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We report a theoretical calculation of the relativistic corrections to the binding energy of positronic alkali-metal
atoms. The ground state for the positronic alkali-metal atom is a loosely bound state with the structure of an
alkali-metal ion surrounded by a positronium cloud. The correlation between the valence electron and positron
in the field of a residual core ion is taken into account using a three-body model. Relativistic corrections to the
binding energy for positronic alkali-metal atoms are evaluated based on the Breit-Pauli perturbation theory up
to the second order of the fine structure constant. The relativistic corrections caused by the interaction between
the valence electron and core ion was evaluated from the decomposed expectation values of the perturbation
Hamiltonian. We found that the importance of relativistic corrections to the binding energy, namely the ratio of
the net relativistic correction in the total binding energy, is remarkably enhanced in the loosely bound states of
positronic alkali-metal atoms, where the charge of the valence electron is screened by the positron as positronium
in the outermost region, while the electron is released from the positron near the nucleus. The results imply
that positronic atoms with a dominant positronium can serve as an apt testing ground for relativistic quantum
mechanics.
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I. INTRODUCTION

Some neutral atoms can bind a positron by themselves
and form a bound-state, positronic atom. The positronic atom
is one of the most fundamental systems in atomic physics
and can exhibit the exotic aspects of atomic and molecular
systems [1–3]. The binding mechanism, bound-state struc-
ture, and interparticle correlations in positronic atoms having
simple electronic structure of the atom have been subject
to precise calculations [4–8]. Attractive correlations of the
positron and electrons in a positronic atom involve chal-
lenges in conventional theoretical approaches [9,10] hence
require rigorous treatments. Further, the prediction of various
positronic atoms [11–13], their resonance states [14–26] and
formation or detection schemes of the bound states [27–30]
have also attracted both theoretical and experimental attention
[12,13]. The formation of positronium (Ps; a bound state of a
positron and an electron) is a unique but fundamental reaction
in positron-atom interaction, and still shows discrepancies in
cross sections between theoretical calculations and experi-
ments [31–36].

The positronic alkali-metal atom, which is a bound state
of a positron and an alkali-metal atom (A), is one of the
best models for positronic atoms because the alkali-metal
atom can be well approximated by a valence electron and a
residual closed-shell positive ion core (A+). Long-range inter-
action due to the polarization of the ion core and short-range
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interactions associated with distributions of the ion core
electrons can be taken into account by introducing a model
potential that can reproduce the energy levels of the alkali-
metal atom. The positronic alkali-metal atom can be treated
as a three-body system, for which precise calculations are
available.

There are a number of calculations on positronic alkali-
metal atoms [2,4–6,35,37–45], where the major binding
mechanism for a positronic alkali-metal atom is Ps polar-
ization by A+. When a positron attaches to A, the valence
electron transfers to the positron and forms Ps because the
ionization energy of A is smaller than the binding energy of
Ps (6.8 eV). The residual ion core polarizes the Ps and forms a
loosely bound state of the positronic alkali-metal atom (APs+)
just below the A+ + Ps threshold energy. Bound states of a
positronic lithium atom (LiPs+) and positronic sodium atom
(NaPs+) have been predicted theoretically, and positronic
potassium and heavier alkali-metal atoms have been consid-
ered devoid of any bound state [12,13]. Calculations of the
shallow binding energy are somewhat scattered depending on
the choice of the model potential. Indeed, some arbitrariness
remains in the short-range part of the model potential [44,45].

In this work, we investigate the binding mechanism of
APs+ in terms of relativistic effects. Relativistic effects in
atomic and/or molecular systems have recently received
considerable attention, and various studies of the electronic
characteristics of heavy atoms have been conducted. Rel-
ativistic atomic physics and quantum chemistry focus on
spin-forbidden chemical reactions, the unique structures of
compounds (see Refs. [46,47] and references therein), and
the atomic energy levels of highly charged ions for precise
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tests of fundamental physics or for fundamental databases in
astrophysics. In these studies, sixth- and seventh-period ele-
ments have often been the subject of research: the chemistry of
gold compounds with various oxidation states [48–53], gold
clusters [54,55], gold and platinum catalysts [56], heaviest
elements [57,58], and reactions via spin-forbidden states [59].
Calculation methods in relativistic atomic physics and quan-
tum chemistry have evolved recently, and various successful
methods have been reported [60–63]. The importance of
precise calculations of the relativistic wave function has also
been recognized in connection with a search for the electron
dipole moment (EDM) (for a review, e.g., see Ref. [64] and
the references therein).

Relativistic corrections to the binding energy of positronic
alkali-metal atoms have been considered unimportant, how-
ever, owing to the small atomic numbers of Li and Na.
Some exhaustive surveys of e+/Ps-atom complexes for large
atomic number systems were performed within a relativistic
framework by the first-order perturbation theory based on
Hartree-Fock approximation [65] and a relativistic linearized
coupled-cluster single-double approximation [66,67]. On the
other hand, the effect of the relativistic corrections on binding
energy of the positronic alkali-metal atoms, loosely bound
states, is still unclear so far. The binding energy (ε) of the
positronic alkali-metal atoms may be written in a sum of
nonrelativistic binding energy (εnr) and relativistic correc-
tions (δε) as ε = εnr + δε. The loosely bound states of the
positronic alkali-metal atoms have been known to have ex-
tremely small ε; however, it is still an open question if the ratio
of δε/ε becomes small or large in compared with conventional
atomic systems because the physical origins of ε and δε and
their trends may differ each other. In fact, a rough estimation
using a simple potential approximation for positronic alkali-
metal atoms [68,69] implies relativistic effects might appear
in loosely bound states as large ratio δε/ε.

Here, we calculate relativistic corrections of positronic
alkali-metal atoms up to α2 order, where α denotes the fine
structure constant. The boundary conditions for the fine
structure of neutral alkali-metal atoms will provide subsidiary
improvement to the inner arbitrariness of model potentials.
Further, we updated the binding energy with highly precise
calculations using a relativistic framework, and the relativistic
effects in the ground state were evaluated based on the roles of
the fragment expectation values of the relativistic perturbation
Hamiltonian.

The remainder of this paper is organized as follows.
Section II introduces the theoretical concepts and calculations.
Section III presents the results and discussion. Finally,
conclusions are provided in Sec. IV. Except where mentioned
otherwise, atomic units (a.u.; me = h̄ = e = 1) are used
throughout the present paper. The distance is expressed in
unit of the Bohr radius a0.

II. THEORY

The model potential between the ion core and valence
electron is written as

Ve(re) = Vst (re) + V (le )
exch(re) + Vpol(re), (1)

where Vst (re) is the static potential given by the standard
Hartree potential [70,71], V (le )

exch(re) is the local exchange
potential, Vpol(re) is the polarization potential, and le is the
angular momentum quantum number for the electron.

The exchange potential was originally derived by Furness
and McCarthy [72] and was modified by Gianturco and Scialla
[73] for low-energy scattering calculations:

Vexch(re) = 1
2 {(−Vst (re) + CTF(ρe(re ))2/3)

−
√

(−Vst (re) + CTF(ρe(re ))2/3)2 + 4πρe(re)},
(2)

where ρe(re) is the electron density in the core, and CTF =
3(3π )2/3/10 is a coefficient obtained by the Thomas-Fermi
model. This exchange potential may have a slight le depen-
dency [74] because the electron density depends on le. We thus
introduce a small correction for this le dependence. Because
the squared angular momentum le(le + 1) is a good quantum
number for the electron orbitals, we can modify the exchange
potential as follows:

V (le )
exch(re) = [

1 − aexchl2
e

]
Vexch(re), (3)

where le is the orbital angular momentum operator. The
coefficient aexch is assumed to have a small value. Here, the
le dependency appears exclusively for le = 0, 1, 2 because the
range of the exchange potential is short.

The polarization potential is written as

Vpol(re) = − αd

2r4
e

[1 − f (re)], (4)

where αd = 0.192 a3
0 for Li and αd = 0.923 a3

0 for Na are
the dipole polarizabilities given by Gien [75], and f (re) is
a short-range cutoff function that is determined numerically
and satisfies the boundary conditions of f (re → 0) = 1 and
f (re → ∞) = 0. Here, 1 − f (re) is written in exponential
form [76] or polynomial form [77,78]. In this study, we
expand the polarization potential in terms of Gaussian basis
functions:

Vpol(re) =
N∑

i=1

Cir
2
e e−bir2

e , (5)

where Ci and bi are parameters to be optimized. Although
Gaussian functions decrease rapidly, a linear combination of
Gaussian functions with small 0.0001 < bi < 0.1 can suf-
ficiently reproduce asymptotic forms up to several tens of
a.u. The short-range behavior is also effectively described.
Demonstrations of this potential for nonrelativistic calcula-
tions are presented in our previous study [69]. The optimized
parameters for Vpol(re) are listed in Appendix A.

The Schrödinger equation for a valence electron in a non-
relativistic framework can be written as

Hnr
A ψnele = εnr

A, neleψnele , (6)

where

Hnr
A = −1

2

{
1

re

d2

dr2
e

re − le(le + 1)

r2
e

}
+ Ve(re ), (7)

where ψnele is the wave function of the valence electron of the
alkali-metal atom, εnr

A, nele
is the eigenenergy of ψnele , and ne is
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TABLE I. Calculated and observed energy levels and their abso-
lute errors for Li and Na atoms. The notation �ne le indicates the fine
structure splitting of the nele state. The experimental values are taken
from the NIST Atomic Spectra Database [79].

System State Calculation Experiment [79] Error ×105

2s −0.198 140 −0.198 142 0.2
2p −0.130 243 −0.130 236 0.7
�2p 0.000 005 0.000 002 0.3
3s −0.074 260 −0.074 182 7.8
3p −0.057 283 −0.057 235 4.8
3d −0.055 603 −0.055 606 0.3

Li 4s −0.038 653 −0.038 615 3.8
4p −0.032 001 −0.031 973 2.8
4d −0.031 272 −0.031 273 0.1
5s −0.023 657 −0.023 636 2.1
5p −0.020 389 −0.020 374 1.5
5d −0.020 012 −0.020 012 0.0
6s −0.015 957 −0.015 945 1.2

3s −0.188 857 −0.188 858 0.1
3p −0.111 558 −0.111 547 1.1
�3p 0.000 067 0.000 078 1.1
3d −0.056 016 −0.055 936 8.0
4s −0.071 574 −0.071 578 0.4
4p −0.050 924 −0.050 934 1.0
�4p 0.000 022 0.000 025 0.3
4d −0.031 487 −0.031 442 4.5

Na 5s −0.037 586 −0.037 584 0.2
5p −0.029 189 −0.029 194 0.5
�5p 0.000 010 0.000 011 0.1
5d −0.020 132 −0.020 106 2.6
6s −0.023 133 −0.023 132 0.1
6p −0.018 914 −0.018 919 0.5
�6p 0.000 005 0.000 006 0.1
6d −0.013 967 −0.013 952 1.5
7s −0.015 660 −0.015 662 0.2

the principal quantum number (ne � 2 for Li, and ne � 3 for
Na). The relativistic atomic energies εrel

A, nele
can be written as

εrel
A, nele = εnr

A, nele + α2
〈
ψnele

∣∣H rel
A

∣∣ψnele

〉 + O(α3), (8)

where the H rel
A is given by the Pauli approximation, namely,

H rel
A = −1

8
p4

e − 1

8
p2

eVe + 1

2

1

re

dVe

dr
le · se. (9)

pe is a momentum operator. Moreover, α is the fine structure
constant (α = c−1, where c is the speed of light), and se is the
spin angular momentum operator for the electron.

We determine the parameters aexch in Eq. (3) and Ci and bi

in Eq. (5) such that the calculated energy levels εrel
A, nl repro-

duce the observed energy levels and fine structure splittings
[79] of the p state within an absolute error of 8 × 10−5. The
results of aexch are 0.081 for Li and 0.00015 for Na. Table I
shows that the calculated values agree well with the observed
values.

According to calculations in the literature [4,6,38], the
model potential between the ion core and the positron can be

FIG. 1. Two sets of rearrangement channels and coordinates.

expressed as

Vp(rp) = −Vst (rp) + Vpol(rp), (10)

where rp is the distance between the ion core and the
positron.

The nonrelativistic three-body Hamiltonian is given by

Hnr
APs+ = 1

2
p2

e + 1

2
p2

p + V nr
e (re) + V nr

p (rp) − 1

rep

+V2pol(re, rp) + λ
∑

i

∣∣φcore
i

〉〈
φcore

i

∣∣, (11)

where V2pol is a two-body correction to the polarization po-
tentials for the electron and positron. Here, V2pol(re, rp) was
derived by Norcross and Seaton [80] and can be written as

V2pol(re, rp) = 2 r̂e · r̂p

√
Vpol(re)Vpol(rp). (12)

The last term of the Hamiltonian (11) is introduced in order
to remove pseudostates, in which the electron occupies a core
orbital φcore

i , from the total wave function [81]. We use a Gaus-
sian expansion method (GEM), which has been applied to a
variety of few-body systems (see Ref. [82] and the references
therein). In Fig. 1, we introduce two rearrangement channels
(c = 1, 2) to take the interparticle correlations into account
directly. The first channel (c = 1) is suited to describing the
configuration of A+ − Ps (Ps channel). The second channel
(c = 2) is suited to describing the configuration of A − e+
(alkali-metal atom channel). The total three-body wave func-
tion � in the S state is described as the sum of the channel
wave functions of the two rearrangement channels, as follows:

� = �1(rep, R) + �2(re, rp). (13)

Each channel wave function is expanded in terms of Gaussian
basis functions:

�c(xc, yc) =
∑

ncNclc

Ac
ncNclc x

lc
c ylc

c exp
(−μnc x

2
c − νNc y

2
c

)
Plc (x̂c · ŷc),

(14)

where (x1, y1) = (rep, R) and (x2, y2) = (re, rp), as shown
in Fig. 1. The Gaussian range parameters μnc and νNc are
based on a geometrical progression in order to describe both
the short-range correlation and long-range tail behavior ef-
fectively. The inner angular momentum lc can be restricted
to 0 � lc � 5 in order to confirm the relativistic corrections
in the next calculation. Here, Plc (x̂c · ŷc) is the Legendre
polynomial. The nonrelativistic three-body energy Enr

APs+ and
coefficients Ac

ncNclc
in Eq. (14) are determined by the Rayleigh-

Ritz variational principle.
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The perturbation Hamiltonian for relativistic corrections is
based on the Breit-Pauli interactions [83,84] and is written as

H rel
APs+ = H ′

mv + H ′
d + H ′

oo + H ′
ss + H ′

a + H ′
so, (15)

where

H ′
mv = −1

8

(
p4

e + p4
p

)
(16)

H ′
d = −1

8

{
p2

eVe(re) + p2
pVp(rp)

} + πδ(rep), (17)

H ′
oo = 1

2

[
pe · pp

rep
+ rep · (rep · pe )pp

r3
ep

]
, (18)

H ′
ss = 8π

3
Se · Spδ(rep), (19)

H ′
a = 2π

(
3

4
+ Se · Sp

)
δ(rep), (20)

H ′
so = − (1 − 2μ)

2

le · Se

re

dVe

dre
− (1 − 4μ)

2

lep · Sp

r3
ep

+1

4

(rep × P) · Sp

r3
ep

− (1 − 4μ)

2

lep · Se

r3
ep

−1

4

(rep × P) · Se

r3
ep

+ (1 − 2μ)

2

lp · Sp

rp

dVp

drp
. (21)

pe, pp, pep, and P are momentum operators associated with
re, rp, rep, and R, respectively, in Fig. 1. Se and Sp are spin
operators for the electron and positron, respectively. lep =
rep × pep is an angular momentum operator for coordinates
rep, and μ is a magnetic moment of the electron or positron.
Further, H ′

mv is a relativistic momentum correction, H ′
d is the

Darwin term, H ′
oo is the retardation term, H ′

ss is the spin-spin
interaction, H ′

a is the annihilation channel, and H ′
so is the

spin-orbit interaction. The relativistic correction regarding the
nucleus spin can be ignored because the magnetic moment
of the nucleus is three orders of magnitude smaller than that
of the electron. It is noted that the spin-orbit interaction H ′

so
does not contribute to the relativistic correction of the current
loosely bound states because the expectation values of H ′

so
with states of J = 0 vanish due to angular momentum algebra.

The total relativistic correction �εrel is calculated using
first-order perturbation theory:

�E rel
APs+ = α2

〈
H rel

APs+
〉 = α2〈�|H rel

APs+ |�〉. (22)

III. RESULTS AND DISCUSSION

We optimized the Gaussian range parameters and care-
fully examined the convergence of the nonrelativistic energies
Enr

APs+ with respect to the number of Gaussian basis functions.
Figure 2 shows the convergence of the nonrelativistic bind-
ing energies with respect to the number of basis functions,
where one can see that Enr

APs+ changes slowly for N > 4000.
We obtained converged values down to 10−7 a.u. accuracy
in the three-body calculation, namely, for LiPs+, Enr

LiPs+ =
−0.252 505 13 at N = 7388 and Enr

LiPs+ = −0.252 505 20 at
N = 8404, and for NaPs+, Enr

NaPs+ = −0.250 473 62 at N =
6258 and Enr

NaPs+ = −0.250 473 66 at N = 7266. The nonrel-
ativistic binding energy εnr associated with the dissociation
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FIG. 2. Convergence of the nonrelativistic three-body energies of
bound states as a function of the number of basis functions for LiPs+

and NaPs+. The converged values are (a) E nr
LiPs+ = −0.252 505 2 and

(b) E nr
NaPs+ = −0.250 473 7.

threshold of A+ + Ps is given by

−εnr = Enr
APs+ − Enr

Ps, (23)

where Enr
Ps = −0.25.

An uncertainty of the non-relativistic binding energy,
Enr

APs+ , comes from (i) the model potential and (ii) numerical
calculation. The model potential we used in this work repro-
duces the observed energy levels of the alkali-metal atoms at
0.2 × 10−5 a.u. for Li (2s) and 0.1 × 10−5 a.u. for Na (3s),
see Table I. Since the major binding mechanism for APs+

is Ps polarization by A+, the uncertainty coming from the
reproducibility of the model potential was estimated to be
much less than 10−6 a.u., which was equal to the accuracy
of the nonrelativistic binding energy converged. Thus, in this
work, the uncertainty from (i) is not included explicitly. To
determine the nonrelativistic binding energy, we solved a
generalized eigenvalue problem numerically under the double
precision arithmetic. We estimated and confirmed the uncer-
tainty of numerical calculation of the nonrelativistic energy
for the three-body system to be less than 10−9 a.u. by using
different numerical methods for the eigenvalue problem.

The relativistic binding energy εrel is associated with the
lowest dissociation threshold of A+ + Ps and is defined as
follows:

−εrel = (
Enr

APs+ + �E rel
APs+

) − (
Enr

Ps + �E rel
Ps

)
, (24)

where

�E rel
Ps = α2〈φPs|H rel

Ps |φPs〉. (25)

Here, φPs is the exact Ps (1s) wave function and H rel
Ps is the

perturbation Hamiltonian for relativistic corrections for Ps.
Uncertainties of the relativistic corrections �E rel

APs+ , come
from (I) numerical accuracy of relativistic corrections, and
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TABLE II. Binding energies of the bound state of LiPs+ and
NaPs+ calculated in this work and previous studies.

System Method Binding energy

LiPs+ This work (spin averaged) 0.002 509 5 (2)
FCSVM [2,42] 0.002 478 9

SVM [42] 0.002 482 1
FEM [43] 0.002 37
AHM [44] 0.002 455
GEM [6] 0.002 615

NaPs+ This work (spin averaged) 0.000 490 12 (3)
FCSVM [40] 0.000 473

AHM [44] 0.000 447
GEM [6] 0.000 401

FEM-ITM [45] 0.000 357

(II) contribution from the second-order perturbation of the
relativistic corrections. As the nonrelativistic wave function
is less accurate than the non-relativistic energy because of the
variational principle, the calculated values of the relativistic
corrections somewhat scatter even with the wave functions
that give the same eigenvalue. We adopted the average and
standard deviation of values calculated with different basis
sets as relativistic correction and its uncertainty, respectively.
Eight kinds of basis sets in total with N = 4920 and N =
5778 are used for LiPs+ and four kinds of basis sets in
total with N = 4464, 4882, 5228, and N = 5320 are used for
NaPs+. The largest uncertainty of the relativistic corrections
comes from the momentum correction term, α2〈H ′

mv〉, which
is 2 × 10−7 for LiPs+ and 3 × 10−8 a.u. for NaPs+. On the
other hand, the contribution of the second-order perturbation
of the relativistic corrections (II) should be negligible for the
entire uncertainty because the second-order perturbation may
be lower than the first-order one by α2 ∼ 5 × 10−5. To the
end, the numerical accuracy of the relativistic corrections (I)
is expected to mostly contribute to the entire uncertainty of
the relativistic energy.

Table II shows the spin-averaged relativistic binding en-
ergy together with some previous results, which can be
regarded as semirelativistic binding energies insofar as the
model potential was constructed to reproduce the observed
energy levels in a nonrelativistic framework. For LiPs+, these
results lie within the range of the previous results, and for
NaPs+, these results are slightly higher than the previous
results. The differences in the results can be explained by the

improvement in the polarization and exchange potentials and
relativistic corrections.

In Table III, the mean radii and relativistic corrections cal-
culated from the nonrelativistic wave function are shown for
the positronic alkali-metal atoms, the corresponding alkali-
metal atoms, and Ps. The spin-spin interaction α2〈H ′

ss〉 and
annihilation term α2〈H ′

a〉 are proportional to the expectation
values of the δ function δ(rep) according to Eqs. (19) and
(20). The 2γ annihilation rate �2γ is also given in Table III.
The mean radii and 2γ annihilation rates are consistent
with those obtained in previous studies—for example, in
[41], 〈re〉 = 9.108 a0, 〈rp〉 = 9.966 a0, 〈rep〉 = 3.397 a0, and
�2γ = 1.749 × 109 s−1 for LiPs+, and 〈re〉 = 16.82 a0, 〈rp〉 =
17.25 a0, 〈rep〉 = 3.162 a0, and �2γ = 1.896 × 109 s−1 for
NaPs+.

As shown in Table III, because of the polarization of Ps,
the expectation values of the retardation term α2〈H ′

oo〉 and
the δ function 〈δ(rep)〉 in APs+ become smaller than those in
isolated Ps (1s). On the other hand, the absolute value of the
momentum correction α2〈H ′

mv〉 and the Darwin term α2〈H ′
d〉

become much larger than those in isolated Ps (1s) because the
relativistic electron motion in the high electric field near the
nucleus also contributes to these terms.

Table IV shows the nonrelativistic and relativistic binding
energies for LiPs+ and NaPs+ together with for related sys-
tems, namely, Li, Li−, Na, and Na−. The ratios of relativistic
effects to the binding energy,

δε

ε
= εrel − εnr

εrel
, (26)

are much larger than those for the host alkali-metal atoms and
their negative ions. The ratios for LiPs+ are 8.1 (singlet) and
31 (triplet) times larger than those for the Li atom, and those
for NaPs+ are 20 (singlet) and 22 (triplet) times larger than
those for the Na atom.

In Fig. 3, we summarize the relativistic effect δε/ε for
positronic atoms together with various electronic systems
against the nuclear charge Z . Binding energies and relativistic
corrections for Li, Na, Li−, Na−, LiPs+, and NaPs+ are
given by our calculations. For hydrogenlike atoms, namely H,
He+, Li2+, Na10+, K18+, Rb26+, and Cs54+, binding energies
and relativistic corrections are calculated analytically for 1s
state including momentum correction term and Darwin term
in the first-order perturbation theory. For alkali-metal atoms
with high Z > 11, namely K, Rb, Cs, and Fr, the relativis-
tic corrections are estimated by the difference between the

TABLE III. Mean distances, relativistic corrections and 2γ annihilation rate. �2γ is given in units of 109 s−1.

LiPs+ Li (3s) NaPs+ Na (3s) Ps (1s)

〈re〉 9.041 (3) 3.833 16.18 (1) 4.085 –
〈rp〉 9.900 (3) – 16.83 (3) – –
〈rep〉 3.399 (5) – 3.164 (1) – 3.000
α2〈H ′

mv〉 −0.000 013 3 (2) −0.000 066 3 −0.000 046 08 (3) −0.000 920 6 −0.000 004 2
α2〈H ′

d 〉 0.000 011 703(4) 0.000 052 5 0.000 032 202 (1) 0.000 639 4 0.000 006 7
α2〈H ′

oo〉 −0.000 005 722(5) – −0.000 006 262 (6) – −0.000 006 7
〈δ(rep)〉 0.034 728 7(9) – 0.037 760 6(1) – 0.039 789
�2γ 1.752 75(4) – 1.905 77(1) – 1.996
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TABLE IV. Relativistic binding energies and effects of binding energy associated with dissociation threhsold of A+ + Ps for APs+, A + e−

for A−, A+ + e− for A and e+ + e− for Ps.

Spin state LiPs+ Li− (2s2) Li (2s) NaPs+ Na− (3s2) Na (3s) Ps (1s)

εnr 0.002 505 20 0.022 631 0.198 125 8 0.000 473 66 0.019 451 0.188 576 1 0.250 000 0

εrel singlet 0.002 506 6 (2) 0.022 638 0.198 139 5 0.000 488 96 (3) 0.019 472 0.188 877 3 0.250 017 5
triplet 0.002 510 5 (2) − 0.000 490 51 (3) − 0.249 986 4

(εrel − εnr )/εrel (%) singlet 0.056 (8) 0.03 0.0069 3.129 (6) 0.11 0.159 0.0070
triplet 0.211 (8) − 3.435 (6) − −0.0054

energy calculated by nonrelativistic Hartree-Fock calculations
[85,86] and relativistic Dirac-Fock calculations [87]. For the
hydrogenlike atoms, the relativistic correction δε is in propor-
tion to Z4 and the binding energy ε is in proportion to Z2.
Thus the relativistic effect δε/ε is in proportion to Z2 within
the first-order perturbation theory. We found an empirical
trend on the alkali-metal atoms where δε/ε is almost in
proportion to Z2. A simple model, δε/ε = f Zm where f and
m are fitting parameters, gives m = 2.17 and f = 0.000 63 for
neutral alkali-metal atoms. We can see that the trends of LiPs+

and NaPs+ are clearly different from the electronic systems.
The largest value of δε/εrel in Table IV, namely, 3.435(6)% for
the NaPs+ triplet state, is comparable to that for the neutral Cs
atom, viz., 3.8%. For the negative ions of the host alkali-metal
atoms, Li− and Na−, the ratio of relativistic effects to the
binding energy are less dominant than those for positronic
alkali-metal atoms while they are the systems having smaller
binding energy than the neutral atoms Li and Na, respectively.

The importance of relativistic corrections in the binding
energy of positronic alkali-metal atoms can be explained by
positron screening of the valence electron charge. Because
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FIG. 3. Relativistic effects δε/ε are plotted against the nuclear
charge Z for various systems. Hydrogenlike atoms (H, He+, Li2+,
Na10+, K18+, Rb26+, and Cs54+) are shown in black downward
triangle symbols (�), alkali-metal atoms (Li, Na, K, Rb, Cs, and Fr)
in blue diamond symbols (�), alkali-metal negative ions (Li− and
Na−) in green upward triangle symbols (	), positronic alkali-metal
atoms (LiPs+ and NaPs+) in singlet states in orange circle symbols
(◦) and these in triplet states in red square symbols (�). The dashed
line is δε/ε = f Zm where m = 2 and f = 0.001 29 and dotted line
is δε/ε = f Zm where m = 2.17 and f = 0.000 63. Gray lines are
guides for comparison.

Ps is neutral, the long-range interactions (∝r−1) between the
positron or electron and the ion core are canceled out, and
these results in a loosely bound state of APs+. The distance
between Ps and the ion core is two to four times larger than
that for the neutral atom. The electron density, however, has a
small amplitude near re = 0 and is proportional to the valence
electron density of the alkali-metal atom, whereas the positron
cannot penetrate the strong Coulomb barrier of the nucleus.
Thus, the valence electron is screened by the positron in the
asymptotic region yet released near the nucleus, in which the
relativistic effect (∝Z4) resulting from the strong attraction
of the electron to the nucleus can become considerable. In
ordinary atoms as well as negative ions, the nonrelativis-
tic attraction—namely, the long-range interaction (∝r−1)—is
dominant, and the relativistic correction in the binding energy
can become less important, as shown for Li, Li−, Na, and Na−.

This mechanism can be supported by expectation values of
fragments of the perturbation Hamiltonian. The contribution
of the alkali-metal atom configuration in APs+ to the total
relativistic correction can be calculated by

α2
〈
H rel

Atom

〉 = α2〈�| − 1
8 p4

e + 1
8 p2

eVe(re)|�〉. (27)

The difference between the total relativistic correction and the
contribution of the alkali-metal atom configuration in APs+,
α2〈H rel

APs+〉 − α2〈H rel
Atom〉, is roughly attributed to the relativis-

tic correction originating from the formed Ps and A+-e+
repulsive correlation, whereas the correction for A+-e+ is
much smaller than that for Ps.

Figure 4(a) illustrates nonrelativistic and relativistic level
energies and relativistic corrections for LiPs+. The lowest
dissociation threshold A+ + Ps (1s) shifts to the lower side for
the singlet state and to the upper side for the triplet state by a
relativistic correction of α2〈φPs|H rel

Ps |φPs〉. The level energy of
the LiPs+ shifts to the lower side for the singlet state and to
the upper side for the triplet state. Both of the contributions
α2〈H rel

Atom〉 and α2〈H rel
APs+〉 − α2〈H rel

Atom〉 are negative in the
singlet state. On the other hand, for the LiPs+ triplet state, the
contribution of the alkali-metal atom configuration α2〈H rel

Atom〉
is negative, whereas the residual contribution α2〈H rel

APs+〉 −
α2〈H rel

Atom〉 is positive and overcomes α2〈H rel
Atom〉. The relativis-

tic level energy of the triplet state, therefore, shifts slightly to
the upper side overall.

The net relativistic correction δε in the binding energy is
given by the difference between the relativistic corrections for
the ground and dissociated states as follows:

δε = −εnr + εrel

= −�E rel
APs+ + �E rel

Ps . (28)
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FIG. 4. (a) Energy level diagram of LiPs+. Upper levels are
dissociation thresholds of Li+ + Ps and lower levels are bound state
of LiPs+ in nonrelativistic (nr) and relativistic frameworks (spin
singlet and triplet). Two-way arrows indicate the nonrelativistic and
relativistic binding energies (εnr and εrel). Relativistic corrections for
each of the bound and dissociation states are shown in rectangles
with one-way arrows. α2〈φPs|H rel

Ps |φPs〉 and α2〈H rel
Atom〉 are measured

from the nonrelativistic level energy, and α2〈H rel
APs+〉 − α2〈H rel

Atom〉 is
measured from the level energy shifted by α2〈H rel

Atom〉. (b) Com-
parison of the amount of relativistic corrections for LiPs+ bound
state as well as the relativistic correction of Ps. The amount of
the rectangles are the same as shown in (a). The net relativistic
correction δε corresponds to the difference between α2〈H rel

APs+〉 and
α2〈φPs|H rel

Ps |φPs〉.
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FIG. 5. (a) Energy level diagram of NaPs+. Upper levels are
dissociation thresholds of Na+ + Ps and lower levels are bound state
of NaPs+ in nonrelativistic (nr) and relativistic frameworks (spin
singlet and triplet). Two-way arrows and color notation of rectangles
are the same as Fig. 4(a). (b) Comparison of the amount of relativistic
corrections for NaPs+ bound state. The amount of the rectangles are
the same as shown in Fig. 4(b).

Figure 4(b) shows the relativistic corrections for LiPs+,
�E rel

Ps = α2〈φPs|H rel
Ps |φPs〉, α2〈H rel

Atom〉, α2〈H rel
APs+〉 −

α2〈H rel
Atom〉, and the total relativistic correction α2〈H rel

APs+〉. One
can see that the relativistic correction α2〈H rel

APs+〉 − α2〈H rel
Atom〉

has nearly the same value as the �E rel
Ps . Because the Ps in
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LiPs+ is only slightly deformed by the charge of the ion core,
almost the entirety of the relativistic correction of e−–e+ in
APs+ is canceled by �E rel

Ps in Eq. (28). The net relativistic
correction δε, therefore, can be attributed to the predominant
contribution of the alkali-metal atom configuration α2〈H rel

Atom〉.
Figure 5(a) illustrates nonrelativistic and relativistic level

energies and relativistic corrections for NaPs+. In the NaPs+

singlet state, as with the LiPs+ singlet state, both of the
contributions α2〈H rel

Atom〉 and α2〈H rel
APs+〉 − α2〈H rel

Atom〉 are neg-
ative. In the NaPs+ triplet state, on the other hand, the
negative contribution of the alkali-metal atom configura-
tion α2〈H rel

Atom〉 overcomes the residual positive contribution
α2〈H rel

APs+〉 − α2〈H rel
Atom〉. The relativistic level energy, there-

fore, shifts slightly to the lower side overall.
Figure 5(b) shows the relativistic corrections for NaPs+. As

in the case of LiPs+, the relativistic correction α2〈H rel
APs+〉 −

α2〈H rel
Atom〉 has the same value as �E rel

Ps . Therefore, because
of the same reason as LiPs+, the net relativistic correction δε

can be attributed to the predominant contribution of the alkali-
metal atom configuration α2〈H rel

Atom〉.
We conclude that relativistic corrections between the ion

core and valence electron are significant in a loosely bound
state of APs+, in particular contributed by e−–A+ interaction.
It is noted that in triplet state relativistic corrections of �E rel

Ps
and α2〈H rel

APs+〉 − α2〈H rel
Atom〉 are opposite sign to α2〈H rel

Atom〉
while in singlet state the same sign. Thus the ratio δε/ε in
triplet state becomes larger than that in singlet state.

IV. CONCLUSION

We investigated the binding energy of positronic alkali-
metal atoms based on a three-body model in a relativistic
perturbation framework. We constructed a model potential
for a valence electron in an alkali-metal atom to reproduce
the energy levels of an alkali-metal atom up to fine structure
splittings. The binding energies of LiPs+ and NaPs+ were
calculated based on Breit-Pauli interactions. We found that
the relativistic effects are significant for the shallow bind-
ing energy of APs+. There are two major reasons for this:
(i) When the valence electron is in the asymptotic region, its
charge is screened by the positron. The long-range nonrel-
ativistic potentials cancel out each other, resulting in small
binding energy. (ii) When the valence electron is near the
nucleus, the electron is released from the positron and subject
to significant relativistic effects. Due to the strong cancellation
of the nonrelativistic energy fractions between the bound state
and dissociation state, the role of the relativistic effects in the
binding energy, δε/ε, was found to be enhanced compared to
that in neutral alkali-metal atoms and even their negative ions.
It should be stressed that the role of the relativistic effects in
NaPs+ could be comparable to that in the ionization energy of
the Cs atom. In other words, determining the binding energy
of APs+ with a light element A is sensitive to the relativistic
effects arising from the electron motion near the nucleus. One
of the advantages to consider the relativistic effects in light
element systems is its validity of the first-order perturbation
approximation. For example, the relativistic corrections to the
binding energy of Cs54+ might not be converged yet up to the
first-order perturbation theory.

This work casts a question on the possibility of binding
of positronic potassium atom, KPs+. The K atom has smaller
ionization energy than Na atom, which implies that more Ps
fraction would appear if KPs+ had a bound state. So far, it has
been shown by a model potential calculation that KPs+ has
no bound state [12]. The role enhancement of the relativistic
effects in LiPs+ and NaPs+ found in this work could open
room for re-examination of KPs+ due to the larger nuclear
charge of the K atom. Note that standard perturbation theory
may not be adequate if the nonrelativistic framework could not
support such a bound state. In that case a careful discussion
would be required.

Our results imply that positronic atoms or molecules
with a dominant Ps component may be suitable systems
for investigating relativistic effects and perhaps even QED
effects. Whereas the QED effects are also enhanced in heavy
atoms, the perturbation expansion of the QED correction
converges very slowly depending on the nuclear charge [88].
The positronic atoms of light elements have a rather simple
electronic structure that be calculated with high precision,
whereas heavy atoms have a number of electrons that can
lead to considerable ambiguity in the theoretical calculations.
Besides, the precise test of QED in atomic systems usually
couples with a problem caused by the nuclear structure. The
nuclear structure of the light element atoms has been rather
well known. Thus, positronic systems with light elements and
with the dominant Ps component could be suitable systems for
investigating both relativistic and QED effects.

A precise measurement of the positronic atoms, therefore,
is of importance. In addition to previously proposed methods
to detect positronic atoms via charge exchange reaction [27],
resonant annihilation [28], and laser-assisted photoassociation
[29], recent experimental development of Ps beams [89–96]
may provide a chance to measure the binding energy of the
positronic atoms. Reaction from excited Ps was also proposed
[30]. For example, a reaction A + Ps → APs+ + e− would
be a subject of measurement where the emitted electron could
be a monoenergetic signal. Close to the APs+ formation
threshold, there are a three-body break-up thresholds of A +
e+ + e− and/or A+ + e− + e+; however, the energy spectrum
of these three-body breakup may be distinguished from two-
body rearrangement reaction, A + Ps → APs+ + e−.
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APPENDIX A: MATRIX ELEMENT OF SPIN-ORBIT
INTERACTION OPERATOR

Optimized parameters for the polarization potentials (5) of
Li and Na are listed in Tables V and VI, respectively.
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TABLE V. Optimized parameters for the polarization potentials
(5) of Li. Here, x [y] denotes x × 10y.

i bi Ci

1 2.348 260 858 827 47 [2] −1.615 630 842 936 47 [−5]
2 8.260 865 772 027 04 [1] −1.058 706 401 493 72 [−5]
3 4.105 150 560 834 80 [1] −1.557 545 329 691 19 [−3]
4 1.987 700 275 134 19 [1] −3.259 810 539 689 54 [−4]
5 1.195 656 152 364 13 [1] −3.393 568 251 031 92 [−10]
6 8.106 999 816 821 77 [0] −4.671 348 664 386 65 [−3]
7 6.946 156 810 093 45 [0] −1.442 211 304 465 44 [1]
8 3.250 657 257 461 99 [0] −4.033 864 484 436 69 [−1]
9 1.324 485 804 452 24 [0] −1.775 039 016 749 63 [−5]
10 5.657 199 530 148 65 [−1] −6.646 631 168 756 64 [−4]
11 1.243 790 923 296 86 [0] −9.989 988 668 301 03 [−3]
12 1.337 105 578 580 36 [0] −1.736 208 420 617 98 [−9]
13 7.614 409 763 004 15 [−1] −7.431 847 225 585 93 [−7]
14 6.336 285 280 845 93 [−1] −1.282 796 753 488 08 [−4]
15 3.715 748 452 086 13 [−1] −3.032 785 375 196 80 [−4]
16 2.408 417 752 218 74 [−1] −1.993 953 155 466 89 [−5]
17 1.223 451 658 524 78 [0] −1.244 822 276 836 18 [−2]
18 5.427 494 812 023 36 [−1] −1.117 179 578 161 56 [−3]
19 2.078 433 736 821 83 [−1] −8.375 080 887 479 97 [−5]
20 2.239 408 777 302 18 [−1] −1.574 188 130 032 42 [−4]
21 1.090 980 934 392 79 [−1] −1.947 147 565 378 42 [−5]
22 1.335 879 104 085 57 [−1] −3.848 098 040 990 84 [−5]
23 1.072 544 507 037 39 [−1] −5.078 167 797 042 44 [−6]
24 5.574 133 245 765 09 [−2] −6.284 395 752 377 76 [−6]
25 6.249 228 288 115 76 [−1] −8.747 085 148 481 34 [−7]
26 2.607 462 860 414 24 [−2] −3.226 561 230 876 73 [−7]
27 2.719 951 504 774 25 [−2] −3.203 692 914 856 89 [−7]
28 1.485 854 882 537 86 [−2] −3.603 057 757 850 35 [−8]
29 1.171 790 427 912 33 [−2] −3.626 779 492 546 43 [−8]
30 1.479 529 956 194 15 [−2] −7.839 726 549 503 17 [−9]
31 5.444 141 832 024 57 [−3] −5.610 883 571 889 69 [−9]
32 8.138 066 070 916 65 [−3] −9.560 946 068 594 06 [−10]
33 8.867 673 947 803 47 [−3] −3.161 985 118 539 55 [−9]
34 2.760 859 161 913 71 [−3] −3.942 904 979 995 06 [−10]
35 2.655 872 998 574 79 [−3] −2.061 233 518 034 44 [−10]
36 1.497 573 638 024 65 [−3] −7.069 367 822 069 22 [−11]
37 1.498 388 530 344 32 [−3] −2.122 482 850 614 02 [−11]
38 1.240 554 412 628 71 [−3] −1.266 270 285 170 48 [−11]
39 8.237 438 852 272 26 [−4] −1.079 738 363 094 42 [−11]
40 3.480 978 659 251 25 [−4] −3.204 139 991 288 66 [−12]

APPENDIX B: MATRIX ELEMENT OF SPIN-ORBIT
INTERACTION OPERATOR

We here briefly show the matrix elements of the H ′
so

vanishes for the ground state of LiPs+ and NaPs+ because an
orbital operator in H ′

so having rank one acts on orbital angular
functions of rank zero. A nonrelativistic total wave function
� given in different channel functions as in Eq. (13), can be

TABLE VI. Optimized parameters for the polarization potentials
(5) of Na. Here, x [y] denotes x × 10y.

i bi Ci

1 1.895 279 736 412 12 [2] −7.571 882 894 007 08 [−5]
2 9.801 701 309 066 59 [1] 2.310 847 720 713 46 [−5]
3 4.903 504 316 232 70 [1] −6.915 185 870 047 49 [−4]
4 2.491 912 354 107 60 [1] 3.237 572 920 920 10 [−4]
5 1.326 906 444 857 03 [1] −2.360 929 320 515 24 [−10]
6 7.259 433 255 168 92 [0] −4.912 507 939 455 13 [−4]
7 3.897 758 139 597 67 [0] −4.397 637 784 934 69 [0]
8 2.743 405 746 786 67 [0] −8.380 900 609 964 70 [0]
9 1.023 386 060 293 19 [0] −3.743 493 227 501 48 [−6]
10 4.310 960 468 290 70 [−1] −1.210 021 945 950 40 [−3]
11 1.187 873 271 778 34 [0] −2.435 186 444 327 05 [−1]
12 1.164 912 729 746 07 [0] 1.389 614 127 352 34 [−9]
13 8.866 893 564 610 15 [−1] −1.473 385 707 231 47 [−6]
14 6.285 095 689 030 20 [−1] −1.407 486 250 442 64 [−4]
15 7.242 332 595 306 84 [−1] 1.312 973 933 369 08 [−3]
16 3.727 063 400 793 99 [−1] −9.114 727 029 487 20 [−6]
17 4.435 870 360 550 11 [−1] −1.045 725 173 598 87 [−2]
18 2.052 872 492 592 96 [−1] −3.226 441 364 256 77 [−3]
19 1.189 514 108 753 53 [−1] −7.086 784 200 297 87 [−5]
20 1.111 178 683 596 44 [−1] −9.375 488 342 148 87 [−5]
21 8.094 684 777 026 66 [−2] −1.816 560 894 081 93 [−5]
22 6.694 390 239 056 50 [−2] −2.643 328 054 515 72 [−5]
23 4.488 912 770 617 52 [−2] −4.795 031 825 291 82 [−6]
24 3.499 333 910 599 93 [−2] −3.699 642 607 906 34 [−6]
25 2.627 743 298 150 02 [−2] −1.278 829 261 315 39 [−6]
26 1.804 936 967 631 64 [−2] −3.398 210 330 440 61 [−7]
27 1.315 925 694 031 23 [−2] −2.619 264 544 949 31 [−7]
28 9.973 452 870 100 61 [−3] −3.515 876 322 488 74 [−8]
29 6.653 080 733 267 68 [−3] −2.842 482 746 705 03 [−8]
30 5.441 610 354 738 76 [−3] −6.098 964 595 869 52 [−9]
31 4.892 869 463 705 85 [−3] −5.354 315 092 140 76 [−9]
32 3.256 113 353 648 58 [−3] −6.980 374 591 515 64 [−10]
33 2.796 515 176 169 38 [−3] −2.944 742 262 648 70 [−9]
34 1.656 309 307 937 64 [−3] −3.224 586 546 424 40 [−10]
35 1.205 635 056 112 34 [−3] −1.531 270 822 110 94 [−10]
36 1.013 294 533 403 96 [−3] −5.982 402 799 201 86 [−11]
37 8.038 463 372 726 12 [−4] −1.493 864 512 814 65 [−11]
38 5.475 410 390 620 09 [−4] −8.837 316 791 774 09 [−12]
39 4.057 601 762 092 01 [−4] −9.107 357 612 887 17 [−12]
40 2.736 472 371 157 78 [−4] −3.231 780 450 068 60 [−12]

rewritten in a given coordinate system (xc, yc),

� =
∑

i

AiRi(xc, yc)Wi(x̂c, ŷc), (B1)

where Ai is a linear coefficient, Ri(xc, yc) is a radial function
of xc and yc,Wi(x̂c, ŷc) is an spin-angular function of x̂c and
ŷc. Wi is written in the lth spherical harmonics Yl and spin
functions, χse and χsp (se = sp = 1/2), as

Wi(x̂c, ŷc) = [[
Yli (x̂c) ⊗ YLi (ŷc)

]
J ⊗ [

χse ⊗ χsp

]
S

]
FM =

∑
MJ MS

C(JMJSMS|FM )
[
Yli (x̂c) ⊗ YLi (ŷc)

]
JMJ

[
χse ⊗ χsp

]
SMS

=
∑

MJ MS

∑
mli mLi

∑
mse msp

C(JMJSMS|FM )C
(
limli LimLi

∣∣JMJ
)
C

(
semse spmsp

∣∣SMS
)
Ylimli

(x̂c) ⊗ YLimLi
(ŷc)χsemse

χspmsp
, (B2)
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where J is total orbital angular momentum, S is total spin angular momentum, F is total angular momentum, and
C( j1m1 j2m2| jm) is a Clebsh-Gordan coefficient. Since the nonrelativistic Hamiltonian does not have spin-dependent term, the
spin function inWi can be uniquely specified. A matrix element of an operator Ô is given by

Mi j[Ô] = AiA j〈RiWi|Ô|R jW j〉. (B3)

We first evaluate the angular integration ofMi j . The spin–orbit term involves six different operators, namely,

Ô1 = le · Se

re

dVe

dre
, (B4)

Ô2 = lep · Sp

r3
ep

, (B5)

Ô3 = lep · Se

r3
ep

, (B6)

Ô4 = lp · Sp

rp

dVp

drp
, (B7)

Ô5 = (rep × P) · Sp

r3
ep

, (B8)

and,

Ô6 = (rep × P) · Se

r3
ep

. (B9)

Evaluation of the matrix elementMi j[Ôk] (k = 1–6) can be divided into angular part and radial part. The matrix element of
Ô1 can be written in irreducible representation [97],

Mi j[Ô1] = AiA j〈RiWi|Ô1|R jW j〉 = AiA j
1√

2F + 1
〈Wi‖le · Se‖W j〉〈Ri| 1

re

dVe

dre
|R j〉. (B10)

The angular integration is further reduced using a relationship between scalar product le · Se and irreducible tensor product
[l̂e ⊗ Ŝe]0,

〈Wi‖le · Se‖W j〉 = −
√

3〈Wi‖[l̂e ⊗ Ŝe]0‖W j〉

= −3(2F + 1)

⎧⎨
⎩

J S F
J S F
1 1 0

⎫⎬
⎭〈[

Yli (x̂c) ⊗ YLi (ŷc)
]

J

∥∥l̂e
∥∥[

Ylj (x̂c) ⊗ YL j (ŷc)
]

J

〉〈[
χse ⊗ χsp

]
S

∥∥Ŝe

∥∥[
χse ⊗ χsp

]
S

〉
.

(B11)

Here, {· · · } is the Wigner’s 9 j symbol, which vanishes unless a triangular conditions are fulfilled for triads (J, J, 1), (S, S, 1),
(F, F, 0), and (J, S, F ). One can see that in J = 0, the Wigner’s 9 j symbol vanishes because the triad (J, J, 1) cannot be
fulfilled. In other words, the angular part of the nonrelativistic wave function of LiPs+ and NaPs+ written in rank zero (J = 0)
vanishes in the integration with the angular operator le of rank one. The matrix elementMi j[Ô1], therefore, has no contribution
to 〈H ′

so〉. In the same reason, matrix elementsMi j[Ôk] (k = 1–4) have no contribution to 〈H ′
so〉.

The matrix element of Ô5 is written as,

Mi j[Ô5] = AiA j〈RiWi|Ô5|R jW j〉

= AiA j
1√

2F + 1
〈RiWi‖Ô5‖R jW j〉

= AiA j
1√

2F + 1

{√
6〈Wi‖[[r̂ep ⊗ R̂]1 ⊗ Ŝe]0‖W j〉〈Ri|rep

∂

∂R
|R j〉

+
√

12〈Wi‖[[r̂ep ⊗ [R̂ ⊗ L̂]1]1 ⊗ Ŝe]0‖W j〉〈Ri| rep

R
|R j〉

}
, (B12)

where L̂ is angular momentum operator on coordinate R. The angular part of the first term of Eq. (B12) can be reduced as

〈Wi‖[[r̂ep ⊗ R̂]1 ⊗ Ŝe]0‖W j〉

= (2F + 1)

⎧⎨
⎩

J S F
J S F
1 1 0

⎫⎬
⎭〈[

Yli (r̂ep) ⊗ YLi (R̂)
]

J

∥∥[r̂ep ⊗ R̂]1

∥∥[
Ylj (r̂ep) ⊗ YL j (R̂)

]
J

〉〈[
χse ⊗ χsp

]
S

∥∥Ŝe

∥∥[
χse ⊗ χsp

]
S

〉
. (B13)

062511-10



RELATIVISTIC CORRECTIONS TO THE BINDING … PHYSICAL REVIEW A 100, 062511 (2019)

The angular part in the latter term is reduced as

〈Wi‖[[r̂ep ⊗ [R̂ ⊗ L̂c]1]1 ⊗ Ŝe]0‖W j〉 = (2F + 1)

⎧⎨
⎩

J S F
J S F
1 1 0

⎫⎬
⎭〈[

Yli (r̂ep) ⊗ YLi (R̂)
]

J

∥∥[r̂ep ⊗ [R̂ ⊗ L̂]1]1

∥∥[
Ylj (r̂ep) ⊗ YL j (R̂)

]
J

〉

× 〈[
χse ⊗ χsp

]
S

∥∥Ŝe

∥∥[
χse ⊗ χsp

]
S

〉
. (B14)

In the same reason asMi j[Ôk] (k = 1–4), the Wigner’s 9 j symbol becomes zero in J = 0. Therefore,Mi j[Ô5] neither contributes
to 〈H ′

so〉. Similarly, Mi j[Ô6] has no contribution to 〈H ′
so〉. Thus in total 〈H ′

so〉 has no contribution in relativistic corrections of
positronic alkali-metal atoms.
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