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We present an analytical and numerical analysis of the particle creation in an optomechanical cavity in
parametric resonance. We treat both the electromagnetic field and the mirror as quantum degrees of freedom and
study the dynamical evolution as a closed quantum system. We consider different initial states and investigate the
spontaneous emission of photons from phonons in the mirror. We find that, for initial phononic number states,
the evolution of the photon number can be described as a nonharmonic quantum oscillator, providing a useful
tool so as to estimate the maximum and mean number of photons produced for arbitrary high energies. The
efficiency of this mechanism is further analyzed for a detuned cavity as well as the possibility of stimulating the
photon production by adding some initial ones to the cavity. We also find relationships for the maximum and
mean entanglement between the mirror and the wall in these states. Additionally, we study coherent states for
the motion of the mirror to connect this model with previous results from quantum field theory with a classical
mirror. Finally, we study thermal states of phonons in the wall and the equilibration process that leads to a
stationary distribution.
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I. INTRODUCTION

One of the most striking features of quantum field theory
(QFT) is that it predicts the production of particles from
the quantum vacuum. There are remarkable examples of the
dynamical conversion of vacuum fluctuations into real parti-
cles: the Unruh radiation detected by a uniformly accelerating
observer [1], the Hawking radiation originating from black
holes [2,3], and the Schwinger effect which produces pairs
of electrons and positrons in the presence of a strong elec-
tromagnetic field (EM) [4]. However, although there is very
strong theoretical support for these effects, none has yet been
observed experimentally.

A closely related phenomena is the dynamical Casimir
effect (DCE) [5–9], which consists in particle creation from
time-dependent external conditions. It was first proposed in
1970 and its statement suggested that a Fabry–Pérot cavity
with one of its mirrors oscillating harmonically at twice the
frequency of a mode field in the cavity would lead to photon
production from the vacuum [5]. Later, it was shown that a
single mirror in free space subjected to nonuniform acceler-
ation would also produce photon radiation [10]. However in
all cases, the high accelerations required to produce photons
were not attainable by physically moving massive mirrors.
A recent proposal was based on the experimental suggestion
that the DCE could be mimicked by tuning the boundary
condition of the field. This idea lead to the first experimental
observation of the DCE [11]. In this experimental setup the
cavity was replaced by a superconducting waveguide which
ended with a superconducting quantum interference device
(SQUID), and the boundary conditions were tuned by ap-
plying a time-dependent magnetic flux through the SQUID.

The observation of the DCE in superconducting circuits lacks,
still, a fundamental part of the effect which is the conversion
of mechanical energy into photons. Because of this the exper-
imental realization has sometimes been called a simulation of
the effect and a true observation in an optomechanical cavity
is still awaiting.

Optomechanical systems comprise an optical cavity
formed by two mirrors, one of which is free to vibrate. Prac-
tical optomechanical structures have been created in which
the mirror can oscillate as fast as six billion times a second.
However, this may not be quick enough; previous theoretical
studies have shown that the mechanical oscillation frequency
must be at least twice that of the lowest-energy cavity mode
before DCE can be observed. In a recent work [12], au-
thors treated both the cavity field and the moving mirror
as quantum-mechanical systems and noted the existence of
vacuum Casimir-Rabi splittings for mirror frequencies less
than ωc. The analysis performed suggested that current op-
tomechanical systems can be used to observe conversion of
mechanical energy into light, which means that light emission
from mechanical motion could be achieved in this kind of
structures for lower frequencies. Moreover, recent develop-
ments in nanoresonators technology together with higher-Q
cavities make the observation of the effect in optomechanical
cavities accessible in the near future. Another important fea-
ture suggested in Ref. [12] is the fact that the DCE could be
analyzed in a more fundamental way with a time-independent
Hamiltonian where an initial state with phonons in the wall
would evolve to photons in the cavity. Further extensions of
this model have been done in Refs. [13,14]. Other proposals
considered to observe the conversion of mechanical energy
into photons produced by the DCE include hybrid systems
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â

ωm

b̂

x(t)

FIG. 1. We present the model studied: a cavity with a movable
end mirror (and the other end fixed). The moving mirror is subjected
to a harmonic potential analogous to a spring with frequency ωm

attached to a fixed wall. The oscillations of the spring are quantized
with bosonic operator b̂ corresponding to phonons. Inside the cavity,
light is produced as a result of the dynamical Casimir interac-
tion in one electromagnetic mode with frequency ωc and bosonic
operator â.

of mechanical resonators and superconducting waveguides
[15,16].

In this work, we follow the former idea and study the
DCE as a closed system where both the EM field and
the mirror are treated quantum mechanically (see Fig 1). The
approximation of a closed system relies on the assumption
that optical as well as mechanical losses are low enough
on the timescales considered. A thorough analysis of the
dissipative case was done in Ref. [12], where it was shown
that, for technologically accessible cavities [17] as well as
nanoresonators [18,19], losses could be neglected since, for
early times, the evolved state behaves as if the system was
indeed closed. This dissipative study is especially significant
since a direct measurement of the DCE could be made by
allowing some photons to leave the cavity, in which case a
cavity with a lower Q should be considered. On the other
hand, the system that we will be studying should have a high
Q factor for both the cavity and the resonator. In this setup an
indirect measurement of the DCE could be made by studying
the state of the resonator, for example, by coupling it to a
qubit. The procedure would be the following: first, one would
prepare a state on the resonator with the cavity and the qubit
detuned from it. Then, the cavity should be quickly tuned to
resonance and, after some interaction time, detuned again;
finally, the number of excitations in the resonator could be
obtained by tuning the qubit to the resonator’s frequency and
measuring the qubit (as was done in Ref. [18]). The loss of
excitations in the resonator would allow us to infer the number
of photons produced by the DCE. In the case that small losses
were present in the system we expect our results to hold for
short times, while the number of excitations should decrease
monotonically for long times.

In the following we investigate in detail the mechanism by
which mechanical energy is converted into photons in para-
metric resonance (ωm = 2ωc) in the weak-coupling regime for
different initial states. This paper is organized as follows: In
Sec. II we describe the model for an optomechanical cavity
where both degrees of freedom, the field and mirror motion,

are described quantum mechanically and comment on possi-
ble refinements. In Sec. III we numerically and analytically
study the time evolution of number states between the mirror
and the field. We focus on the efficiency of photon production
and the development of entanglement for growing energy
states. We also study how this efficiency changes for different
situations: an initial state with some photons already in the
cavity and off-parametric resonance. In Sec. IV, we perform a
numerical analysis to make a connection between the system
treated, a closed quantum system, and the quantum field
theory model with a semiclassical wall. Thus, we consider an
initial state with coherent motion of the mirror. Section V is
dedicated to the numerical study of the equilibration process
resulting from an initially hot mirror and a vacuum cavity.
Finally, in Sec. VI, we summarize our results and present the
conclusions of our work.

II. MODEL

Herein we describe the optomechanical system in which
we study the DCE. We consider a massless scalar field φ(x, t )
inside a cavity [0, x(t )] with a mobile wall that obeys the wave
equation

∂2φ(x, t )

∂t2
= ∂2φ(x, t )

∂x2
(1)

and satisfies Dirichlet boundary conditions

φ(0, t ) = φ(x(t ), t ) = 0. (2)

By subjecting the mobile wall to a harmonic potential and
letting it interact with the field through radiation pressure,
we can obtain a Hamiltonian description of the system [20].
After keeping only one field mode and applying a canonical
quantization, the field will be described by photons with
bosonic operator â and the wall oscillations by phonons
with bosonic operator b̂. Mathematically, this results in the
following Hamiltonian:

H = H0 + Vom + VDCE, (3)

where

H0 = h̄ωcN̂a + h̄ωmN̂b (4)

is the free Hamiltonian, composed of the photon and phonon
number operators N̂a = â†â and N̂b = b̂†b̂, respectively, while

Vom = gh̄ N̂a(b̂ + b̂†) (5)

is the optomechanical interaction between the mirror and field
with coupling strength g, and

VDCE = gh̄

2
(â2 + â†2)(b̂ + b̂†) (6)

is the dynamical Casimir effect interaction.
The free Hamiltonian H0 has eigenstates given by the

number basis,

|n, k〉 = â†nb̂†k|0, 0〉, (7)

formed by n photons and k phonons.
We can easily see that the Hamiltonian H captures some

of the key features expected from the DCE. Namely, since
it does not commute with the photon number operator N̂a,
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it is possible to start with the cavity in the vacuum state
and produce photons from phonons in the wall. Another
expected feature is the production of light in photon pairs
which corresponds to the term â†2b̂ that converts a phonon
into a photon pair. In fact, if we decompose our Hilbert space
as

H = E ⊕ O, (8)

where E is the subspace of states with an even number of
photons and O the one with an odd number of photons; we
can see that the Hamiltonian leaves invariant the subspaces:
HE ⊆ E and HO ⊆ O. This means that, given |e〉 ∈ E →
|e(t )〉 = e−iHt/h̄|e〉 ∈ E and thus, given an initial state in one
of these subspaces, the time-evolved state will remain in that
same subspace.

This model with only one photon mode is a good approx-
imation as long as the other modes are not significantly ex-
cited by the phonons. Previous results [21–25] show that this
happens when the frequencies of the modes are not equally
spaced which happens for a massive field in one dimension or
a massless field in two or more dimensions. In addition, we
must say that we are considering only one polarization state
of the electromagnetic field in this model. Considering both
of them only duplicates the problem, with the Hamiltonian
being given by

H = h̄ωcN̂a,x + h̄ωmN̂b + gh̄ Na,x (b̂ + b̂†)

+ gh̄

2

(
â2

x + â†2
x

)
(b̂ + b̂†) + h̄ωcN̂a,y

+ gh̄ N̂a,y(b̂ + b̂†) + gh̄

2

(
â2

y + â†2
y

)
(b̂ + b̂†). (9)

However, the x- and y-polarization states, â†n
x |0〉 and â†n

y |0〉,
are not eigenstates of the true electromagnetic Hamiltonian
since they do not commute with the helicity operator; that is,
they do not have a well-defined spin. The eigenstates of the
EM Hamiltonian are given by â†n

↑ |0〉 and â†n
↓ |0〉 with â↑ =

âx + iây and â↓ = âx − iây. Writing the former Hamiltonian
with these operators yields

H = h̄ωc(N̂a,↑ + N̂a,↓) + h̄ωmN̂b + gh̄ (N̂a,↑ + N̂a,↓)(b̂ + b̂†)

+ gh̄

2
(â↑â↓ + â†

↑â†
↓)(b̂ + b̂†). (10)

We can see that the only difference with our model is that
the pairs of photons would be produced in an entangled
Einstein-Podolsky-Rosen (EPR) state (| ↑↓〉 + | ↓↑〉)/

√
2. A

final comment about the model is that it would be possible to
add a coherent mechanical drive of the mirror by adding to the
Hamiltonian the time-dependent term

Vd = f (t )(b̂ + b̂†), (11)

with f (t ) proportional to the force applied to the mirror.
However, in this work we shall focus on the interconversion of
phonons to photons through the DCE interaction as a closed
quantum system.

III. NUMBER STATES

The DCE is expected to produce an exponential increase of
energy for a coherent external driving of the wall and so in this

section we study the dynamics of the system for initial states
with growing energy. Precisely, we consider initial states of
the form

|ψ0〉 = |0, k〉, (12)

with the system in parametric resonance; that is, ωm = 2ωc,
and weakly coupled (g/ωc 
 1). These are eigenstates of the
free Hamiltonian and belong to the degenerate subspace Dk

generated by the basis {|2n, k − n〉}0�n�k . We can solve the
dynamics in the weak-coupling regime by using perturbation
theory to lowest order, which corresponds to diagonalizing the
restriction of VDCE to Dk given by

VDCE|Dk = gh̄

2

⎛
⎜⎜⎜⎝

0 v1 0 0 0
v1 0 v2 0 0
0 v2 0 · · · 0
0 0 · · · 0 vk

0 0 0 vk 0

⎞
⎟⎟⎟⎠, (13)

with vj = √
2 j(2 j − 1)(k + 1 − j).

For the case of k = 1, it has been done in Ref. [12], where
they showed that the state is given by

|ψ (t )〉 = cos(�t )|0, 1〉 + i sin(�t )|2, 0〉. (14)

Thus, it is possible to convert all the mechanical energy of the
phonon mode into electromagnetic energy for t = π/(2�).
Herein, we study this interconversion of energy in more detail
for a variety of different initial states.

In Fig. 2(a) we present the time evolution of the mean
number of photons 〈N̂a〉 and phonons 〈N̂b〉 for the represen-
tative initial state |0, 9〉. Both of these magnitudes oscillate
in time between a maximum value and zero, being correlated
via conservation of energy 〈N̂a〉(t ) + 2〈N̂b〉(t ) = 2k, in the
weak-coupling regime. An interesting feature occurs: even
though the maximum value of 〈N̂a〉(t ) grows linearly with
the initial number of phonons, it is always less than the 2k
(allowed by the conservation of energy), except for k = 1.
In fact, if we define the maximum efficiency of converting
mechanical energy into electromagnetic energy as

ηmax := max
t

Ea(t ) − Ea(0)

Eb(0)
, (15)

where Ea(t ) = h̄ωc〈N̂a〉(t ) and Eb(t ) = h̄ωm〈N̂b〉(t ) are the
photon and phonon energies, respectively, and analogously
ηmean; then, ηmax starts at 100% for only one initial phonon
and has an asymptotic value as k → ∞ of around 70% [as
we can see in Fig. 2(b)]. This asymmetry derives from the
VDCE interaction which distinguishes between photons and
phonons.

It is possible to study the entanglement between the EM
field inside the cavity and the wall. To this end, we use
the entanglement entropy S = −tr(ρ̂a ln(ρ̂a)), with ρ̂a being
the reduced density matrix of photons. In Fig. 2(c) we can
note that this magnitude oscillates in time between zero and
ln(k + 1), which means that we can approximately recover
the initial state in a short timescale. On the other hand,
the behavior of Smax ≈ ln(k + 1) can be well understood by
using perturbation theory. As the initial state |0, k〉 belongs to
Dk, the time-evolved state |ψ〉(t ) will also be in Dk, which
means its entanglement entropy is bounded by the maximally
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FIG. 2. (a) Time evolution for the mean photon and phonon numbers. They oscillate erratically in time for the generic state |0, 9〉. (b) Both
the maximum and mean efficiency of mechanical-to-photon energy conversion can be seen to converge for a large number of initial phonons.
We show both magnitudes as a function of the initial phonon number obtained by exact diagonalization of the Hamiltonian and by using
lowest-order perturbation theory. (c) The entanglement entropy as a function of time for the generic state |0, 9〉. (d) Both the maximum and
mean entanglement entropy show a logarithmic dependence on the initial number of phonons. In all cases, results were obtained for g = 0.01
and parametric resonance.

entangled stated

|ψ〉 =
k∑

n=0

1√
k + 1

|2n, k − n〉, (16)

whose entropy is Smax = ln(k + 1). Therefore, as time passes,
an initially pure state evolves into a maximally entangled state
(in the allowed subspace) and approximately returns to itself.
This large amount of entanglement is not an exceptional value
along the time evolution but actually it is the rule. In fact,
the mean value of the entanglement entropy coincides with a
high degree of accuracy with 70% of the maximum. We might
speculate that by externally driving the system, we will in-
crease the energy of phonons exponentially. This, if combined
with the logarithmic behavior found for the entanglement,
would shield a linear increase of the entanglement entropy
with time [Fig. 2(d)].

A. Stimulated and inhibited photon creation

In the previous section we have analyzed the dynamics
and efficiency of photon production for states with an initially
empty cavity. The natural question that might consequently
arise is about what happens if we start with already some

photons in the cavity and phonons in the wall. Would this
stimulate the production of even more photons increasing the
efficiency or do they instead inhibit the conversion? To answer
the question, we consider an initial state of the form |2n, k0〉
and study the maximum and mean efficiency ηmean of photon
creation (defined analogously to ηmax) for a fixed number of
initial phonons k0 but varying the number of photons n. We
can say that we take the initial photons as catalyst and analyze
how many new ones we can produce from the initial phonons.
In Fig. 3, we show the efficiency of conversion as a function
of the pairs of photons for an initial state. It can be seen that
it is actually better to have a few photons already in the initial
state in order to increase the efficiency. However, it must be
noted that adding too many can inhibit the production of more
photons. Both measures of efficiency agree on this fact, even
though ηmax peaks for just one pair of photons, while ηmean

does it for around 10% of the initial phonons. After reaching
these peaks, both efficiencies decrease almost linearly with
growing numbers of initial photons. The maximum efficiency
becomes zero when the photons exceed 2/3 of the total
energy, while the mean efficiency becomes negative when the
photons are larger than 56% of the energy and then continues
to decrease. The negative values of the mean efficiency reflect
the fact that the initial photons stop acting as a catalyst and,
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FIG. 3. Efficiency of energy conversion as a function of the
pairs of photons for an initial state of the form |2n, 50〉. The exact
magnitudes obtained by numerical diagonalization ηmax and ηmean are
compared with the semiclassical approximations ηsc

max and ηsc
max.

instead, start to be consumed to produce phonons; while the
maximum efficiency (being non-negative by definition) falls
to zero since the maximum number of photons is actually
the initial one. This occurs because, if the initial state has
0.56k < n < 0.66k, it subsequently reaches an equilibrium
between the number of photons and phonons where neither is
created nor destroyed. We can understand this fact through a
first approach by rewriting the Hamiltonian in position space,

Hps = h̄ωc

2

(
X 2 + P2

X

) + h̄ωm

2

(
Y 2 + P2

Y

) − gh̄√
2

X 2Y, (17)

with

X = (â + â†)/
√

2, (18)

PX = (â − â†)/(i
√

2), (19)

Y = −(b̂ + b̂†)/
√

2, (20)

PY = −(b̂ − b̂†)/(i
√

2). (21)

We note that the classical system associated with this Hamil-
tonian has a nontrivial equilibrium position at (XEQ,YEQ) =
(
√

2ωmωc/g, ωc/(
√

2g)). In parametric resonance, this equi-
librium corresponds to 2/3 of the total energy being in the
photon mode which explains why ηmax � 0 around that point.
Likewise, we would like to explain how this fact arises
quantum mechanically. Hence, we can perform a rotating-
wave approximation (RWA) approximation of the original
Hamiltonian and discard the fast-oscillating terms to get a
simpler Hamiltonian HRWA = H0 + VRWA, with

VRWA = gh̄

2
(â2b̂† + â†2b̂), (22)

and H0 = h̄ωcN̂a + 2h̄ωcN̂b being the free Hamiltonian. It is
possible to see that, for parametric resonance, [HRWA, H0] = 0
and, because this Hamiltonian commutes with the free Hamil-
tonian, it conserves the sum of the mode energies. Then, using

the Heisenberg equation for the slowly changing variables
¯̂b = e−iωmt b̂ and ¯̂a2 = e−iωmt â2, we have

dN̂a

dt
= 1

ih̄
[N̂a, HRWA] = g

2

2

i
( ¯̂a†2h̄ − ¯̂a2 ¯̂b†), (23)

d ¯̂b

dt
= t

1

ih̄
[ ¯̂b,VRWA] = g

2

1

i
¯̂a2, (24)

d ¯̂a2

dt
= 1

ih̄
[ ¯̂a2,VRWA] = g

2

(
2

i
¯̂b + 4

i
N̂a

¯̂b

)
. (25)

Once more, we can derive the equation for N̂a with respect to
time. By combining it with the other two equations, we get

d2N̂a

dt2
=

( g

2

)2
4(2N̂b + N̂a) +

( g

2

)2
4N̂a(4N̂b − N̂a)

= g2 H0

h̄ωc
+ g2N̂a

(
2

H0

h̄ωc
− 3N̂a

)
, (26)

where we have used that N̂b = (H0 − N̂a)/2. Since we are
interested in the evolution of a number state |ψ0〉 in subspace
Dk, we can just call 〈H0〉 = E and write

d2N̂a

dt2
= g2 E

h̄ωc
+ g2N̂a

(
2

E

h̄ωc
− 3N̂a

)
, (27)

using that H0|Dk = EId . Finally, noting that this equation can
be written as d2N̂a

dt2 = −V ′(N̂a), with

V (N̂a) = g2

(
N̂3

a − E

h̄ωc
N̂2

a

)
− g2 E

h̄ωc
N̂a, (28)

we can see that the evolution of the number of photons
corresponds to a nonharmonic quantum oscillator. Hence,
we can take expectation values and, making a semiclassical
approximation 〈N̂aN̂b〉 � 〈N̂a〉〈N̂b〉, 〈N̂2

a 〉 � 〈N̂a〉2, we obtain
the following estimation:

d2〈N̂a〉
dt2

= g2 E

h̄ωc
+ g2〈N̂a〉

(
2

E

h̄ωc
− 3〈N̂a〉

)
. (29)

This last differential equation captures the dynamics that
converts phonons to photons in a simply approximate way.
We can think of 〈N̂a〉 as the position of a particle moving in
the potential V (〈N̂a〉) which, for E � 1, again has a minimum
in h̄ωc〈N̂a〉 = 2/3E and satisfies V (0) = V (E/(h̄ωc)) = 0.
This tells us that the solutions to this equation with initial
conditions (〈N̂a〉(0), d〈N̂a〉/dt (0)) = (n0, 0) are oscillations
〈N̂a〉(t ) between n0 and n1 such that V (n1) = V (n0), as illus-
trated in Fig. 4. Using this we can calculate the semiclassical
efficiency ηsc

max, which reproduces quite well the main features
of the exact solution ηmax shown in Fig. 3. The difference
between the curves originates in quantum correlations that
produce some sort of dissipation. The semiclassical result then
sets a useful bound on the efficiency of photon production.

Finally, we mention that Eq. (27) can also be used to
understand the convergence of the efficiency for a large num-
ber of phonons [Fig. 2(b)]. Defining η̂ := h̄ωcN̂a/E , we can
use Eq. (27) to get a differential equation for η̂ which, by
assuming E � 1,

d2η̂

dt2
= g2E

h̄ωc
η̂(2 − 3η̂). (30)
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FIG. 4. Effective potential for E/(h̄ωc ) = 500 and g = 1. A
number state with a mean value of n0 initial photons evolves to
another with a maximum of n1 photons, where n1 is given by V (n0) =
V (n1). The difference between n0 and n1 is proportional to ηmax.

The result is a differential equation for a nonharmonic
quantum oscillator moving in the potential Veff(η̂) =
g2E/(h̄ωc)(η̂3 − η̂2). Therefore the solution does not depend
on the energy. This is a very useful result since it allows
us to quickly predict the maximum number of photons that
will be generated for a given state. Previously, given the
state |248, 251〉, we were forced to diagonalize a 375 × 375
matrix so as to perform perturbation theory and thus obtain
the number of photons generated. However, by use of the
semiclassical approximation as shown above, we can predict
that the maximum efficiency is around 0.9 and therefore the
number of photons created will be 0.9 × (248 + 2 × 251) =
675, simply by analyzing the potential.

B. Detuning

We have shown that, by adjusting the frequency of the
mobile wall to twice that of the cavity, it is possible to
convert most of the energy of the system into DCE radiation.
However, in real-world experiments there is always some
detuning that reduces this effect. In this section, we study how
precisely we need to tune these frequencies in order to observe
photon emission. First, we consider the initial state |0, 1〉
and a mechanical frequency slightly detuned from parametric
resonance ωm = 2ωc + δω. We can solve the dynamics to the
lowest order in perturbation theory by diagonalizing the new
interaction

Wint = gh̄

2
VDCE + N̂bδωh̄ (31)

in the subspace D1. In the basis {|0, 1〉, |2, 0〉} the perturbation
is

Wint|D1 = gh̄

2

(
2δω/g

√
2√

2 0

)
, (32)
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FIG. 5. Efficiency of energy conversion as a function of detuning
for initial states of the form |0, k〉.

and can be diagonalized to find the time-evolved state

|ψ (t )〉 = cos(�t ) + iδω/g sin(�t )√
2 + (δω/g)2

|0, 1〉

+ i
√

2 sin(�t )√
2 + (δω/g)2

|2, 0〉,

with � = √
2gh̄/2. This corresponds to a maximum efficiency

of

ηmax = h̄ωc maxt 〈N̂a〉
2h̄ωc

= 2

2 + (δω/g)2
, (33)

which is a Lorentzian function that halves for δω = g
√

2. This
means that, even for g = 0.01, we can still produce half of the
resonance photons for a detuning of around 1.4%.

Furthermore, we numerically studied how the efficiency
depends on the detuning for various initial states of the form
|0, k〉, finding that the width of the curve increases linearly
with growing k (Fig. 5). That is, we have found that, even
though the efficiency decreases in parametric resonance as
we increase the energy, the photon production becomes less
sensitive to the detuning of the cavity. This tells us that, if
we try to externally drive a cavity that is detuned we might
not observe photon production until we have reached a critical
amount of phonons in the wall.

IV. COHERENT STATES

As we have said, the DCE has been studied extensively in
QFT by considering a classical wall oscillating harmonically
in time. However, the initial states we have analyzed so far
have no classical analog since the position and momentum
observables do not evolve in time. For that reason, in this
section we study coherent states in order to describe the
state of the phonons. Assuming that the cavity is initially in
vacuum, we study the evolution of the state and the generation
of photons.
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FIG. 6. (a) Time evolution of the mean photon and phonon number for the initial state |0〉 ⊗ |α = 5〉. (b) Photons distribution with error
bars indicating the magnitude of the time fluctuations and compared with an exponential fit.

The dynamics for an initially coherent phonon state of the
form

|ψ0〉 = |0〉 ⊗ |α〉 = e−|α|2/2
∞∑

k=1

αk

√
k!

|0, k〉 (34)

differs greatly from those of the number basis since the time
evolution of the mean number of photons shows an irre-
versible behavior. As shown in Fig. 6(a), photons are produced
rapidly, reaching to an all time maximum only to decrease
to a stationary value for long times, ¯〈Na〉, around which they
fluctuate. Even yet, the complete photon distribution becomes
stationary, showing a very high probability of measuring a
small number of photons (less than the mean), followed by
an exponential decay and then a plateau of equal probability
for a large number of photons, shown Fig. 6(b). As for the
stationary value of the mean photon number, it can be seen in
Fig. 7 that it actually grows quadratically with α. It is possible
to understand this behavior by recalling the known result of
DCE for a cavity with a moving wall of amplitude ε. In such
a case, it has been shown that the number of particles created

1 2 3 4 5
0

2

4

6

8

10

12

14

FIG. 7. The asymptotic mean photon number for initially coher-
ent phonon states |0〉 ⊗ |α〉 shows a quadratic increase with the initial
displacement α.

out of vacuum by the movable mirror is

〈N̂a〉 = sinh2(γ εt ), (35)

with ¯〈Na〉 ∝ ε2 for a small-amplitude movement [21]. This
result is consistent with the result from quantum field theory
for the driven DCE with a classical wall, as we obtain that
the number of photons created is quadratic in α. Finally, we
have also seen that the efficiency converges to around 25% as
we increase the amplitude α. This can be understood with the
results of the previous section. Since the initial state |ψ0〉 is a
superposition of many number states, each of which evolves
independently in its own subspace with different frequencies,
their oscillations compensate to give a constant number of
mean photons. This number, for high value of α, is given
by the limit efficiency of the number states for high energies
corresponding to the mean efficiency of Fig. 3 (for n = 0 since
we are starting with the cavity in the vacuum state). All in all,
the DCE interaction for coherent states can be seen as a sort of
quantum friction that by converting phonons in the mirror to
photons reduces the amplitude of the mirror oscillation. This
has previously been noted in Ref. [26] by a different technique
tracing over the field degree of freedom and looking only at
the mirror’s motion. We can now understand the mechanism
by which this process occurs, quantify it, and obtain the final
state of the EM field. Indeed, this result suggests that, as
long as losses in the cavity could be kept low enough, an
indirect observation of the dynamical Casimir effect would be
possible. The idea would be to prepare the mirror in a coherent
state and observe how its amplitude decreases with time as
phonons are converted into photons. In a real cavity where the
photons produced by the dynamical Casimir effect could be
mistaken by thermal photons, this would be specially useful.

V. THERMAL STATES

In this section, we consider another type of initial state for
the phonons in the wall. Because it can be technically very
challenging to prepare an initial coherent or number state, we
might consider a much more accessible way to prepare it in a
thermal state. Thus, we herein study the evolution of an initial
state of thermal phonons in the wall and vacuum inside the
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FIG. 8. The correlation function g(2) for photons takes values
around 4.5 which indicates super-Poissonian statistics as would be
expected for pair production of photons. The fluctuations around this
values tend to diminish for higher temperatures.

cavity for a range of different initial temperatures, defined as

|ψ0〉 =
∞∑

k=0

e−h̄ωmk/(KBT0 )

√
1 − e−2h̄ωm/(KBT0 )

|0, k〉. (36)

We start by studying the equal-time photonic normalized
second-order correlation function for photons,

g(2)(t, t ) = 〈â†(t )â†(t )â(t )â(t )〉
〈â†(t )â(t )〉2

, (37)

shown in Fig. 8. This magnitude reaches a stationary value for
thermal states of around 4.5, which tells us that the radiation
produced has super-Poissonian statistics and that the proba-
bility of producing two photons at once is higher than simple
chance, reenforcing the idea that photons are produced in
pairs. As the temperature is increased the fluctuations around
the stationary value become smaller since photon production
becomes more uniform in time.

Furthermore, we continue by studying the number of pho-
tons created in the cavity as compared with the different
initial states considered above. In Fig. 9(a), we present the
mean value of photons as time evolves. We can easily detect
a similar behavior to that of the coherent states: a sudden
increase of photons, followed by a very high peak, and then
a strong decrease to a stationary value around which there
are fluctuations for long times. The dynamics of phonons
is, of course, the opposite so as to obey the conservation
of energy due to the weak-coupling regime of Fig. 9(b).
Both observables increase with higher temperatures and their
fluctuations decrease with respect to their stationary mean.
On the other hand, the entanglement entropy increases with
time and reaches a stationary value for long times as shown in
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FIG. 9. (a) Mean number of photons as a function of time for different temperatures. (b) Mean number of phonons as a function of time
for different temperatures. (c) Entanglement entropy as a function of time for different temperatures. (d) Entanglement entropy as a function
of time for an initial state of phonons with an exponential fitting.
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inverse temperature reduces as the initial temperature increases. (c) The relationship between the photon and phonon temperatures is linear
with slope 1, which indicates that the subsystems share the same temperature. (d) Efficiency of thermal states with different temperatures.

Fig. 9(c). In this case, it becomes evident that the equilibrium
occurs for times bigger than 103ω−1

c for all the temperatures
considered. Even more so, it is possible to fit the entanglement
evolution with the function

S(t ) = S∞(1 − e−t/τ ), (38)

where S∞ and τ are constants, to a very high degree of
accuracy, as shown in Fig. 9(d).

Distributions and thermalization

The fact that the mean number of photons and phonons
reach a stationary value and that the entropy seems to saturate
for long times suggests that the system reaches a stationary
state. In this section, we try to characterize the stationary state
attained by looking at the photon and phonon distributions
for different initial temperatures and the relationship among
them. We consider the photon (respectively phonon) distribu-
tion Pρ (n) of a state ρ̂(t ) to be the diagonal elements of the
photon (respectively phonon) reduced density matrix in the
energy basis. It can be seen that the off-diagonal elements are
negligible and are not necessary to reproduce the expectation
values after equilibration. Given the initial thermal state in
the wall, we might suspect that a thermalization process is
occurring. If that were the case, then the reduced photon

matrix should be given by a Gibbs state,

ρ̂a =
∑

n even

e−βaHa

Z
|n〉〈n| =

∑
n even

e−βa h̄ωcn

Z
|n〉〈n|, (39)

where βa = 1/(KBTa) is the inverse photon temperature and
Z is the partition function. Likewise, the photon distribution
would be of the form

P(n) = e−βa h̄ωcn

Z
. (40)

In Fig. 10, we present − ln(P(n)) for different initial values of
n and different values of the initial temperature for photons
[Fig. 10(a)]. We can see that the behavior fits an almost
perfectly straight line for large n and for all temperatures,
with a decreasing slope as the initial temperature increases.
The same behavior can be reproduce for phonons [Fig. 10(b)],
suggesting that both subsystems can be extremely close to a
thermal state.

As we have further evidence that a thermalization process
might have taken place at this stage, we might consider
defining a temperature for the whole system. In the case of
a thermal state the (inverse) temperature would be given by
the slope of the function

− ln(P(n)) = βah̄ωcn + ln(Z ). (41)
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By fitting a straight line for this magnitude for photons and
phonons we are able to define an inverse temperature βa and
βb for both subsystems. By studying the relationship between
these two temperatures for a range of initial states, we find that
they are indeed the same and so we can say that the system
thermalizes, as shown in Fig. 10(c).

Thermal states can be much easier to prepare while not be-
ing too inefficient. In fact their mean efficiency is around 25%
for high temperatures [Fig. 10(d)], which is approximately the
same as that for initial number states with a high number of
photons (compared with Fig. 3 for n = 0).

VI. CONCLUSIONS

In this paper we study the dynamical Casimir effect as a
closed quantum system described as an interaction between
photons in a cavity and phonons in a moving wall. We find
that the efficiency of photon production reduces as the energy
increases for initial states of the form |0, k〉, approaching
asymptotically around 70%. The entanglement entropy, both
in mean and maximum value, on the other hand, increases
logarithmically with the energy and are related by Smean =
0.7 Smax. We have also seen that, by starting the evolution
with a few photons already in the cavity, we can actually stim-
ulate the emission of more photons, increasing the efficiency.
However, we have shown that, if we keep adding more initial
photons, the efficiency linearly decreases, inhibiting photon
generation. In fact, we have a stable equilibrium where, if the
initial state is of the form |n, k〉 with 0.56k � n � 0.66k, there
is almost no photon or phonon production. We were also able
to obtain a differential equation for the number of photons, in-
dicating that it evolves in time just as a nonharmonic quantum
oscillator. The dependence of detuning for the DCE was also
studied, finding a Lorentzian curve of photon production with
a width proportional to the coupling of the system and the
energy of the initial state. That is, the DCE is less sensitive to
the detuning as we increase the energy of the initial state.

The dynamics found for coherent states |0, α〉 is very
different from that of the number basis, since the mean
number of photons and phonons seem to reach a stationary
value. We have found that these values depend quadratically

with the parameter α of the initial state, which seems to
indicate a quadratic dependence of the photon production with
the amplitude of the oscillation of the wall. This result is
consistent with QFT results derived in previous studies found
in the literature.

Finally, we have analyzed the time evolution of an initial
thermal state in phonons and vacuum in the cavity. In this
case both the number of phonons and photons seem to reach
a stationary value. Similarly, the entanglement is found to
be very well described by a function of the form S(t ) =
S∞(1 − e−t/τ ), saturating for times longer than 103ω−1

c for all
initial temperatures. We have also seen that the stationary state
reached by the system is very close to a thermal one for both
photons and phonons. Even more so, we have been able to
define a temperature for both subsystems and show that it is
actually the same for different initial states, which leads us to
conclude that the system finally thermalizes.

Several new lines of research arise from this work. It
would be interesting to look at how these results change
outside of parametric resonance, with the phonon frequency in
some other Casimir-Rabi splitting. Another possible direction
would be to study the system’s response in the strong-coupling
regime where the counter-rotating terms become relevant.
Coming back to the root of the interaction at hand, it would be
important to analyze how the driving of the mirror modifies
the behavior and compare it with previous dynamical Casimir
effect results in the context of quantum field theory with a
classical wall. Finally, our model describes a typical three-
dimensional cavity with a nonequidistant spectrum where
only one mode of the EM field can be excited; however, in a
one-dimensional cavity, the spectrum is equidistant and many
more modes can be excited. Hence, it would be relevant to
study a new model where more modes can couple to each
other.
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