator within
the Heisenberg picture [41].

Finally, to compare with the experiments the differential
probability dP(P−SIVR)

i /dK f , given by Eq. (A15), must be
averaged over the equilibrium distribution of the φi wave
functions. Following a procedure similar to that given in
Appendix N of Ref. [29], after some steps of algebra that in-
volve the use of Eq. (A17), we obtain an averaged probability
dP(P−SIVR)/dK f , which includes a correlation factor

C(q, rB, t ; q′, r′
B, t ′) = 〈exp[iq′ · Ut ′ (r′

B)]

× exp[−iq · Ut (rB)]〉, (A18)

where the averaged value 〈X 〉 of any operator X , at the
equilibrium temperature T , is given by Eq. (N.13) of Ref. [29].
The factor C(q, rB, t ; q′, r′

B, t ′) can be then expanded as a

power series

C(q, rB, t ; q′, r′
B, t ′) = exp

[−WrB (q)−Wr′
B
(q′)

]
×

+∞∑
n=0

cn(q, rB, t ; q′, r′
B, t ′),

(A19)

with

cn(q, rB, t ; q′, r′
B, t ′) = 〈[q′ · Ut ′ (r′

B)][q · Ut (rB)]〉n

n!
, (A20)

and WrB (q) being the Debye-Waller function, defined as

WrB (q) =〈[q · u(rB)]2〉
2

, (A21)

where the dependence on rB indicates that its value changes
for the different species of the crystallographic basis, as well
as for bulk or surface positions.

Using the expansion given by Eq. (A19), the P-SIVR
probability can be expressed as a series

dP(P−SIVR)

dK f
=

+∞∑
n=0

dPn

dK f
, (A22)

where dPn/dK f accounts for the partial probability corre-
sponding to the Ki → K f transition with the exchange of n
phonons. It reads

dPn

dK f
=

∑
rB,r′

B

∫
dq

∫
dq′

∫ +∞

0
dt

∫ +∞

0
dt ′

× cn(q, rB, t ; q′, r′
B, t ′)

× A[bt (q, rB)] A[b∗
t ′ (q′, r′

B)], (A23)

with A[b] defined by Eq. (A11) and

bt (q, rB) = |JP(t )|1/2eiνt π/2 ṽrB (q) exp
[−WrB (q)

]
× exp{i[ϕt − Q · Ro + q · (Rt − rB)]}. (A24)

From Eq. (A23) we derive more compact expressions for
the orders n = 0 and n = 1, corresponding to the partial
probabilities for zero- and one-phonon scattering, which are
given in the text by Eqs. (1) and (2), respectively.
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