
PHYSICAL REVIEW A 100, 062509 (2019)

Understanding the nature of mean-field semiclassical light-matter dynamics: An investigation of
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Semiclassical electrodynamics (with quantum matter plus classical electrodynamics fields) is an appealing
approach for studying light-matter interactions, especially for realistic molecular systems. However, there is no
unique semiclassical scheme. On the one hand, intermolecular interactions can be described instantaneously by
static two-body interactions connecting two different molecules, while a classical transverse E field acts as a
spectator at short distance; we will call this Hamiltonian no. I. On the other hand, intermolecular interactions
can also be described as effects that are mediated exclusively through a classical one-body E field without
any quantum effects at all (assuming we ignore electronic exchange); we will call this Hamiltonian no. II.
Moreover, one can also mix these two different Hamiltonians into a third, hybrid Hamiltonian, which preserves
quantum electron-electron correlations for lower excitations but describes higher excitations in a mean-field
way. To investigate which semiclassical scheme is most reliable for practical use, here we study the real-time
dynamics of a minimalistic many-site model—a pair of identical two-level systems (TLSs)—undergoing either
resonance energy transfer (RET) or collectively driven dynamics. While both approaches (no. 1 and no. 2)
perform reasonably well when there is no strong external excitation, we find that no single approach is perfect
for all conditions (and all methods fail when a strong external field is applied). Each method has its own
distinct problems: Hamiltonian no. I performs best for RET but behaves in a complicated manner for driven
dynamics; Hamiltonian no. II is always stable, but obviously fails for RET at short distances. One key finding is
that, for externally driven dynamics, a full configuration-interaction description of Hamiltonian no. I strongly
overestimates the long-time electronic energy, highlighting the not obvious fact that, if one plans to merge
quantum molecules with classical light, a full, exact treatment of electron-electron correlations can actually lead
to worse results than a simple mean-field electronic structure treatment. Future work will need to investigate (i)
how these algorithms behave in the context of more than a pair of TLSs and (ii) whether or not these algorithms
can be improved in general by including crucial aspects of spontaneous emission.
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I. INTRODUCTION

Recent experiments demonstrating collective phenomena
with nanoscale light-matter interactions [1–3] have high-
lighted the need for computational simulations of realistic
molecular systems [4–6].

Unfortunately, full quantum electrodynamical calculations
scale unfavorably with the number of quantized photonic
modes. Moreover, full QED is compatible only with full
configuration interactions (CIs) for the description of the
matter system, such that QED also scales unfavorably with
the number of molecules. Thus, mixed quantum-classical
electrodynamics is a promising approach with reduced com-
putational cost: one treats electronic or molecular subsystems
with approximate quantum mechanics and describes light
fully classically. For decades, semiclassical electrodynamical
simulations have captured many exciting phenomena in the
field of quantum optics and spectroscopy [7–14].
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Nevertheless, semiclassical electrodynamics suffers from
many well-known issues. First, vacuum fluctuations are ig-
nored due to the classical treatment of electromagnetic (EM)
fields, which are usually calculated via a mean-field (Ehren-
fest) approximation. Owing to the failure of the classical
EM field description, semiclassical electrodynamics cannot
fully recover any pure quantum effects for a single electronic
system, which includes spontaneous emission [15,16]; see the
important discussion of this point in Refs. [17,18] by Miller
and Milonni, respectively. To date, many researchers (includ-
ing the present authors) continue to develop new methods for
adding in spontaneous emission on top of semiclassical theory
[6,19–22].

The second issue for semiclassical electrodynamics is that
there is no unique semiclassical Hamiltonian and, inevitably,
some inconsistency must arise because of the semiclassical
ansatz. After all, how should we treat electron-electron inter-
actions? Are they instantaneous and static? Are they mediated
exclusively by the EM field or not? If one chooses a static pic-
ture, one assumes the electronic Hamiltonian is a combination
of quantum two-body terms plus an electric dipole coupling
term (which defines Hamiltonian no. I in Ref. [23]); here one
finds that one can predict an accurate short-range resonance
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energy transfer (RET) rate but at the cost of violating the
long-range causality due to a quantum-classical mismatch of
intermolecular interactions [23]. By contrast, if one chooses
to couple matter exclusively through the field, one assumes
the electronic Hamiltonian will have only an extended dipole
coupling term (which defines Hamiltonian no. II); here one
finds that one fails to capture any short-range RET rate
quantitatively due to the lack of quantum electron-electron
correlations but strictly preserves causality [23].

The problem of correlation versus causality is usually
ignored in the literature. Nowadays, almost all calculations
use Hamiltonian no. II at the cost of inaccurate short-range
interactions [10,24–26]. Of course, one means of improving
Hamiltonian no. II is to use density functional theory (DFT)
for electronic structure. In principle, DFT or time-dependent
DFT can give exact electronic structure while maintaining
the single-body nature of the electronic Hamiltonian. Be-
yond DFT, however, there is very little work using explicitly
correlated electronic wave functions interacting with both
external and internal EM fields. In general, if one wants to
use explicitly correlated electronic wave functions (to account
for electron-electron correlations) while studying light-matter
interactions, to date the usual premise has been to first diago-
nalize a molecular electronic Hamiltonian (with no explicit
electric field but rather only with instantaneous Coulomb
terms) and then allow the resulting many-body electronic
states to interact with an external electric field [27–31]. As
such, the electronic dynamics as induced by internally gener-
ated dynamic electric fields is not usually accounted for. As a
result, almost all standard approaches fail to capture some key
effects of collective phenomena, for example, modification
of the spontaneous decay rate, the effect of the dielectric
constant, or even the presence of an RET rate [32–34].

For our purposes, we will not invoke DFT in the present
paper, and our goal is to establish a clean benchmark of
Hamiltonians no. I and no. II dynamics, and distinguish
between purely mean-field (MF) electronic dynamics and
explicitly correlated electronic dynamics. We will attempt to
answer the following equations.

(i) By including quantum electron-electron correlations, is
Hamiltonian no. I always superior to Hamiltonian no. II in
practice?

(ii) Can we always improve semiclassical results for
Hamiltonian no. I by treating quantum electron-electron
correlations at a higher level of accuracy? For example,
in the context of a Hartree-Fork (HF) ground state and
configuration-interaction singles (CIS) excited states, does the
performance always improve if we increase the size of our
CI Hamiltonian to include higher excited CIs (e.g., doubly
excited CIs)?

In order to answer these questions, we will investigate RET
and collectively driven electronic dynamics for a minimalistic
two-site model within the framework of mean-field Ehrenfest
dynamics. While we have previously applied the same model
to study the short-time RET rate [23], we will now study
long-time RET dynamics as well as the crucial effects of
including an external driving field (using a standard dyadic
Green’s-function technique; see Appendix A). Understanding
this minimal model should pave the way for improving the
currently available semiclassical methods.

This paper is organized as follows. In Sec. II, we introduce
the framework of mean-field Ehrenfest dynamics as well as
different semiclassical Hamiltonians. In Sec. III, we introduce
the model and parameters for simulations. In Sec. IV, we
present results for RET and driven dynamics, showing that
some unexpected, anomalous behavior can emerge. In Sec. V,
we explain the reasons for this reported anomaly. We conclude
in Sec. VI.

II. METHOD: SEMICLASSICAL ELECTRODYNAMICS

As a brief review, we will now review the conventional
semiclassical method—mean-field (Ehrenfest) dynamics—
for propagating light-matter electrodynamics. First, accord-
ing to which the matter side obeys the time-dependent
Schrödinger equation,

d

dt
|�N (t )〉 = − i

h̄
ĤSC|�N (t )〉. (1)

Here, |�N 〉 denotes the electronic wave function for N
molecules, and ĤSC denotes the semiclassical Hamiltonian,
which will be introduced later. Second, for the EM side, the
classical Maxwell equations are evolved:

∂

∂t
B(r, t ) = −∇ × E(r, t ), (2a)

∂

∂t
E(r, t ) = c2∇ × B(r, t ) − J(r, t )

ε0
, (2b)

where ε0 denotes the vacuum permittivity. Here, the current
density J(r, t ) is calculated by a mean-field approximation:

J(r, t ) =
N∑

n=1

∂

∂t
Tr[ρ̂(t )P̂ (n)

(r)]. (3)

Here, P̂ (n)
denotes the polarization density operator for

molecule n. Equations (1)–(3) are called the coupled
Maxwell-Schrödinger equations. In this framework, the only
remaining question is how to define the form of ĤSC.

A. Hamiltonian no. I

For neutral and nonoverlapping molecules that interact
with the E field solely, the standard semiclassical Hamiltonian
reads [35]

Ĥ I
SC =

N∑
n=1

Ĥ (n)
s −

∫
dr E⊥(r, t ) · P̂ (n)

(r) +
∑
n<l

V̂ (nl )
Coul. (4)

Here, Ĥ (n)
s denotes the molecular Hamiltonian for molecule n;

molecules interact with each other through a classical trans-
verse E field E⊥, and electron-electron correlations between
molecules are characterized by the intermolecular Coulomb
operator

V̂ (nl )
Coul = 1

ε0

∫
drP̂ (n)

‖ (r) · P̂ (l )
‖ (r). (5)

We note that V̂ (nl )
Coul scales as 1/R3 (where R denotes

intermolecular separations), and
∫

dr E⊥(r, t ) · P̂ (n)
(r)

scales as 1/R. Thus, V̂ (nl )
Coul dominates short-range inter-

molecular interactions, while E⊥(r, t ) dominates long-range
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intermolecular interactions. For usual Förster resonance en-
ergy transfer (FRET) [36], we usually account only for V̂ (nl )

Coul,
leading to a 1/R6 dependence of the energy transfer rate
(which follows from a Fermi’s “golden rule” calculation).

According to Eqs. (4) and (5), the exchange operator
between molecules is neglected, which is adequate when the
wave functions between molecules do not overlap. In this
paper, we will call Eq. (4) Hamiltonian no. I. In general,
for N two-level systems (TLSs), the quantum two-body term
V̂ (nl )

Coul introduces a great deal of computational complexity.
Hamiltonian no. I formally should require a Hilbert space of
size 2N . Thus, in practice, when modeling electrodynamics,
one is forced to construct approximations to Hamiltonian
no. I, of which there are many. We will now investigate
two such variants with different electronic structure theories
to propagate the time-dependent Schrödinger equation.

1. Time-dependent full configuration interaction

To fully account for V̂ (nl )
Coul, if one has the means, one can

propagate the time-dependent Schrödinger equation in a com-
plete basis using Hamiltonian no. I. These exact, molecular
quantum dynamics are known as time-dependent full config-
uration interaction (TD-FCI). Obviously, TD-FCI is possible
only for simple models, i.e., a few TLSs, as 2N grows fast for
large N .

2. Time-dependent configuration-interaction singles

For large systems with many molecules, in order to reduce
the computational cost, the most common treatment is to
truncate Hamiltonian no. I at the level of single excitations,
also called the time-dependent configuration-interaction sin-
gles (TD-CIS) method. Here, the time-dependent electronic
wave function is expanded as

|�N (t )〉 ≈ |�CIS(t )〉 =
∑

I

CI(t )|�I〉 (6a)

where CI(t ) is a time-dependent coefficient and |�I〉 denotes
the corresponding Ith CIS state, which is defined as

|�I〉 = D0,I

∣∣�HF
0

〉+ Ne
2∑

i=L

M∑
a= Ne

2 +1

Da
I,i

∣∣�a
i

〉
. (6b)

Here, |�HF
0 〉 denotes the restricted Hartree-Fock ground state

for the electronic degrees of freedom in the absence of EM
fields, |�a

i 〉 denotes a singly excited state by exciting an
electron from an occupied molecular orbital (MO) i to an
unoccupied MO a, Ne denotes the number of electrons, L is
the lowest occupied orbital, and M is the highest unoccupied
orbital.

Given the CIS wave function that is defined in Eq. (6), one
can propagate the wave function as

d

dt
CI (t ) = − i

h̄

∑
J

〈�I |Ĥ I
SC|�J〉CJ (t ) (7)

where Ĥ I
SC is already defined in Eq. (4).

B. Hamiltonian no. II

Even simpler than TD-CIS, a more radical solution is to
invoke the mean-field approximation (or Hartree approxima-
tion) for V̂ (nl )

Coul [Eq. (5)]:

V̂ (nl )
Coul ≈ 1

ε0

∫
dr[P (n)

‖ (r, t ) · P̂ (l )
‖ (r) + P (l )

‖ (r, t ) · P̂ (n)
‖ (r)]

− 1

ε0

∫
drP (n)

‖ (r, t ) · P (l )
‖ (r) (8a)

≈ 1

ε0

∫
dr[P (n)

‖ (r, t ) · P̂ (l )
‖ (r) + P (l )

‖ (r, t ) · P̂ (n)
‖ (r)]

× (up to a constant) (8b)

where P (n)
‖ (r, t ) denotes the longitudinal component

of the classical polarization density for molecule
n. Keen readers might well be confused about the
mean-field treatment in Eq. (8a): Why not take V̂ (nl )

Coul ≈
1

2ε0

∫
dr[P (n)

‖ (r, t ) · P̂ (l )
‖ (r) + P (l )

‖ (r, t ) · P̂ (n)
‖ (r)] instead?

The motivation behind Eq. (8a) is twofold: (i) Eq. (8a) allows
us to define a semiclassical Hamiltonian that strictly preserves
causality, as is shown below; (ii) the mean-field expansion in
Eq. (8a) is already standard in the area of many-body physics;
see Ref. [37] for a brief introduction. Because the last term in
Eq. (8a) is just a time-dependent constant and will not alter
the equations of motion for the molecular part, this term can
be further neglected, leading to Eq. (8b).

By substituting Eq. (8b) into Eq. (4), and using E(n)
‖ =

− 1
ε0

∑
n P(n)

‖ , we arrive at Hamiltonian no. II:

Ĥ II
SC =

N∑
n=1

Ĥ (n)
MF (9)

where

Ĥ (n)
MF = Ĥ (n)

s −
∫

dr E(r, t ) · P̂ (n)
(r)

+ 1

ε0

∫
drP (n)

‖ (r, t ) · P̂ (n)
‖ (r). (10)

Within Hamiltonian no. II, molecules interact with each other
only through a classical E field E(r, t ), and the last term
above [in Eq. (10)] denotes the semiclassical self-polarization,
which effectively renormalizes the energy levels of molecules
slightly and does not significantly alter the overall dynam-
ics. Hence, we will neglect the last term in our numerical
simulations. One might wonder whether energy conservation
is still valid if the last term is neglected—indeed, energy
conservation can be guaranteed if we simply redefine the
conserved quantity [23].

Time-dependent Hartree method

Given the one-body nature of Hamiltonian no. II, the
time-dependent Schrödinger equation can be evolved exactly
with simple time-dependent Hartree (TDH) dynamics, i.e., the
electronic wave function can be written as a Hartree product:

|�N (t )〉 = |ψ1(t )〉|ψ2(t )〉 · · · |ψN (t )〉 (11)

where |ψn(t )〉 denotes an effective one-body wave function for
molecule n = 1, 2, . . . , N . Following the variational principle
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[38], the equation of motion for each orbital |ψn(t )〉 can be
obtained as

d

dt
|ψn(t )〉 = − i

h̄
Ĥ (n)

MF|ψn(t )〉 (12)

where Ĥ (n)
MF is defined in Eq. (10), and P (n)

‖ (r, t ) =
〈ψn(t )|P̂ (n)

‖ (r)|ψn(t )〉.

C. Hybrid Hamiltonian

While Hamiltonian no. I treats only the transverse E field
classically, Hamiltonian no. II treats all intermolecular inter-
actions classically. Interestingly, we can write both of these
Hamiltonians in a uniform way:

ĤSC = Ĥ II
SC + Q̂δV̂CoulQ̂ (13)

where δV̂Coul is defined as

δV̂Coul ≡
∑
n �=l

V̂ (nl )
Coul − 1

ε0

∫
dr[P (n)

‖ (r, t ) · P̂ (l )
‖ (r)

+ P (l )
‖ (r, t ) · P̂ (n)

‖ (r)] (14)

and Q̂ denotes a projection operator into a subspace (W ) of
the electronic states:

Q̂ ≡
∑
i∈W

|i〉〈i|. (15)

When W = {∅}, Q̂ = 0, and Eq. (13) reduces to Hamiltonian
no. II; when W is the entire electronic manifold of states
S , Q = 1, and Eq. (13) reduces to Hamiltonian no. I. By
choosing an arbitrary subspace in between {∅} and S , we
can find intermediate Hamiltonians in between Hamiltonians
no. I and no. II. Hence, Eqs. (13)–(15) form a generalized
definition of a semiclassical Hamiltonian. Clearly, the choice
of the subspace will play an important role in the quality of
the Hamiltonian. In this paper, we define one intermediate
subspace as

W0+1 = {ground or single excitonic states}. (16)

We call Eqs. (13)–(16) a hybrid Hamiltonian (Ĥhyb
SC ), in which

there are two-body couplings (V̂ (nl )
Coul) for the ground and singly

excited states, but the double and higher excited states are
entirely decoupled and reduced to mean-field interactions.

Time-dependent hybrid method

For the hybrid Hamiltonian, the many-body wave function
can be expanded as the sum of two different contributions:

|�N (t )〉 = |�CIS(t )〉 ⊕ |ψHE(t )〉 (17)

Here, |�CIS(t )〉 characterizes the wave function for the CIS
states, which is defined in Eq. (6), and |ψHE(t )〉 characterizes
the wave function for higher excitations. On the one hand, we
evolve |�CIS(t )〉 by TD-CIS as in Eq. (7); on the other hand,
because each higher excited state interacts with other states
(i.e., CIS and other higher excited states) solely through a
classical E field, these states can be propagated independently
with TDH as in Eq. (12). For example, for a pair of TLSs,
the explicit form of the hybrid Hamiltonian is presented in
Eq. (A32).

ground 
state

singles

higher 
excitons

Transverse  

Quantum  
Coulombic  
interactions

Molecule

H No.I FCI H No.I CI

H No.II H hybrid

FIG. 1. Four semiclassical approaches: Hamiltonian no. I FCI,
Hamiltonian no. I CIS, Hamiltonian no. II, and the hybrid Hamilto-
nian. Intermolecular interactions are incorporated by quantum inter-
molecular Coulomb interactions plus a classical transverse E field for
Hamiltonian no. I and by a classical total E field for Hamiltonian II.
For the hybrid Hamiltonian, the ground state and singles are treated
with Hamiltonian no. I CIS, while higher excitations interact with
others (and themselves) through a classical E field solely.

D. Summary of semiclassical Hamiltonians

Figure 1 depicts the four different semiclassical approaches
(Hamiltonian no. I FCI, Hamiltonian no. I CIS, Hamiltonian
no. II, and a hybrid Hamiltonian) that have been introduced
above. In this illustration, we highlight how intermolecular
interactions are described differently in these approaches.

Table I also summarizes the important features of these
Hamiltonians, e.g., defining equations, whether or not quan-
tum electron-electron correlations are accounted for, compu-
tational complexity as a function of molecular number (N),
and whether long-range causality is preserved or not.

III. MODEL

Hereafter, natural units will be used: [h̄] = [c] = [ε0] = 1.
We will perform calculations with a minimalistic quantum
model—a pair of identical TLSs (labeled as D and A). The
molecular Hamiltonian for molecule n = D, A reads

Ĥ (n)
s = h̄ω0σ̂

(n)
+ σ̂

(n)
− (18)

where h̄ω0 denotes the energy gap between the ground state
|ng〉 and excited state |ne〉 for molecule n, σ̂ (n)

+ ≡ |ne〉〈ng|, and
σ̂

(n)
− ≡ |ng〉〈ne|. After the long-wavelength approximation,

P̂ (n)
(r) reads

P̂ (n)
(r) = μgee(n)

d δ(r − rn)σ̂ (n)
x (19)

where σ̂ (n)
x = |ng〉〈ne| + |ne〉〈ng|, μge denotes the magnitude

of the transition dipole moment, and e(n)
d and rn denote the

unit vector along the transition dipole and the position of
molecule n.

For our simulation parameters, we suppose that the TLSs
are positioned symmetrically at rn = (0,±R

2 , 0), and their
transition dipole moments are both oriented along the z axis
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TABLE I. Synopsis of the main features of the semiclassical Hamiltonians for modeling light-matter interactions.

Approach Definition Quantum e-e correlations Computational complexity Causality

No. I FCI Eqs. (4) and (5) Fully accounted for O(2N ) Violated
No. I CIS Eqs. (4)–(6a) Partially accounted for O(N2) Violated
No. II Eqs. (9) and (10) None O(N ) Preserved
Hybrid Eqs. (13)–(16) Partially accounted for O(N2) Violated

(e(n)
d = ez). We set ω0 = 1 and μge = 0.1. In vacuum, the

spontaneous emission rate for a single TLS is defined as

kFGR = ω3
0μ

2
ge

3πε0c3h̄
. (20)

With these parameters above, kFGR = 1.6 × 10−3. To charac-
terize the separation between TLSs, a dimensionless quantity
k0R = ω0R

c is used. Finally, we will choose the intermolecular
separation to be k0R = 0.4 (by default), corresponding to the

dipole-dipole interaction vdd = μ2
ge

4πε0R3 = 1.2 × 10−2.
Since we operate in vacuum with no dielectric, we can

calculate the time-dependent E field by the dyadic Green’s-
function technique [39] instead of numerically solving Eq. (2)
in a three-dimensional grid [40]; see Appendix A for details.
We numerically solve the reduced equation of motion for the
molecular subsystem by a Runge-Kutta fourth-order propaga-
tor [41] with the time step �t = 0.01.

IV. RESULTS

After introducing the model Hamiltonian and relevant dy-
namical methods, we will now perform simulations to mimic
two different phenomena: (i) RET with no external EM field
and (ii) driven dynamics under an external driving cw field.

For each case, four semiclassical treatments are consid-
ered: (i) Hamiltonian no. I FCI, (ii) Hamiltonian no. I CIS,
(iii) Hamiltonian no. II, and (iv) the hybrid Hamiltonian. To
examine the performance of semiclassical approaches, we will
compare them against either the time-dependent perturbative
QED result [42,43] or the results of the Lehmberg-Agarwal
master equation (LAME) [44,45]—the standard quantum ap-
proach for describing the dynamics of TLSs in quantum
optics; see Appendix B for details. Note that all LAME results
presented below are calculated with FCI.

A. Resonance energy transfer

For RET, no external driven field is considered. The donor
(D) is initialized in a superposition state (cg|Dg〉 + ce|De〉,
where |cg|, |ce| > 0), and the acceptor (A) is initialized in
the ground state. Here, we choose a superposition state for
the donor so that we can initialize a time-dependent current
density (and therefore EM field) without invoking any ex-
ternal EM fields. It is well known that Ehrenfest dynamics
can depend (unphysically) on the initial state for the donor;
for example, if ce = 1, Ehrenfest dynamics do not predict
any spontaneous emission and are completely wrong. We
consider two regimes: short-time dynamics, from which a
RET rate (kET) can be extracted (see Appendix C for details),
and long-time dynamics, in which dissipation effects become
important.

1. RET rate

Figure 2 plots the RET rate as a function of intermolecular
separation (k0R, where k0 ≡ ω0

c ). Here, the perturbative QED
calculation (black line) suggests that the RET rate obeys
two mechanisms in different separation limits: at short range
(k0R � 1), the RET rate scales as 1

R6 due to dipole-dipole in-
teractions, known as FRET [36]; at long range (k0R 
 1), the
RET rate scales as 1

R2 because the transverse E field dominates
energy transfer [46]. In general, all semiclassical approaches
qualitatively predict these scalings but not quantitatively. For
example, at short range, Hamiltonian no. I [FCI (red circles)
and CIS (blue triangles)] and the hybrid Hamiltonian (yellow
squares) quantitatively agree with QED while Hamiltonian
no. II (cyan stars) predicts only a fraction of the true RET
rate (proportional to the ground-state population of the donor
ρ (D)

gg (0); see Appendix C for an analytic proof).
At long range, not surprisingly, because all semiclassical

approaches use a classical E field and ignore vacuum fluctua-
tions, none of the methods can predict the RET rate correctly

1 2 3 4
intermolecular separation k0R

10−8

10−7

10−6

10−5

R
E
T

ra
te

(a
rb

.
u
n
it
s)

No.I FCI

No.I CIS

No.II

hybrid

QED

QED ×ρ(D)
gg (0)

FIG. 2. RET rate as a function of intermolecular separation (k0R)
according to five approaches: Ehrenfest dynamics with (i) Hamil-
tonian no. I FCI (red circles), (ii) no. I CIS (blue stars), (iii) no.
II (cyan stars), (iv) a hybrid Hamiltonian (yellow squares), and (v)
the perturbative QED result (black line). At short range (k0R < 1),
Hamiltonian no. I and the hybrid Hamiltonian exactly agree with
QED due to the use of a quantum dipole-dipole interaction; at long
range (k0R > 1), no semiclassical approaches can quantitatively pre-
dict the QED result because all methods ignore vacuum fluctuations,
and the correct physical mechanism is akin to spontaneous emission
from one TLS followed by absorption by the other TLS. Note that
the RET rate predicted by Hamiltonian no. II is exactly the QED
rate times the initial ground-state population of the donor [ρ (D)

gg (0),
the gray line]; see Appendix C for an analytic proof. The donor is

initialized to
√

1
10 |Dg〉 +

√
9

10 |De〉 and the acceptor starts off in the

ground state; all other parameters are the same as Ref. [23].
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FIG. 3. Long-time RET population dynamics as a function of time when k0R = 0.4. Left: Excited-state population for the (a) donor and
(c) acceptor, and (e) impurity of the one-electron reduced density matrix (1-RDM) when ρ (D)

ee (0) = 0.1. Right: The same dynamics when
ρ (D)

ee (0) = 0.9. Several approaches are compared: Ehrenfest dynamics with (i) Hamiltonian no. I FCI or CIS (these dynamics are identical
here and represented by only one single solid red line), (ii) no. II (solid cyan), (iii) a hybrid Hamiltonian (dash-dotted yellow), and (iv) the
Lehmberg-Agarwal master equation (LAME, dashed black). Note that all semiclassical approaches agree with the LAME when the donor is
weakly excited initially (see left panel) but predict less dissipation when the donor is strongly excited initially (see right panel). All parameters
are set to the default values in Sec. III.

(when |cg| � 1). After all, in this limit, the correct physical
mechanism is akin to spontaneous emission from one TLS
followed by absorption by the other TLS. Interestingly, in
this limit, Hamiltonian no. I CIS predicts an RET rate with a
larger error than Hamiltonian no. I FCI; the underlying reason
for this deterioration of accuracy is not obvious because,
according to QED, excluding the doubly excited state should
not alter the RET rate if the double is not populated initially
(as is true for RET).

2. Long-time RET dynamics

Figure 3 plots (from top to bottom) the long-time RET
population dynamics for the donor and acceptor, as well as the
impurity of the one-electron reduced density matrix (1-RDM)
when the TLSs are close (k0R = 0.4). Here, the impurity of
the 1-RDM is a measure to characterize how much the elec-
tronic states of different molecules are mixed. For example,
when Hamiltonian no. II (solid cyan) is used, because the total
wave function for a pair of TLSs can always be separated
as a product of the wave functions for each TLS (which is
certainly not true if other approaches are used), the impurity
of 1-RDM is always zero (provided it starts at zero). Formally,
the impurity of 1-RDM is calculated by Tr[M] − Tr[M2],
where the matrix elements of the 1-RDM (M) are defined to be

Mμi,ν j = 〈�N |â†
iμâ jν |�N 〉. (21)

Here, {μ, ν} = {1, 2, . . . , N} index the TLSs, {i, j} = {e, g}
index the electronic states, and â†

μi and âμi are the creation
and annihilation operators for electronic state |μi〉.

When the donor is weakly excited initially [ρ (D)
ee (0) =

0.1, left panel], all semiclassical approaches predict the
same population dynamics [Figs. 3(a) and 3(c)] as the

Lehmberg-Agarwal master equation (dashed black). These
predictions agree with the consensus that a mean-field approx-
imation should be valid when the donor is weakly excited, i.e.,
in the perturbative regime, where a classical E field is good
enough. When the donor is strongly excited [ρ (D)

ee (0) = 0.9,
right panel], the semiclassical approaches can still predict
some key features in population dynamics like oscillations
(due to the dipole-dipole interaction), the dissipation, and the
long-time slow decay of the dark state, but the dissipation rate
is underestimated compared to the LAME. In general, due to a
lack of quantum dipole-dipole interactions, Hamiltonian no. II
(solid cyan) predicts slightly less accurate oscillation periods
than other semiclassical approaches.

More interestingly, for the impurity of the matter 1-RDM
[Figs. 3(e) and 3(f)], we find that the more one properly
accounts for quantum dipole-dipole interactions the larger is
the impurity of the matter subsystem as predicted by semi-
classical dynamics [i.e., as far as the impurity of the matter
subsystem, LAME > Hamiltonian no. I FCI(CIS) > the
hybrid Hamiltonian > Hamiltonian no. II = 0]. In Fig. 3(f),
the LAME predicts an impurity around 1

2 at the long times,
which can be understood as follows: for a pair of TLSs in
vacuum, if the donor is fully excited, the final state for the
TLSs plus the photonic field should be 1√

2
|gg; 1〉 + 1√

2
|d; 0〉,

where |gg; 1〉 denotes the TLSs in the ground state plus an
emitted photon and |d; 0〉 denotes the TLSs in the dark state
associated with no photon; thus, the corresponding reduced
density matrix for the electronic degrees of freedom is M =
(

1
2 0
0 1

2
), so that the impurity is 1

2 . By contrast, the fact that
Ehrenfest is too pure (with an impurity much smaller than
the LAME) is a statement that additional decoherence is
needed.
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FIG. 4. Peak frequency of the scattered E field as a function of
the initial excited-state population for the donor [ρ (D)

ee (0)]. Hamilto-
nian no. II disagrees with the LAME when ρ (D)

ee (0) increases, while
the other semiclassical approaches agree with the LAME relatively
well. A Fourier transform of the scattered E field is performed when
0 < t < k−1

FGR, and we choose the frequency with the largest Fourier
amplitude. All other parameters are the same as in Fig. 3.

Apart from the RET dynamics of the two-level molecules,
it is also worthwhile to study the frequency of the scattered E
field. Figure 4 plots the frequency of the scattered E field as
a function of the initial excited state donor population ρ (D)

ee (0)
during RET dynamics. As predicted by the LAME, the fre-

quency of the E field should not depend on ρ (D)
ee (0). However,

we find that Hamiltonian no. II (cyan stars) disagrees with
the LAME and shows a slightly nonphysical behavior when
ρ (D)

ee (0) gradually increases; by contrast, all other semiclassi-
cal approaches agree with the LAME relatively well.

From the above RET results, we gather that Hamiltonian
no. II is slightly less accurate than the other semiclassical
approaches especially when the donor becomes more than
weakly excited, in which case one should include quantum
dipole-dipole interactions.

B. Collectively driven dynamics

Now, let us move to the case of collectively driven dynam-
ics for a pair of TLSs prepared initially in the ground state.
The incident cw field takes the following form: Ein(r, t ) =
E0 sin(ω0t − k0x)ez. To characterize the strength of the cw
field, the Rabi frequency (
 ≡ μgeE0) is a good indicator:

 < kFGR (
 > kFGR) represents a weak (strong) driving
field. In general, for closely aggregated TLSs (k0R � 1),
because the spontaneous emission rate is strongly modified by
intermolecular interactions (vdd ) instead of the vacuum value
in Eq. (20), one would expect that semiclassical approaches
should be valid as long as the Rabi frequency is much smaller
than the dipole-dipole coupling (
 � vdd ).

With this in mind, we check the results of driven dynamics
as below.
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FIG. 5. Electronic energy (upper) and impurity of the matter 1-RDM (bottom) for a pair of TLSs as a function of time driven by a weak
cw field (
 ≡ μgeE0 = 0.3kFGR). Left: The early dynamics (t < 2k−1

FGR). Right: The steady-state dynamics (t ∼ 300k−1
FGR, logarithmic scale for

the y axis). Note that all approaches predict similar dynamics for electronic energy, except that in steady state Hamiltonian no. I FCI [solid red
(upper) line of each subplot] predicts an unphysically large electronic energy (b). All parameters are set as the default values in Sec. III.
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FIG. 6. The same plot as Fig. 5 but with a strong cw wave (
 = 2.0kFGR). Note that because the contribution of the double is significant
under a strong driving field the LAME (dashed black) predicts more electronic energy Us than does Hamiltonian no. I CIS (solid blue), for
which the double is truncated. Perhaps surprisingly, Hamiltonian no. II (solid cyan) and the hybrid Hamiltonian (dash-dotted yellow) predict
similar behavior of electronic energy as Hamiltonian no. I CIS (even though the former has the capacity to describe the double). As in Fig. 5,
Hamiltonian no. I FCI [solid red (upper) line of each subplot] still greatly overestimates the electronic energy and impurity.

1. Weakly driven dynamics

Figure 5 plots the electronic energy [Figs. 5(a) and 5(b)]
and the impurity of 1-RDM [Figs. 5(c) and 5(d)] for a pair
of TLSs driven by a weak cw field (
 = 0.3kFGR) at both
short times (left panel) and long times (right panel). Here,
the electronic energy of the molecular subsystem (Us) is
defined as

Us =
N∑

n=1

Tr[ρ̂(t )Ĥ (n)
s ]. (22)

As explained above, we expect that all approaches (Hamil-
tonian no. I FCI, Hamiltonian no. I CIS, Hamiltonian no. II,
the hybrid Hamiltonian, and the LAME) should predict the
same dynamics for electronic energy. The surprising finding,
however, is that after very long times (t > 200k−1

FGR) Hamilto-
nian no. I FCI [solid red (upper) line] predicts an unphysically
large electronic energy compared to other approaches; see
Fig. 5(b). This unphysical behavior indicates (ironically) that
a full accounting for quantum electron-electron correlations
can actually be problematic even in the weak-coupling limit.
The reason for this anomaly will be addressed in Sec. V.
For the impurity of the 1-RDM, as shown in Fig. 5(d), while
Hamiltonian no. I FCI overestimates the impurity as compared
with the LAME (dashed black), the hybrid Hamiltonian (dash-
dotted yellow) predicts similar steady-state impurity as the
LAME, and other semiclassical approaches predict much less

impurity than the LAME [note that here Hamiltonian no. II
(solid cyan) still always predicts zero impurity].

2. Strongly driven dynamics

Figure 6 plots the dynamics of the electronic energy and the
impurity of 1-RDM when the cw field becomes stronger (
 =
2.0kFGR < vdd ). In this limit, because the contribution of the
double is not negligible, as is shown in Figs. 6(b) and 6(d), the
LAME predicts a much higher steady-state electronic energy
(and impurity) than does Hamiltonian no. I CIS, for which the
double is truncated. Just as in Fig. 5, by including the double,
Hamiltonian no. I FCI overestimates the electronic energy
significantly compared with the LAME, reinforcing the notion
that fully accounting for electron-electron correlation can be
problematic (in both the weak- and strong-field limits). As far
as the impurity of the matter 1-RDM [Figs. 6(c) and 6(d)], the
behaviors of the different semiclassical approaches are similar
to what was found in the case of electronic energy, except for
the fact that Hamiltonian no. II always predicts zero impurity.

Apparently, electronic FCI coupled to a classical EM field
can predict nonphysical features, which conflicts with our
intuition that including more electron-electron correlations
should give better results.

Overall, for a reasonably strong field, no semiclassical
approach can predict the steady-state electronic energy or
the impurity of the matter 1-RDM correctly, which would
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FIG. 7. Plots of the steady-state (a) population of singles,
(b) population of the double, and (c) electronic energy as a function
of the external driving strength (
/kFGR) on a logarithmic scale.
The vertical magenta line denotes 
 = vdd . (a) When 
 � vdd ,
all semiclassical approaches predict similar values for the single
populations as the LAME does. (b) No. I FCI (no. II) overestimates
(underestimates) the population of the double greatly even when

 � vdd .

naively conflict with the general consensus that semiclassical
electrodynamics should be valid as long as the Rabi frequency
(
) is much smaller than the strength of the dipole-dipole
coupling (vdd ). The validity of semiclassical electrodynamics
is obviously complicated, and must depend on which Hamil-
tonian one uses. With this in mind, let us now digest the results
above and consider why FCI behaves so poorly in Figs. 5
and 6.

V. DISCUSSION

From the results above in Figs. 2–6, our general conclusion
is that no semiclassical method is perfect, but Hamiltonian
no. I CIS and the hybrid Hamiltonian seem to perform op-
timally and they are reasonably computationally efficient.
Hamiltonian no. II performs slightly worse (failing for RET
and the impurity of 1-RDM). The most stunning conclusion
is the drastic failure of Hamiltonian no. I FCI under driven
dynamics.

To better understand the failure of FCI in driven dynamics,
consider the steady-state data in Fig. 7(a). When the Rabi
frequency (
, x axis) is much smaller than the dipole-dipole

coupling (vdd , the vertical magenta line), all semiclassical
approaches predict similar steady-state population for the
singles (y axis) as compared to the LAME. However, when
we investigate the population of the double excitation [see
Fig. 7(b)], conventional semiclassical approaches fail even
when 
 � vdd . On the one hand, Hamiltonian no. II always
greatly underestimates the population of the double. If we
restrict ourselves to the weak-coupling limit (
 � kFGR),
such an underestimation is not very problematic because the
population is so small as to have minimal effect on any
physical observable. On the other hand, Hamiltonian no. I FCI
always overestimates the population for the double, leading
to a nonphysically large electronic energy; see Fig. 7(c). One
may therefore hypothesize that the inclusion of the doubly
excited state represents an important but risky proposal for
semiclassical electrodynamics; overestimation of the double
population is strongly correlated to the overestimation of the
total electronic energy. Interestingly, the hybrid Hamiltonian
does interpolate between Hamiltonian no. I and Hamilto-
nian no. II, but there is minimal gain in accuracy when

 
 kFGR.

We can now answer the question above: why does FCI fail
and predict an exorbitant accumulation of energy for the TLSs
under a driving force? The root of this problem is the classical
EM field. Note that, for a single TLS, due to the use of a
classical EM field, Ehrenfest dynamics predicts a decay rate
proportional to the ground-state population [15,16,19]:

kEh = ρggkFGR. (23)

For a pair of closely aggregated TLSs (k0R � 1, as consid-
ered in this paper), if one neglects the effect of the dark
state and focuses on a three-level system with the ground
state |0〉, bright state |b〉, and doubly excited state |2〉, the
allowed optical transitions are |0〉 ↔ |b〉 and |b〉 ↔ |2〉 [and
the Ehrenfest decay rates between these optical transitions
also obey Eq. (23)]. For driven dynamics, with the system
initially in state |0〉, the quantum dipole-dipole interaction
V̂ (nl )

Coul directly couples state |0〉 and state |2〉. Now, suppose
we apply Hamiltonian no. I with FCI. On the one hand, with
driven dynamics, V̂ (nl )

Coul leads to an increase of the population
for state |2〉; on the other hand, because initially ρbb(0) =
0, according to Eq. (23), the decay rate from |2〉 to |b〉 is
greatly suppressed. As a result, state |2〉 will continuously
accumulate the population, leading to an unphysically large
electronic energy even in the weak-coupling limit. In short,
the exaggerated electronic energy predicted by Hamiltonian
no. I FCI (see Figs. 5–7) appears to come directly from the
mismatch of the quantum electron-electron correlations and
the classical EM field. Interestingly, this mismatch also causes
the violation of long-range causality [23].

The above discussion should be very general, valid for a
pair of TLSs or in the case of many molecules: for driven sys-
tems, the population dynamics for higher excitations (beyond
singles) cannot be correctly described by Hamiltonian no. I
FCI even when the driving field is very weak.

VI. CONCLUSION

To conclude, in this paper, we have applied different semi-
classical approaches to a minimalistic many-site model for
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light-matter interactions—a pair of identical TLSs. We find
the following.

(i) For the impurity of the 1-RDM, generally no semiclas-
sical approach agrees with the LAME very well.

(ii) For RET dynamics, Hamiltonian no. II is not an optimal
candidate due to a lack of quantum dipole-dipole couplings.

(iii) For collectively driven dynamics, all semiclassical
approaches in Table I can correctly describe the population of
singly excited states when the Rabi frequency is much smaller
than the dipole-dipole coupling (
 � vdd ).

(iv) For collectively driven dynamics, even when 
 � vdd ,
Hamiltonian no. I FCI always predicts a nonphysically large
double population (and thus an incorrect electronic energy)
due to a mismatch between quantum electron-electron corre-
lations and a classical E field.

(v) A hybrid Hamiltonian can eliminate the reported
anomaly for no. I FCI in the weak field as well as outperform
Hamiltonian no. II with regard to RET. Nevertheless, the ac-
curacy of the hybrid Hamiltonian is still far from quantitative.

For the moment, when using semiclassical electrodynam-
ics to describe light-matter interactions, our recommendation
is to use Hamiltonian no. I CIS or the hybrid Hamiltonian as
a tradeoff between accuracy and computational cost. We must
emphasize that (i) our present benchmark work was restricted
to only a pair of TLSs and (ii) no semiclassical algorithm
performs quantitatively at all. In the future, these limitations
must be addressed. On the one hand, for a large collection
of molecules, more exciting collective phenomena should
emerge and the performances of the different semiclassical
approaches must be tested. On the other hand, and even more
importantly, it is also natural to ask whether or not further
algorithmic improvements can be made to the semiclassical
methods above. For example, can we include some crucial as-
pects of spontaneous emission that are missed in a mean-field
treatment and improve Hamiltonian no. II? Recent experience
[20] suggests such improvements are possible, and this work
is ongoing.
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APPENDIX A: ANALYTICAL AND EM-FREE FORM OF
SEMICLASSICAL HAMILTONIANS

1. Longitudinal and transverse components

For a vector function f (r) = fx(r)ex + fy(r)ey + fz(r)ez,
the longitudinal component is defined by

f‖(r) =
∫

dr′←→δ ‖(r − r′)f (r′) (A1)

where the dyadic longitudinal δ function
←→
δ ‖(r) is

←→
δ ‖(r) =

∑
i, j=x,y,z

δ‖i j (r)eie j . (A2)

Here, ei denotes a unit vector along direction i = x, y, z, and

δ‖i j (r) = −∇i∇ j
1

4π |r| (A3a)

= 1

3
δi jδ(r) − η(r)

4π |r|3
(

3rir j

|r|2 − δi j

)
. (A3b)

While the first definition, Eq. (A3a), is a natural definition
of the longitudinal δ function, this expansion diverges at |r| =
0. To avoid such divergence, regularization is introduced,
leading to the second definition, Eq. (A3b), in which η(r) ≡ 0
at r = 0 to suppress the divergence and η(r) ≡ 1 elsewhere
[47].

Similar to Eq. (A2), the dyadic transverse δ function reads

←→
δ ⊥(r) =

∑
i, j=x,y,z

δ⊥i j (r)eie j . (A4)

Note that δ⊥i j (r) ≡ δi j (r) − δ‖i j (r), so that the transverse
component f⊥(r) can be calculated by

f⊥(r) =
∫

dr′←→δ ⊥(r − r′)f (r′). (A5)

According to the definitions of the longitudinal and transverse
δ functions, it is easy to show that

∫
dr f⊥(r) · f‖(r) = 0 for

all vector fields f (r).

2. Time-dependent dyadic Green’s functions

If we assume that the electronic subsystem couples only to
the E field (as is true in this paper), it is more convenient to
rewrite Maxwell’s equations [Eq. (2)] as

∇ × ∇ × E(r, t ) + 1

c2

∂2E(r, t )

∂t2
= −μ0

∑
n

∂2P (n)(r, t )

∂t2
.

(A6)
A formal solution of the E field reads

E(r, t ) = Ein(r, t ) +
∑

n

E(n)(r, t ) (A7)

where Ein(r, t ) denotes the incoming field, and E(n)(r, t )
denotes the E field that is emitted by molecule n, which
can be further evaluated through the time-dependent dyadic
Green’s-function technique [39], i.e.,

E(n)(r, t ) = μ0ω
2
∫

V
dV ′

∫
dt ′←→G (r, r′; t, t ′)P (n)(r′, t ′)

(A8)
where V denotes the integral volume that includes P (n).

The time-dependent dyadic Green’s function
←→
G (r, r′, t, t ′)

is defined as

←→
G (r, r′; t, t ′) =

[←→
I + 1

k2
∇∇

]
G0(r, r′; t, t ′) (A9)
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where k = ω
c . For a point source in a homogeneous environ-

ment, the time-dependent scalar Green’s function G0 reads

G0(r, r′; t, t ′) = δ
(
t ′ − [t − n

c |r − r′|])
4π |r − r′| (A10)

where n = 1 in vacuum. By substituting Eqs. (A9) and (A10)
into Eq. (A8), we arrive at a retarded expression for E(n):

E(n)(r, t ) = μ0ω
2
∫

V
dV ′
[←→

I + 1

k2
∇∇

]
× P (n)(r′, t − n

c |r − r′|)
4π |r − r′| . (A11)

Now, very often, within the content of electrodynam-
ics with retardation, it is helpful to work with the time-

independent dyadic Green’s function
←→
G (r, r′):

←→
G (r, r′) =

[←→
I + 1

k2
∇∇

]
G−

0 (r, r′),

G−
0 (r, r′) = e−ik|r−r′ |

4π |r − r′| = e−ikR

4πR
(A12)

where R ≡ |r − r′|. Equation (A12) can be rewritten as

←→
G (r, r′) = e−ikR

4πR

[
←→η1 − i

kR
←→η3 − 1

k2R2
←→η3

]
(A13)

where ←→η1 and ←→η3 are defined as

←→η1 = ←→
I − R̂iR̂ j, (A14a)

←→η3 = ←→
I − 3R̂iR̂ j (A14b)

and R̂i denotes the unit vector along the direction of Ri =
ri − r′

i.
Because we will have different molecules at different sites,

let us also introduce the following short-hand writing:

Gnl ≡ e(n)
d · ←→

G (rn, rl )e
(l )
d

= e−ikRnl

4πRnl

[
η

(nl )
1 − i

kRnl
η

(nl )
3 − 1

k2R2
nl

η
(nl )
3

]
(A15)

where Rnl ≡ |rn − rl |, e(n)
d denotes the unit vector along the

orientation of dipole n, η
(nl )
1 = e(n)

d · ←→η1 e(l )
d , and η

(nl )
3 = e(n)

d ·
←→η3 e(l )

d . Gnl in Eq. (A15) characterizes the magnitude of the
light-matter coupling between the two unit dipoles at sites n
and l . The real and imaginary parts of Gnl read

Re[Gnl ] = k

4π

[
cos(kRnl )

kRnl
η

(nl )
1 − sin(kRnl )

k2R2
nl

η
(nl )
3

− cos(kRnl )

k3R3
nl

η
(nl )
3

]
,

Im[Gnl ] = k

4π

[
− sin(kRnl )

kRnl
η

(nl )
1 − cos(kRnl )

k2R2
nl

η
(nl )
3

+ sin(kRnl )

k3R3
nl

η
(nl )
3

]
. (A16)

Interestingly, when two dipoles overlap, i.e., e(n)
d = e(l )

d ,
η

(nl )
1 = η

(nl )
3 = 1, and Rnl → 0, a Taylor expansion of

Eq. (A16) to leading order in kR reduces to

4π

k
Re[Gnn]

∣∣∣
Rnl →0

→ − 1

k3R3

∣∣∣
Rnl →0

,

4π

k
Im[Gnn]

∣∣∣
Rnl →0

→ −2

3
. (A17)

3. Analytical and EM-free form of Hamiltonian no. I

For Hamiltonian no. I [defined in Eq. (4)], it is unnecessary
to evaluate E⊥ at all times. Instead, for neutral molecules
(with no free charge), since the displacement field (D) is
transverse, i.e., D‖ = E‖ + 1

ε0
P‖ = 0, E⊥ can be rewritten as

E⊥ = E − E‖ = E + 1

ε0
P‖. (A18)

By substituting Eq. (A18) into Eq. (4), one obtains another
form for Hamiltonian no. I:

Ĥ I
SC =

N∑
n=1

Ĥ (n)
s −

∫
dr E(r, t ) · P̂ (n)

(r) +
∑
n<l

V̂ (nl )
Coul

−
∑

nl

1

ε0

∫
dr P (l )

‖ (r, t ) · P̂ (n)
(r). (A19)

At this point, let us evaluate all of the terms in Eq. (A19). If we

make the long-wave approximation, i.e., P̂ (n)
(r) = μ̂(n)δ(r −

rn)e(n)
d (where μ̂(n) ≡ μgee(n)

d σ̂ (n)
x denotes the transition dipole

operator for TLS n), and apply Eqs. (A1)–(A3), V̂ (nl )
Coul [Eq. (5)]

is reduced to the dipole-dipole interaction form:

V̂ (nl )
Coul = 1

4πε0

(
μ̂(n) · μ̂(l )

|r|3 − 3(μ̂(n) · r)(μ̂(l ) · r)

|r|5
)

= μ2
geη

(nl )
3

4πε0R3
nl

σ̂ (n)
x ⊗ σ̂ (l )

x (A20)

where ⊗ denotes the Kronecker tensor product. Similarly, for
n �= l , the last term in Eq. (A19) can be simplified as

v̂
(nl )
Coul(t ) ≡ 1

ε0

∫
dr P (l )

‖ (r, t ) · P̂ (n)
(r)

= 1

4πε0

(
μ̂(n) · μ(l )(t )

|r|3 − 3(μ̂(n) · r)[μ(l )(t ) · r]

|r|5
)

= 2Re
[
ρ (l )

ge

]
μ2

geη
(nl )
3

4πε0R3
nl

σ̂ (n)
x (A21)

where μ(l )(t ) ≡ Tr[ρ̂(t )μ̂(l )]=2Re[ρ (n)
ge (t )]μgee(n)

d , η
(nl )
3 is de-

fined in Eq. (A15), and ρ (n)
ge (t ) denotes the coherence between

the ground state and excited state for TLS n. For Hamiltonian
no. I, we can calculate ρ (n)

ge by ρ (n)
ge (t ) = Tr[ρ̂(t )σ̂ (n)

+ ].
At this point, having evaluated all electronic matrix ele-

ments in Eq. (A19), for the sake of simplicity and efficiency,
we would like to completely reduce Hamiltonian no. I (when
possible) into a Hamiltonian operating only on the electronic
degrees of freedom, from which the electric and magnetic
fields can be extrapolated analytically; this is, after all, the
framework of the famous optical Bloch equation. To do so, let
us evaluate the E field using a Green’s function technique. For
a TLS under the long-wavelength approximation, P (n)(r, t )
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reads

P (n)(r, t ) = Tr[ρ̂(t )μ̂(n)]δ(r − rn) (A22a)

= 2μgeRe
[
ρ (n)

ge (t )
]
δ(r − rn)e(n)

d . (A22b)

By substituting Eq. (A22) into Eq. (A11), we arrive at an
analytical form for E(n)(r, t ):

E(n)(r, t ) = μ0ω
2
∫

V
dV ′
[←→

I + 1

k2
∇∇

]

× 2Re
[
ρ (n)

ge

(
t − |r−r′ |

c

)]
μgeδ(r − rn)e(n)

d

4π |r − r′| (A23a)

= 2μ0Re
[
ω2ρ (n)

ge (t )
←→
G (r, rn)μ(n)

]
ω=ω0

. (A23b)

where μ(n) ≡ μgee(n)
d . Between Eqs. (A23a) and (A23b), we

have neglected all retardation and assumed

ρ (n)
ge

(
t − |r − r′|

c

)
≈ ρ (n)

ge (t )e−iω0
|r−r′ |

c ; (A24)

the time-independent Green’s function
←→
G (r, rn) is defined in

Eq. (A12). Given Eq. (A23), the coupling between molecule
n and the E field generated by molecule l (n �= l) is
expressed as

h̄
̂(nl ) ≡ −
∫

dr E(l )(r, t ) · P̂ (n)
(r) (A25a)

= − 2μ0μ
2
geσ̂

(n)
x Re

[
ω2ρ (l )

ge (t )Gnl
]
ω=ω0

× θ

(
t − Rnl

c

)
(A25b)

= −2μ0μ
2
geω

2
0σ̂

(n)
x

{
Re
[
ρ (l )

ge (t )
]
Re[Gnl ]

− Im
[
ρ (l )

ge (t )
]
Im[Gnl ]

}
ω=ω0

θ

(
t − Rnl

c

)
(A25c)

where Gnl = Gln is defined in Eq. (A15), and Re[Gnl ] and
Im[Gnl ] are defined in Eq. (A16). θ (t − Rnl

c ) denotes the
Heaviside step function which has been inserted (by hand) to
preserve causality.

Finally, using Eqs. (A18) and (A21), the transverse inter-
action between sites n and l reads

h̄
̂
(nl )
⊥ ≡ −

∫
dr E(l )

⊥ (r, t ) · P̂ (n)
(r) (A26a)

= h̄
̂(nl ) − v̂
(nl )
Coul(t ). (A26b)

For the case of n = l , we apply Eqs. (A17), (A25c), and
(A21), noting that the terms involving Re[ρge(t )] cancel. Then
Eq. (A26b) becomes

h̄
̂
(nn)
⊥ = −h̄kFGRIm

[
ρ (n)

ge (t )
]
σ̂ (n)

x (A27)

where kFGR is defined in Eq. (20).
Thus, in the end, provided we can make the assumption in

Eq. (A24), we have obtained an analytical and EM-free form
of Hamiltonian no. I:

Ĥ I
SC =

N∑
n=1

Ĥ (n)
s + h̄
̂

(n)
in +

∑
n<l

V̂ (nl )
Coul +

∑
nl

h̄
̂
(nl )
⊥ (A28)

where the analytical expressions of V̂ (nl )
Coul, h̄
̂

(nl )
⊥ , and h̄
̂

(nn)
⊥

are defined in Eqs. (A20), (A26), and (A27); h̄
̂
(n)
in denotes

the coupling between molecule n with the incoming field. And
in practice, we have checked (for reasonable times) that the
EM-free approach presented here agrees with full Ehrenfest
dynamics (i.e., when propagating the EM field numerically).

4. Analytical and EM-free form of Hamiltonian no. II

By following the procedure above, we can also obtain an
EM-free form for Hamiltonian no. II:

Ĥ II
SC =

N∑
n=1

Ĥ (n)
s + h̄
̂

(n)
in + h̄
̂

(nn)
⊥ +

∑
n �=l

h̄
̂(nl ) (A29)

where h̄
̂(nl ) and h̄
̂
(nn)
⊥ are defined in Eqs. (A25) and (A27).

The analytical and EM-free forms of Hamiltonians no. I and
no. II allow us to perform simulations of coupled light-matter
interactions with negligible computational cost; the propaga-
tion of the EM fields on a grid is no longer necessary.

5. Hamiltonians for a pair of two-level systems

In this paper, we have presented results for a minimalistic
many-site model—a pair of identical TLSs (labeled as D and
A). For convenience, we now report the analytical and EM-
free form of Hamiltonian no. I for the pair of TLSs.

Let us define h̄

(n)
in and h̄


(nl )
⊥ as the norms of the cor-

responding operators that have already been defined, i.e.,
h̄
̂

(n)
in = h̄


(n)
in σ̂ (n)

x and h̄
̂
(nl )
⊥ = h̄


(nl )
⊥ σ̂ (n)

x (for n, l = D, A),
where h̄
̂

(nl )
⊥ is defined in Eqs. (A26) and (A27). Then, for the

pair of TLSs,

Ĥ I
SC =

⎛⎜⎝ 0 VA VD vdd

VA h̄ω0 vdd VD

VD vdd h̄ω0 VA

vdd VD VA 2h̄ω0

⎞⎟⎠. (A30)

Here, vdd = η
(DA)
3

4πε0R3
DA

, VD = h̄

(D)
in + h̄


(DD)
⊥ + h̄


(DA)
⊥ , and

VA = h̄

(A)
in + h̄


(AA)
⊥ + h̄


(AD)
⊥ .

Similarly, Hamiltonian no. II for a pair of TLSs reads

Ĥ II
SC =

⎛⎜⎜⎝
0 V ′

A V ′
D 0

V ′
A h̄ω0 0 V ′

D

V ′
D 0 h̄ω0 V ′

A

0 V ′
D V ′

A 2h̄ω0

⎞⎟⎟⎠ (A31)

where V ′
D = h̄


(D)
in + h̄


(DD)
⊥ + h̄
(DA) and V ′

A = h̄

(A)
in +

h̄

(AA)
⊥ + h̄
(AD). Here, as above, we have defined h̄
(nl )

as the norm of h̄
̂(nl ) [defined in Eq. (A25)], i.e., h̄
̂(nl ) =
h̄
(nl )σ̂ (n)

x (for n �= l).
Finally, for the hybrid Hamiltonian for a pair of TLSs [see

Eq. (13)], the Hamiltonian reads

Ĥhyb
SC =

⎛⎜⎝ 0 VA VD 0
VA h̄ω0 vdd V ′

D
VD vdd h̄ω0 V ′

A
0 V ′

D V ′
A 2h̄ω0

⎞⎟⎠. (A32)

APPENDIX B: LEHMBERG-AGARWAL
MASTER EQUATION

For N identical TLSs, the Lehmberg-Agarwal master equa-
tion [44,45] is the standard theory to describe the reduced
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dynamics of the electronic degrees of freedom in an open
quantum environment. Formally, one can derive the LAME
by taking the Born-Markov approximation from QED and a
rotating wave approximation (RWA), leading to

d

dt
ρ̂N (t ) = − i

h̄

[
N∑

n=1

Ĥ (n)
s + h̄
̂

(n)
in , ρ̂N

]

− i
N∑

n �=l

bnl [σ̂
(n)
+ σ̂

(l )
− , ρ̂N ] + LL[ρ̂N ] (B1)

where the dissipative term LL[ρ̂N ] is called the Lindbladian:

LL[ρ̂N ] =
∑

nl

anl

{
σ̂

(l )
− ρ̂N σ̂

(n)
+ −1

2
σ̂

(n)
+ σ̂

(l )
− ρ̂N−1

2
ρ̂N σ̂

(n)
+ σ̂

(l )
−

}
.

(B2)
Here, ρ̂N denotes the N-body density operator, h̄
̂

(n)
in denotes

the coupling between the incoming E field and molecule n,
and the anl and bnl terms describe the collective damping and
the collective level shifts, which are defined as

anl =

⎧⎪⎨⎪⎩
k(n)

FGR = ω3
0 |μ(n)

ge |2
3π h̄c3ε0

, if l = n

ω3
0μ

(n)
ge μ(l )

ge

2π h̄c3ε0

[
sin xnl

xnl
η

(nl )
1 + cos xnl

x2
nl

η
(nl )
3 − sin xnl

x3
nl

η
(nl )
3

]
, otherwise

, (B3a)

bnl = ω3
0μ

(n)
ge μ(l )

ge

4π h̄c3ε0

[
−cos xnl

xnl
η

(nl )
1 + sin xnl

x2
nl

η
(nl )
3 + cos xnl

x3
nl

η
(nl )
3

]
(1 − δnl ) (B3b)

where the dimensionless intermolecular separation xnl is de-
fined as xnl ≡ ω0Rnl/c, and the Kronecker delta function δnl

equals to 1 if n = l and equals zero otherwise. As might
be guessed from the structures of anl and bnl (that contain
both 1/R6 and 1/R2 terms as well as kFGR), the LAME can
accurately capture the time-resolved RET dynamics between
a pair of TLSs at both short and long range.

Although not the focus of this paper, when modeling
dynamics with the LAME, one key problem is that for a
system with N TLSs the method requires one to build an
exponentially large many-body density matrix of size 2N

during the course of a simulation and update the Lindbladian
at every time step. As a result, the LAME is usually applied
only to a few TLSs. Furthermore, applying the LAME for
inhomogeneous systems (not in vacuum) is not obvious, and
more generally, like any master equation, the LAME is accu-
rate only in the limit of weak light-matter coupling.

Connecting Ehrenfest dynamics with the LAME

Above, in Fig. 3, we have observed that the LAME agrees
with Ehrenfest no. II if the TLSs are weakly excited. Let
us now analytically show that the LAME can indeed be
connected to Ehrenfest no. II after some approximations are
made. We will start from the EM-free form of Hamiltonian
no. II [see Eq. (A29)] and take the RWA form of Hamiltonian
no. II.

We assume that Im[ρge] ≈ ρ̃geIm[eiω0t ], where
ρ̃ge ≡ ρgee−iω0t is a slowly varying variable compared with
the time scale of ω−1

0 . With this assumption, we obtain from
Eq. (A27) the RWA form of h̄
̂

(nn)
⊥ :


̂
(nn)
⊥,RWA = i

2
k(n)

FGRρ̃ (n)
ge [eiω0t σ̂

(n)
− − e−iω0t σ̂

(n)
+ ]. (B4)

Similarly, for h̄
̂(nl ) (l �= n) in Eq. (A25c), the corresponding
RWA form reads


̂
(nl )
RWA = −1

2

ω3
0μ

(n)
ge μ(l )

ge

2π h̄c3ε0

[
η1

xnl
− iη3

x2
nl

− η3

x3
nl

]
ρ̃ (l )

ge

× eiω0(t− rnl
c )θ
(

t − rnl

c

)
σ̂

(n)
− + c.c. (B5)

where c.c. denotes the complex conjugate. Let us make the
following definitions:

γnn = ik(n)
FGR = i

ω3
0|μ(n)

ge |2
3π h̄c3ε0

,

γnl = −ω3
0μ

(n)
ge μ(l )

ge

2π h̄c3ε0

[
e−ixnl

xnl
η1 − i

e−ixnl

x2
nl

η3 − e−ixnl

x3
nl

η3

]
× θ
(

t − rnl

c

)
, (B6)

so that all light-matter couplings can be rewritten in a uniform
way (for both l = n and l �= n):


̂
(nl )
RWA = 1

2 {γnlTr[ρ̂ (l )σ̂
(l )
+ ]σ̂ (n)

− + γ ∗
nlTr[ρ̂ (l )σ̂

(l )
− ]σ̂ (n)

+ }. (B7)

Because γnl in Eq. (B6) is a c number, the real and imaginary
parts of γnl contribute differently to the electronic dynamics,
i.e., the imaginary part of γnl leads to dissipation while the
real part should be a level shift. Thus, it is necessary to
separate the real and imaginary parts of γnl :

a′
nl = Im[γnl ],

b′
nl = 1

2 Re[γnl ]. (B8)

With these definitions, we can further rewrite Eq. (B7) as


̂
(nl )
RWA = b′

nl{Tr[ρ̂ (l )σ̂
(l )
+ ]σ̂ (n)

− + Tr[ρ̂ (l )σ̂
(l )
− ]σ̂ (n)

+ }

+ i

2
a′

nl{Tr[ρ̂ (l )σ̂
(l )
+ ]σ̂ (n)

− − Tr[ρ̂ (l )σ̂
(l )
− ]σ̂ (n)

+ } (B9)

and the RWA form of Hamiltonian no. II becomes

Ĥ (n)
II, RWA = Ĥ (n)

s + h̄
̂
(n)
in +

N∑
l=1

h̄
̂
(nl )
RWA. (B10)

The expressions for the a′
nl and b′

nl coefficients reported
here [Eq. (B8)] are exactly the same as the coefficients of
the LAME [anl and bnl in Eq. (B3)], provided that the step
function θ (t − rnl

c ) in Eq. (B6) (or causality) is ignored. The
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exact agreement between these distinct coefficients clearly
suggests a consistency between Hamiltonian no. II and the
LAME. In fact, one can show that, if the step function
(or causality) is ignored, Ĥ (n)

II, RWA is exactly the effective

mean-field Hamiltonian Ĥ (n)
MF of the MF-LAME defined by

d

dt
ρ̂N (t ) = − i

h̄

[
N∑

n=1

Ĥ (n)
MF, ρ̂N

]
. (B11)

Equation (B11) can be derived from Eq. (B1) by supposing
ρ̂N (t ) = ρ̂ (1)(t ) ⊗ · · · ⊗ ρ̂ (N )(t ) is valid at any time t and then
tracing out N − 1 degrees of freedom to form the one-body re-
duced density operator; see Ref. [48] for a detailed procedure.

APPENDIX C: RET RATE

In Fig. 2, we have compared the RET rate calculated
by different approaches. For the sake of completeness, we
will now briefly review RET rate theory. Furthermore, we
will also analytically calculate the short-time result of ρ (A)

ee (t )
as propagated with Ehrenfest dynamics by Hamiltonian no.
II, confirming the numerical calculations in Fig. 2 and the
finite-difference time-domain (FDTD) simulation results in
Ref. [23].

1. Perturbative QED result

According to the standard perturbative QED calculations
[43,49], in the weak-coupling limit, the RET rate between a
pair of TLSs [donor (D) + acceptor (A)] can be calculated by
Fermi’s “golden rule”:

kET = 2π

h̄
|M(ω0, RDA)|2ρ f . (C1)

Here, ρ f denotes the density of states for the final state,
M(ω, RDA) denotes the transition matrix element between
the final state and initial state, and RDA denotes the sepa-
ration between the donor and acceptor. In order to evaluate
M(ω, RDA), let us use the notation |nmk〉 to represent the
donor in state |n〉, the acceptor in state |m〉, and the photon in
state |k〉. Whereas the initial state |eg0〉 and the final state |ge0〉
do not couple directly through the EM field, one can show
that they are coupled at second order. To do so, one simply
expands the initial state to first order, i.e., |eg0〉 → |ψeg0〉 =
|eg0〉 +∑

k

|ggk〉〈ggk|Ĥint|eg0〉
ωk−ω0

, where Ĥint denotes the interaction

Hamiltonian. Then, to second order in the interaction, the
key contribution should come from the state |ggk〉 where the
photon has frequency ωk = ω0, i.e., the photon energy should
equal the energy gap for both the donor and acceptor. To sec-
ond order in the perturbation, the coupling matrix M(ω, RDA)
takes the form (after a few integrations in three dimensions)
[42]

M(ω, RDA) = ω3μ(D)
ge μ(A)

ge

4πc3ε0

[
−cη(DA)

1

ωRDA
− i

c2η
(DA)
3

ω2R2
DA

+ c3η
(DA)
3

ωR3
DA

]

× ei ωRDA
c . (C2)

At this point, consider the density of states for the acceptor
[ρ f in Eq. (C1)]. If there are no vibrations (or other electronic

degrees of freedoms), then over the time scale ω−1
0 � t �

k−1
FGR [where kFGR denotes the spontaneous emission rate for

a single TLS] there can be no true rate of energy transfer.
Instead, one will find large oscillations back and forth. At
very short times, the excited-state population for the acceptor
is simply

ρ
(A)
ee,QED(t ) = ρ (D)

ee (0)

h̄2 |M(ω0, RDA)|2
(

t − RDA

c

)2

× θ

(
t − RDA

c

)
(C3)

where ρD
ee(0) denotes the initial excited-state population for

the donor.

2. Analytical RET rate by Hamiltonian no. II

According to Ehrenfest dynamics with Hamiltonian no. II,
the equations of motion for the acceptor (A) read

dρ (A)
ee

dt
= −2

h̄
μ · EIm

[
ρ (A)

ge

]
, (C4a)

dρ (A)
ge

dt
= iω0ρ

(A)
ge + i

h̄
μ · E

(
ρ (A)

ee − ρ (A)
gg

)
(C4b)

where μ = μgeed . At short times, because the excited-state
population for the acceptor is much smaller than the donor,
the EM fields that are felt by the acceptor predominately
come from the donor. Thus, at short times, we can neglect the
donor’s population decay [i.e., ρ (D)

ge (t ) ≈ ρ (D)
ge (0)eiω0t ], so that

the light-matter coupling term for the acceptor is just −μ ·
E = h̄
 ≈ h̄
(AD), where h̄
(AD) is defined by h̄
̂(AD) =
h̄
(AD)σ̂ (A)

x [see Eq. (B5)]. Furthermore, according to the
RWA in Eq. (B5),



(AD)
RWA = − μ2

geω
3
0

4π h̄ε0c3

∣∣̃ρ (D)
ge (0)

∣∣[η1

x
− i

η3

x2
− η3

x3

]
× ei(ω0t−x)θ

(
t − RDA

c

)
.

(C5)

Because there is no non-Hamiltonian dissipative term in
Ehrenfest dynamics, purity is strictly conserved, i.e.,

ρ (A)
ge =

√
ρ

(A)
ee ρ

(A)
gg ei(ω0t+ϕ) (C6)

where
√

ρ
(A)
ee ρ

(A)
gg is slowing varying compared with the time

scale of 2π/ω0, and ϕ is the initial phase for the acceptor.
By further substituting Eqs. (C5) and (C6) into Eq. (C4b), we
obtain

d

dt

√
ρ

(A)
ee ρ

(A)
gg = i

μ2
geω

3
0

4πε0c3
ρ (D)

ge (0)
[η1

x
− i

η3

x2
− η3

x3

]
× ei(x+ϕ)θ

(
t − RDA

c

)
. (C7)

For short times, the acceptor is not strongly excited, i.e.,√
ρ

(A)
ee ρ

(A)
gg ≈

√
ρ

(A)
ee , so that Eq. (C7) is easily integrated [with
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∫ t
0 θ (t ′ − T )dt ′ = (t − T )θ (t − T )]:

ρ
(A)
ee,Eh(t ) = ρ (D)

gg (0)ρ (D)
ee (0)

∣∣∣∣∣ ω3
0μ

2
ge

4πε0c3

[η1

x
− i

η3

x2
− η3

x3

]∣∣∣∣∣
2

×
(

t − RDA

c

)2

θ

(
t − RDA

c

)
= ρ (D)

gg (0)ρ (A)
22,QED(t ). (C8)

In other words, Ehrenfest predicts that the excited-state pop-
ulation on the acceptor will be just ρ (D)

gg (0) times the pertur-

bative QED result [ρ (A)
ee,QED(t ) in Eq. (C3)]. When the donor is

near the ground state, i.e., ρ (D)
gg (0) → 1, Ehrenfest dynamics

(with Hamiltonian no. II) exactly recovers the perturbative
QED result. Note that the analytical derivations here exactly
agree with our previous FDTD simulations [23].
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