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Casimir-Polder-induced Rydberg macrodimers
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We theoretically investigate Rydberg atom pair potentials of Rb atoms in front of a perfectly conducting
plate. The pair potentials are perturbed by both the Casimir-Polder potential acting on a single atom and the
scattering contribution to the interatomic interaction. In contrast to the pair potentials in free space, at atom-
surface distances ds � 4 μm, avoided crossings appear. In the associated potential wells that are entirely due to
dispersion interactions with the surface, there exist vibrational bound states, i.e., Rydberg macrodimers, with
ground-state energies of up to E = −68 MHz and radial expectation values of the order of several μm.
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I. INTRODUCTION

Rydberg atoms are known for their exaggerated proper-
ties due to their large wave-function extension and atomic
dipole moments [1]. For example, interatomic van der Waals
potentials of the form U (r) = C6/r6 scale with the principal
quantum number n as n11. Similarly, dispersion interactions
between a single atom and a macroscopic body, referred to
as Casimir-Polder potentials [2,3], typically show a scaling
with n4 in the case of dipolar interactions [4], making Rydberg
atoms highly susceptible to changes in their immediate envi-
ronment. This is equally true for externally applied or, indeed,
stray electric fields due to adsorbates [5–8].

Interactions of Rydberg atoms with surrounding ground-
state atoms or other Rydberg atoms provide the basis for novel
classes of molecules. Low-energy scattering between a Ryd-
berg electron and a ground-state atom leads to the formation
of long-range Rydberg molecules [9–13]. Their wave function
can form distinct shapes like the famous trilobite molecule [9].
Rydberg macrodimers between two Rydberg atoms, on the
other hand, are the result of strong multipolar or van der Waals
interatomic interactions with or without background electric
fields [14–19]. Due to the complex level structure of Rydberg
atoms, many-body bound Rydberg states exist as well [20,21].

In this paper, we show that the presence of a
(conducting) surface leads to the formation of macrodimers
without external background fields being present. Indeed,
the surface-induced image multipoles in a sense replace an
external electric field. At interatomic distances and atom-
surface distances in the range of a few μm, we find that
avoided crossings appear in the energy spectrum of a pair of
atoms, leading to potential wells that support a large number
of vibrational bound states.

This paper is organized as follows. In Sec. II we set the
stage for calculating pair potentials between Rydberg atoms
near conducting surfaces by reviewing how dispersion forces
near surfaces alter the level structure of atoms as well as their
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interatomic interaction potential. The results of our calcula-
tions of the pair potentials containing bound vibrational states
are presented in Sec. III, with a discussion and conclusions
being provided in Sec. IV.

II. RYDBERG ATOMS NEAR SURFACES

We begin by detailing the envisaged scenario in which two
87Rb atoms in high-lying Rydberg states are held in free space
in close proximity to a (perfectly) conducting half space as
shown in Fig. 1. Without loss of generality, but rather to aid
simplicity, we assume that both atoms are held at the same
distance ds to the surface.

Their dynamics is governed by the Hamiltonian

Ĥ = ĤA + ĤB + Ĥint (1)

which consists of the single-atom Hamiltonians Ĥi for atom
i and the interaction Hamiltonian Ĥint. Let us first consider
the Ĥi for atoms in free space which contain the unperturbed
single-atom Rydberg energy levels of each atom that can be
efficiently computed, e.g., by the PAIRINTERACTION software
[22]. Rydberg atomic energies can be written as

Enl j = − hcR∗

(n − δnl j )2
(2)

with the modified Rydberg constant R∗, the principal quantum
number n, and the (phenomenological) quantum defect δnl j ,
which is a function of the quantum numbers n, l, and j.

The Hamiltonian Ĥint governs the (surface-mediated) in-
teraction between the atoms, and will be expanded in terms
of the first multipole moments. The multipole interaction can
be expressed using the Green tensor approach of macroscopic
quantum electrodynamics [2]. The Green tensor G(rA, rB, ω)
can be interpreted as the propagator function of a monochro-
matic electromagnetic wave with frequency ω from a source
point rB to an observation point rA.

In the presence of a macroscopic body, because of the
linearity of Maxwell’s equations, the Green tensor G can be
decomposed into a sum

G(rA, rB, ω) = G0(rA, rB, ω) + G1(rA, rB, ω) (3)
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composed of the free-space tensor G0 and a scattering con-
tribution G1. The Green tensor in Eq. (3) can be simplified
significantly in the nonretarded limit. Due to the small energy
spacing of adjacent energy levels in Rydberg atoms, one
can safely assume that all distances (interatomic as well as
atom-surface distances) obey d � c/ωmax with the maximum
of all relevant transition frequencies ωmax. In this regime, we
may take the static (frequency-independent) limit of the Green
tensor �(rA, rB) = limω→0

ω2

c2 G(rA, rB, ω).
The interaction Hamiltonian can then be written as

Ĥint = 1

ε0
[d̂A · �(rA, rB) · d̂B + d̂A · �(rA, rB)

←−∇ : Q̂B

+ Q̂A :
−→∇ �(rA, rB) · d̂B] (4)

for interactions up to dipole-quadrupole type [4,23] with the
dipole transition operators d̂i and the quadrupole transition
operators Q̂i associated with atom i. Note that, when insert-
ing the static limit of the free-space Green tensor into the
first term in Eq. (4), one recovers the static dipole-dipole
interaction commonly used in Rydberg physics [23,24]. How-
ever, due to the large spatial extent of the electronic wave
function of Rydberg atoms, it is often not sufficient to only
consider dipole-dipole interaction which assumes a pointlike
scatterer, and higher-order multipole contributions such as
dipole-quadrupole terms have to be considered in addition.

According to the decomposition (3) of the Green tensor,
every term in Ĥint consists of a free-space part and a scattering
contribution accounting for reflection off the surface. For two
atoms located in the xz plane with the perfect mirror in the half
space z < 0, the nonretarded Green tensor is given by [23]

�(rA, rB)

= − 1

4π

⎡
⎣ 1

R3

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ − 3

R5

⎛
⎝ x2 0 xz−

0 0 0
xz− 0 z2

−

⎞
⎠

⎤
⎦

+ 1

4π

⎡
⎣ 1

R3+

⎛
⎝1 0 0

0 1 0
0 0 2

⎞
⎠ − 3

R5+

⎛
⎝ x2 0 −xz+

0 0 0
xz+ 0 x2

⎞
⎠

⎤
⎦.

(5)

Here, we used the notation x = xA − xB, z− = zA − zB, the
interatomic distance R2 = x2 + z2

−, z+ = zA + zB, and R2
+ =

x2 + z2
+. The interpretation of Eq. (5) is straightforward, with

the first line describing the direct interaction between the
atoms by means of the free-space contribution �0(rA, rB),
and the second line describing their interaction with their
respective mirror images inside the conducting body with the
scattering part �1(rA, rB). It is the latter contribution to the
interaction that effectively mimics an external electric field,
and which gives rise to the state mixing we will encounter
soon.

Of course, the dispersion interaction with the surface
already affects each individual atom. This Casimir-Polder
interaction can be cast into a form similar to Eq. (4). For
an excited atom at position r in some state |k〉, the Casimir-
Polder potential in the nonretarded limit reads [25]

Uk (r) = −〈d̂ · �1(r, r) · d̂〉k

2ε0
. (6)

Note that the Casimir-Polder potential (6) features only the
static scattering Green tensor �1. The free-space contribution
associated with �0 is the vacuum Lamb shift that is already
included in the atomic energy spectra according to Eq. (2).
The scattering contribution �1(r, r) in the coincidence limit
of its spatial arguments is diagonal, and the dipole transition
operator can be decomposed into components parallel (d̂‖)
and perpendicular (d̂⊥) to the surface. The expectation value
in the numerator of Eq. (6) refers to the atom in state |k〉A

and is given by the sum over all dipole moments 〈|d̂‖(⊥)|2〉k =∑
k′ |d̂‖(⊥)

kk′ |2.
In principle, following the arguments that led us to in-

clude dipole-quadrupole interactions in the two-atom poten-
tial (4), one would have to include higher-order multipole
contributions in the Casimir-Polder potential, too. However,
angular momentum selection rules do not allow dipole-
quadrupole terms in Eq. (6). The first nonvanishing higher-
order term contributing to the Casimir-Polder potential would
be a quadrupole-quadrupole interaction. However, in order
to be consistent in the truncation at a given multipole order,
this would require the addition not only of a quadrupole-
quadrupole interaction to Ĥint, but at the same level of trunca-
tion also dipole-octupole (and octupole-dipole) contributions.
The relative magnitudes of the multipole interactions can
be estimated by the ratio of radial expectation value and
surface distance, which is here (〈R〉/ds)κ ≈ 0.067κ . Dipole-
dipole interactions correspond to κ = 2, dipole-quadrupole
interactions correspond to κ = 3, and so on [26]. Hence, we
can safely neglect higher multipoles than dipole-quadrupole
interactions.

For an atom in state |k〉 at a distance ds from a perfectly
conducting half space in the nonretarded limit, the Casimir-
Polder potential is found by inserting Eq. (5) with x = z− = 0
into Eq. (6) with the result that [25]

Uk (ds) = −〈d̂‖2 + 2d̂⊥2〉k

64πε0d3
s

. (7)

The full single-atom energy is then the sum of Eqs. (2)
and (7):

Enl j (ds) = Enl j + Unl j (ds). (8)

When calculating atomic interactions in free space, the
quantization axis is often chosen parallel to the molecular axis
[24]. If both the molecular and the quantization axis coincide
with the z axis, the projection of the total angular momentum
M = mjA + mjB is a conserved quantity reducing the total
basis size of interaction Hamiltonians considerably [27,28].
However, the presence of an interface breaks the rotational
symmetry of the problem, and the molecular axis and the
normal direction to the surface do not necessarily coincide.
It is therefore more expedient to choose the x axis as the
quantization axis [29] which is parallel to the interatomic
axis. The projection of the total angular momentum M is not
conserved in this case and requires a larger basis set for the
Hamiltonian [23].

062508-2



CASIMIR-POLDER-INDUCED RYDBERG MACRODIMERS PHYSICAL REVIEW A 100, 062508 (2019)

FIG. 1. Two atoms A and B in free space in front of a perfectly
conducting plate (blue). The atoms are located in the half space
with z > 0 at a distance zA = zB = ds away from the surface with an
interatomic separation R. Image dipoles are created at z′ = −zB =
−zA. The distance between one atom and the image of the second
atom is R+. The Green tensors �0 and �1 represent the free-space
and scattering contribution of the interaction, respectively.

III. MACRODIMERS FORMED BY ATOM-SURFACE
INTERACTION

Our choice of pair states has been informed by their
energetic proximity. A suitable choice of a dipole-coupled set
of pair states could be {|51s1/2; 53s1/2〉, |51p1/2; 52p1/2〉} with
an energy difference of only 83 MHz between the unperturbed
states. In the following, all energies are expressed relative
to the |51s1/2; 53s1/2〉 asymptote for infinite atomic distance
at given surface distance ds. For all pair states mentioned
the projection M of the total angular momentum is equal
to zero, M = mjA + mjB = 0. Their interaction can only be
written in multipole form as in Eq. (4) for interatomic dis-
tances greater than the LeRoy radius R > RLR = 2(

√
〈r2〉A +√

〈r2〉B) using the rms position of the electron of atom i. For
the |51p1/2; 52p1/2〉 asymptote, we obtain RLR ≈ 0.80 μm.
As we will later restrict our calculations to R � 1.2 μm, we
can safely assume a negligible overlap of the electronic wave
functions.

We have added the Hamiltonian (4) and the potential (7) to
the PAIRINTERACTION package [22] that numerically computes
the spectrum as a function of interatomic separation and
atom-surface distance. The calculations are conducted for a
molecular axis that is aligned in parallel with respect to the
surface and are, as has been checked numerically, robust under
small tilts. The pair potentials of Rb Rydberg states around the
|51s1/2mj = 1/2; 53s1/2mj = −1/2〉 asymptote are shown in
Fig. 2. In free space, i.e., in the absence of the reflecting half
space, the lower branches of the energy levels for the pair state
|51s1/2; 53s1/2〉 and the upper branches of the |51p1/2; 52p1/2〉
pair state cross without disturbance [Fig. 2(a)]. The upper
branches of the |51s1/2; 53s1/2〉 undergo an avoided crossing
with the lower branches of the |51p1/2; 52p1/2〉 resulting in
the mixing of these states at interatomic distances R � 3.2 μm
regardless of the presence of the surface.

(a)

(b)

(c)

FIG. 2. Pair potential for Rb Rydberg states around the
|51s1/2; 53s1/2〉 asymptote as a function of interatomic distance R. Po-
tential curves attributed to the |51s1/2; 53s1/2〉 asymptote are shown in
red with upright triangles; those attributed to |51p1/2; 52p1/2〉 states
are shown in blue with downward triangles. (a) Pair potential in free
space. (b) Potential with a perfectly conducting plate at ds = 3 μm.
(c) Detail of the avoided crossing region.

At atom-surface distances ds � 4μm, an avoided cross-
ing appears at R ≈ 2.8 μm between the |51s1/2; 53s1/2〉 and
the |51p1/2; 52p1/2〉 asymptotes, and potential wells form.
Figure 2(b) shows the resulting pair potential at ds = 3 μm.
A detailed investigation of the avoided crossing region shows
the opening of an energy gap �AC ∼ 13.2 MHz [Fig. 2(c)]. As
the energy gap between the potential curves increases with de-
creasing atom-surface distance, the potential minimum shifts
to smaller Rmin. We associate these emerging potential wells
with bound Rydberg-Rydberg states, the so-called Rydberg
macrodimers.

A. Rotational vs electronic timescales

The upper limits of the lifetimes of these macrodimers
are determined by the lifetimes of the individual Rydberg
states [16]. The potential wells shown for an atom-surface
distance ds = 3 μm in Fig. 2 support macrodimer states with
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vibrational quantum numbers ν � 160 (228) for the upper
(lower) branch. Dipole-quadrupole interactions as taken into
account here would normally give rise to rotational-electronic
interactions [30]. However, as in previous studies [16], rota-
tional states can be safely ignored owing to the timescales
involved. We can estimate the timescale τ for rotation of a
macrodimer by invoking a classical dumbbell model giving
τ = 2π〈R〉/(2v) with the relative velocity v ≈ √

kBT/mRb at
temperature T . Assuming a temperature of the atom cloud
of T = 40 μK and a macrodimer distance of 〈R〉 = 2.7 μm,
this amounts to τ ≈ 140 μs, which has to be compared with
the lifetimes of the Rydberg states themselves that are also
modified by the presence of the surface. With the Casimir-
Polder potential—more precisely, the medium-assisted Lamb
shift—and the spontaneous decay rate forming a Hilbert trans-
form pair [2], any surface-induced level shift is accompanied
by a change in the corresponding lifetime. However, when
computing decay rates, the idealized assumption of a perfectly
conducting surface can no longer be upheld, and the finite
permittivity of the surface has to be taken into account.

At sufficiently low temperature at which we can neglect
thermal effects associated with absorption or stimulated emis-
sion, the enhancement of the spontaneous decay rate 
d over
its free-space value 
0 is, in the nonretarded limit valid here,
given by [31]


d


0
= 3

8

∑
k<n

(
1 + |dnk,z|2

|dnk|2
)(

c

ωnkds

)3 Im ε(ωnk )

|ε(ωnk ) + 1|2 . (9)

Here, dnk and dnk,z are the dipole transition moment for the
n → k transition and its z component, respectively, and ωnk

is its transition frequency. We use a simple Drude model

for the permittivity ε(ω) = 1 − ω2
p

ω2+iωγ
with values for the

plasma frequency ωp and the damping constant γ taken from
Ref. [31]. For a gold surface and atomic Rydberg states with
principal quantum number n � 50, we arrive at typical en-
hancement factors 
d/
0 ≈ 10 at ds = 3 μm. Together with
the free-space lifetimes calculated for |50p1/2〉 of �260 μs
[32], we find that τ
d � 5, i.e., a much longer rotational
timescale than that associated with the decay of the Rydberg
state. In addition, there are reports of much shorter lived
macrodimer states for 62s1/2 Cs atoms with (vibrational)
lifetimes estimated to be 3–6 μs [33], thus supporting our
assertion that the rotational spectrum can be safely neglected.

B. Vibrational states

The main contribution to the potential wells formed by
the potential-energy surfaces shown in Fig. 2 shifts from
the |51p1/2; 52p1/2〉 asymptote to the |51s1/2; 53s1/2〉 asymp-
tote with increasing R. There are minor contributions from
|50d3/2; 52s1/2〉 and |51s1/2; 53s1/2〉 pair states with M = 0 to
the upper potential branch, while the lower branch consists
almost entirely of the |51p1/2; 52p1/2〉 asymptote for inter-
atomic separations smaller than ∼2.8 μm. Due to this state
transition along the potential-energy surface, bound states can
only exist in the adiabatic limit.

The two potential branches associated with the energy
surfaces close to the avoided crossing [Fig. 2(c)] are de-
picted in Fig. 3 including the vibrational wave functions for

FIG. 3. Upper (solid) and lower (dashed) potential branches at
atom-surface distance ds = 3 μm and sketches of vibrational wave
functions for ν = 0, 20, 60, and 150 (bottom to top) vs interatomic
distance R. For the lower branch only the ground-state wave function
ν = 0 is indicated. The expectation value 〈R〉 is smaller for ν = 20
than for ν = 0 due to the potential’s asymmetry.

ν = 0, 20, 60, and 150 for the upper potential branch. In the
potential well formed by the lower potential branch, only the
ground-state wave function ν = 0 is shown for comparison.
The potential minimum of the lower branch is approximately
9 MHz lower than that of the upper branch. Using Numerov’s
method [34] to find the eigenenergies and wave functions
of the macrodimer states, we find states with a maximal
vibrational quantum number νmax ≈ 160 (228) for the upper
(lower) branch at ds = 3 μm.

The ground-state wave function in the upper branch is
located very close to the avoided crossing and thus might be
the subject of Landau-Zener predissociation with probability
[35,36]

PLZ = exp

(
− π2�2

AC

hv| dE1
dR − dE2

dR |

)
(10)

with the energy gap �AC at the avoided crossing. The ve-
locity v is the effective relative velocity between the Rb
atoms in the lowest bound state. The derivatives dEi

dR are
taken in the free-space configuration [see Fig. 3(a)]. As PLZ

describes the dissociation probability, 1 − PLZ is the probabil-
ity that the macrodimer does not predissociate. We match this
probability to an exponential decay, e−t∗/τ = 1 − PLZ, over
one oscillation period of the ground state, t∗ = h/E (ν = 0),
resulting in a lifetime τ ≈ 2.83 ms, i.e., much larger than the
expected Rydberg atomic lifetime.

Figure 4 shows the energy spectra of both upper and lower
branches for surface distances ds = 1.75 μm (green), ds =
2 μm (orange), and ds = 3 μm (blue). As the atoms approach
the surface, the avoided crossing becomes more pronounced
and the potential wells flatten, resulting in fewer bound states,
i.e., lower νmax for smaller ds. For even smaller atom-surface
distances, ds � 1.5 μm, both the upper and lower branch po-
tential well vanish completely. Therefore, bound macrodimers
can only be found in a narrow window of surface distance
1.5 � ds � 4 μm.

While the energy of the deepest bound state is Emin =
E (ν = 0) ≈ −59 (68) MHz for the upper (lower) potential
branch, states with large vibrational quantum number form a
quasicontinuous regime [see solid (dashed) lines in Fig. 4].
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FIG. 4. Energies of the macrodimer bound states vs vibrational
quantum number ν. Solid (dashed) lines represent states in the upper
(lower) potential branch, respectively. Both solid and dashed lines
represent energy levels for surface distances ds = 1.75, 2, and 3 μm
from top to bottom.

Even for deeply bound states, the energy difference �Eν,ν+1

between adjacent states is of the order of a few hundred
kilohertz depending on the surface distance as shown in Fig. 5.
The peculiar shape of the lower potential branch with a very
broad minimum produces a maximum �Eν,ν+1 at ν � 30
depending on ds (dashed lines in Fig. 5). At ds = 3 μm, the
maximum energy spacing is �Eν,ν+1 ∼ 410 kHz compared
to �Eν,ν+1 ∼ 240 kHz for the lowest vibrational states in the
lower branch. For smaller surface distance ds, both the number
of bound states νmax and the energy spacing �Eν,ν+1 decrease,
thus resulting in an effective continuum of states.

The mean interatomic distance of the macrodimer 〈R〉 =
〈�|R|�〉 is shown for the upper (lower) potential branches
in solid (dashed) lines in Fig. 6. For the lowest bound states,
〈R〉(ν = 0) � 2.27 μm depending on potential branch and
surface distance. Because of the potential’s anharmonicity,
the radial expectation value decreases with increasing ν for
ds > 2 μm and shows a pronounced minimum as a function of
vibrational quantum number. This behavior can be explained
by investigating the pair potentials in detail. Figure 3 shows
the anharmonic shape of both potential branches. The depicted
wave functions suggest smaller radial expectation values of

FIG. 5. Energy spacing �Eν,ν+1 between adjacent vibrational
macrodimer states vs vibrational quantum number ν. Solid (dashed)
lines represent states in the upper (lower) potential branch, respec-
tively. Both solid and dashed lines represent the energy spacing for
surface distances ds = 1.75, 2, and 3 μm from bottom to top.

FIG. 6. Radial expectation value 〈R〉 vs vibrational quantum
number ν for different surface distances. The upper (lower) potential
branch is represented by solid (dashed) lines for given surface
distance ds = 1.75, 2, and 3 μm from top to bottom for large ν.
The minimum of some of the curves is a result of the anharmonic
potential.

the dimer for ν = 20 than for ν = 0. The highest macrodimer
states reach bond lengths of 〈R〉max ≈ 5 μm.

IV. DISCUSSION

We have investigated Rydberg atom pair potentials in the
presence of a perfectly reflecting surface. We have shown
that the surface’s influence on both single-atom energy levels
and interatomic interaction leads to the creation of avoided
crossings in the pair potential. Due to these avoided crossings,
potential wells in the pair potential appear which we asso-
ciate with long-range Rydberg macrodimer molecules having
binding energies of up to ≈70 MHz and a bond length in the
μm range. As the lifetime of a Rydberg state decreases in
the proximity of a good conductor, the macrodimer’s classical
period of rotation is longer than the atomic lifetime, enabling
us to safely neglect rotational states, which is consistent with
previous studies.

The maximum energy shift from the unperturbed pair state
at the minimum of a macrodimer potential well combined
with the contribution from the Casimir-Polder interaction for
R > 2 μm is �Emax � 170 MHz. This allows the selected
excitation of atoms at a given surface distance [37]. For ex-
ample, the Casimir-Polder-induced energy difference between
the |51s1/2; 53s1/2〉 asymptote at ds = 2 μm and asymptotes
at ds = 1.75 (2.25) μm is �E ∼ 50 (30) MHz for large inter-
atomic separations.

It is well known from the theory of atomic gases that
the combination of a short-range repulsive potential and a
longer-range attractive potential may lead to the formation
of molecular crystals [38]. As a simple approximation to
the correct pair potential taken at ds = 2 μm, we choose a
Lennard-Jones (12,6) potential of the form

V (R) = 4ε

[(σ

R

)12
−

(σ

R

)6
]
. (11)

This form of the potential yields a reasonably good approx-
imation for large separations associated with the attractive
van der Waals R−6 part, whereas the short-range repulsive
behavior contained in the R−12 term reproduces the exact
potential less accurately. Nonetheless, the simple form of
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the Lennard-Jones potential allows one to fit the parameters
ε and σ and analytically extract the cohesive energy of the
corresponding two-dimensional crystal.

For the given parameters, we arrive at an equilibrium
distance Req ≈ 2.75 μm and equilibrium cohesive energy of
Eeq ≈ −93 MHz. While the equilibrium distance is of the
order of the mean macrodimer bond length calculated previ-
ously, the cohesive energy is enhanced by a factor of 3.2 com-
pared to the ground-state energy of the macrodimer at ds =
2 μm, Eeq = 3.2Emin. These results suggest the possibility of
crystal formation in an atomic ensemble close to a surface.
Combined with recent studies on macrodimer excitation in an
optical lattice [39], this could yield a stable two-dimensional
Rydberg atomic crystal even with external electromagnetic
fields turned off.

In a possible experimental realization of this idea, one
important challenge will be unintentional adsorption of atoms
to the surface [5,7,8]. For some ≈108 atoms adsorbed to the
surface, the electric field generated by the adsorbates reaches
a strength of 1 V/cm at a distance of 30 μm away from a
copper surface [6]. This is substantially larger than the electric
fields used to engineer macrodimers in previous studies that

are typically in the range of 0.1 V/cm [16]. In order to
experimentally observe the effect described here, it will be
necessary to keep the adsorbate electric field minimal. This
can be achieved, e.g., by making use of the negative electron
affinity that is induced by Rb atoms adsorbed to a quartz
surface [40]. For small surface distances, the nonretarded
interatomic potential close to a dielectric surface varies only
by a constant factor O(r2

p) with regard to the potential near a
perfect conductor [23]. This might introduce lower potential
gaps but should not pose a fundamental impediment to the
formation of macrodimers. In general, the effects of (stray)
electric fields and surface-induced interactions will have to be
taken into account together.
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