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Density- and spin-density-functional theories through spin-free wave functions
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It is proven that entirely spin-free wave functions can be utilized in the basic definitions of the universal func-
tionals in density-functional theory and spin-density-functional theory. Then, for the purpose of approximating
these functionals, it is shown that the knowledge of certain properties of the functionals, such as those involving
the coordinate scaling of just one of the spin densities, is made feasible precisely because the wave functions
in the functional definitions are free of explicit spins. Among the examples, a conjectured spin-density scaling
relation for the correlation energy is studied.
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I. INTRODUCTION

Although density-functional theory (among the texts, see,
for instance [1–3]) simplifies the many-electron problem for
computations by replacing complicated wave functions with
functionals of the much simpler three-dimensional electron
densities and spin-densities, wave functions have clearly
played starring roles in establishing the existence of exact
energy functionals and for finding ways to approximate them.
With this in mind, we shall show that spin-free wave functions
may be nicely used for these purposes. In fact, the understand-
ing of how functionals are supposed to behave when individ-
ual spin densities change is made much easier through the
employment of spin-free wave functions. By “spin-free wave
function” we mean �(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN ),
where the first M coordinates are associated with the up-spin
electrons and the last (N-M) coordinates are associated with
the down-spin electrons, and where this wave function is
antisymmetric in the first M coordinates and is antisymmetric
in the last (N-M) coordinates.

In density-functional theory, the ground state energy EGS

and corresponding density ρgs(r), for the attractive potential
v(r), are given by

EGS = min
ρ

{∫
v(r)ρ(r)dr + F [ρ]

}

=
∫

v(r)ρgs(r)dr + F [ρgs], (1)

where the universal functional [4] in its generalized
constrained-search form [5,6] is

F [ρ] = min
�→ρ

{〈�|T̂ + V̂ee|�〉}, (2)
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and where the kinetic part of the Hamiltonian is T̂ =
− 1

2

∑
1�i�N ∇2

i and the electron-electron repulsion part of the
Hamiltonian is V̂ee = ∑

1�i< j�N
1

|ri−r j | .
Further, we now observe that

F [ρ] = min
ρ↑+ρ↓=ρ

F [ρ↑, ρ↓], (3)

where ρ↑(r) and ρ↓(r) are up- and down-spin densities, such
that

ρ(r) = ρ↑(r) + ρ↓(r), (4)

and where, of course,

F [ρ↑, ρ↓] = min
�→(ρ↑,ρ↓ )

{〈�|T̂ + V̂ee|�〉}. (5)

[Alternatively, wave functions can be replaced by ensemble
density matrices in expressions (2) and (5), where traces
would replace expectation values.]

If the external potential contains spin-dependent contri-
butions, such as with magnetism in spin-density functional
theory, then [7,8]

EGS = min
ρ↑,ρ↓

{∫
v(r)[ρ↑(r) + ρ↓(r)]dr +

∫
v↑(r)ρ↑(r)dr

+
∫

v↓(r)ρ↓(r)dr + F [ρ↑, ρ↓]

}
. (6)

The F [ρ], in expressions (2) and (3), and the F [ρ↑, ρ↓],
in expressions (3) and (5), must be approximated for practi-
cal electronic structure calculations. For this purpose, exact
properties (constraints) of these functionals, such as equali-
ties and inequalities involving coordinate scaling, adiabatic-
connection relations, and asymptotic limits have been first
derived and then approximations to these functionals have
been constructed to satisfy as many of the known properties
(constraints) as feasible.

The traditional spin-wave functions in functional defini-
tions (2) and (5), which have been utilized for functional
property derivations, have contained spin coordinates as well
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as spatial coordinates. However, for the derivation of certain
important properties, such as those involving the coordinate
scaling of individual spin-densities in F [ρ↑, ρ↓] and F [ρ] and
in their components, we have come to the realization that
it is greatly beneficial to employ spin-free wave functions
in the definitions, even when the external potential contains
spin-dependent contributions.

However, is the use of spin-free wave functions allowed?
As we shall show, the answer is yes. Then we shall illustrate
how the use of these spin-free wave functions allows for the
derivations of exact properties of F [ρ↑, ρ↓] and F [ρ] that

would otherwise be difficult to derive because of the indis-
tinguishability of all of the electrons in fully antisymmetric
spin-wave functions.

II. EQUIVALENCE OF SPIN-FREE AND CONVENTIONAL
DEFINITIONS OF F[ρ↑, ρ↓]

We present below two constrained-search definitions of the
universal functional F [ρ↑, ρ↓] and prove their equivalence.
The first is the conventional one that is based on the use of
spin-wave functions, while the new one is based on the use of
purely spatial (spin-free) wave functions.

A. Conventional definition

F [ρ↑, ρ↓] = min
�→(ρ↑,ρ↓ )

〈�(x1, x2, . . . , xN )|T̂ + V̂ee|�(x1, x2, . . . , xN )〉x

= 〈
�min

(ρ↑,ρ↓ )(x1, x2, . . . , xN )
∣∣T̂ + V̂ee

∣∣�min
(ρ↑,ρ↓ )(x1, x2, . . . , xN )

〉
x, (7)

where each spin-wave function

�(x1, x2, . . . , xN ), xi = (ri, si ), (8)

depends on both the spatial coordinates ri and spin variables si, and � is a function that is antisymmetric in the interchange of
any of the x variables and normalized to unity. The corresponding (kinetic + electron-electron repulsion) energy expectation
value for each � in expression (7) is given by

〈�(x1, x2, . . . , xN )|T̂ + V̂ee|�(x1, x2, . . . ., xN )〉x

=
∑

s1,s2,...,sN =− 1
2 , 1

2

∫
�∗(r1, s1, r2, s2, . . . , rN , sN )(T̂ + V̂ee)�(r1, s1, r2, s2, . . . , rN , sN )dr1dr2 · · · drN , (9)

where − 1
2 and 1

2 correspond to “down” and “up” spins, and the spin-wave functions in Eq. (7) yield the same set of up- and
down-spin densities, given by

ρ↑(r) = N
∑

s2,...,sN =− 1
2 , 1

2

∫ ∣∣∣∣�
(

r,
1

2
, r2, s2, . . . , rN , sN

)∣∣∣∣
2

dr2 · · · drN ,

ρ↓(r) = N
∑

s2,...,sN =− 1
2 , 1

2

∫ ∣∣∣∣�
(

r,−1

2
, r2, s2, . . . , rN , sN

)∣∣∣∣
2

dr2 · · · drN . (10)

B. Spin-free definition

F̃ [ρ↑, ρ↓] = min
�→(ρ↑,ρ↓ )

〈�(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )|T̂ + V̂ee|�(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )〉r

= 〈
�min

(ρ↑,ρ↓ )(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )
∣∣T̂ + V̂ee

∣∣�min
(ρ↑,ρ↓ )(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )

〉
r, (11)

where each spatial (spin-free) wave function

�(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN ) (12)

is antisymmetric in the first M coordinates and is antisymmetric in the last (N-M) coordinates, and is normalized to unity.
The corresponding (kinetic + electron-electron repulsion) energy expectation value for each � in expression (11) is given by

〈�(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )|T̂ + V̂ee|�(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )〉r

=
∫

�∗(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )(T̂ + V̂ee)�(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )

× dr1dr2 · · · drMdrM+1drM+2 · · · drN , (13)
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where the above Dirac bracket differs from the one in expression (9), and all the spin-free wave functions in Eq. (11) yield the
same set of up- and down-spin densities, given by

ρ↑(r) = M
∫

|�(r, . . . , rM ; rM+1, . . . , rN )|2dr2, . . . , drMdrM+1, . . . , drN ,

ρ↓(r) = (N − M )
∫

|�(r1, . . . , rM ; r, . . . , rN )|2dr1, . . . , drMdrM+2, . . . , drN . (14)

Theorem. The spin-free definition of F̃ [ρ↑, ρ↓] equals the
conventional definition of F [ρ↑, ρ↓], when the spin densities
in expression (14) are the same as those in expression (10).

Proof. The spin-wave function with M = N↑ (up-spin) and
N − M = N↓ (down-spin) electrons (N = N↑ + N↓) can be
expanded into a sum of space-spin products as [9,10]

�(x1, x2, . . . , xN ) =
K∑

i=1

Gi(r1, r2, . . . , rN )ζi(s1, s2, . . . , sN ).

(15)

The spin functions ζi(s1, s2, . . . , sN ) are orthonormal,
where the first spin function, which is associated with
G1(r1, r2, . . . , rN ), is conveniently chosen to be

ζ1(s1, s2, . . . , sN ) = α(s1) · · · α(sN↑ )β(sN↑+1) · · · β(sN ).

(16)

The upper limit in the sum of Eq. (15) is K = N!
N↑!N↓! .

[K = N!
N↑!N↓! results from the fact that, in general, there are N!

possibilities of ordering the N terms on the right-hand side of
Eq. (16). But since all the N↑! possibilities of ordering the N↑
terms of type α(si ) and all the N↓! possibilities of ordering the
N↓ terms of type β(si ) are equivalent, N! has to be divided by
N↑! times N↓!.]

From the antisymmetry of the spin-wave function
�(x1, x2, . . . , xN ), it follows that all the spatial functions
Gi(r1, r2, . . . , rN ) are equivalent to G1(r1, r2, . . . , rN ), after
relabeling of indices and a possible change of sign. From the
same argument, it also follows that each Gi(r1, r2, . . . , rN ) is
antisymmetric in the interchange of like-spin coordinates.

In the following, we first observe that there is a one-
to-one correspondence between the first spatial compo-
nent G1(r1, r2, . . . , rN ) and the full spin-wave function
�(x1, x2, . . . , xN ). Then we show that the T̂ + V̂ee expectation
values of the appropriately normalized G1(r1, r2, . . . , rN ) and
�(x1, x2, . . . , xN ) equal each other. Further, we shall show
that the spin densities of the two wave functions are also equal,
according to the given in the formulation of the theorem.
Finally, since there is a one-to-one correspondence between
the two wave functions yielding the same spin densities as
well as the T̂ + V̂ee expectation value at every point in the
minimization processes, their respective minima are, clearly,
also equivalent.

On the one hand, since the spin functions
{ζi(s1, s2, . . . , sN )} form an orthonormal set, it follows that
G1(r1, r2, . . . , rN ) can be projected from �(x1, x2, . . . , xN )

through

∑
s1,s2,...,sN

ζ1(s1, s2, . . . , sN )�(x1, x2, . . . , xN )

= G1(r1, r2, . . . , rN ). (17)

The utility of this mapping from �(x1, x2, . . . , xN ) to
G1(r1, r2, . . . , rN ) will be evident later for expectation values
of operators that are independent of spin.

On the other hand, the spin-wave function
�(x1, x2, . . . , xN ) on the left-hand side of expression (15) can
be obtained by antisymmetrization of any component in the
sum on the right-hand side of this expression. In particular,
antisymmetrization of the first component gives

A{G1(r1, r2, . . . , rN )ζ1(s1, s2, . . . , sN )}

=
K∑

i=1

Gi(r1, r2, . . . , rN )ζi(s1, s2, . . . , sN )

= �(x1, x2, . . . , xN ). (18)

Expressions (17) and (18) establish a one-to-one correspon-
dence between the spin-wave function �(x1, x2, . . . , xN ) and
its first spatial component G1(r1, r2, . . . , rN ). That is,

�(x1, x2, . . . , xN ) ↔
√

KG1(r1, r2, . . . , rN ). (19)

Thus, the normalized first spatial component√
KG1(r1, r2, . . . , rN ) is equated with the spin-free wave

function �(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN ) in the
spin-free definition of F̃ [ρ↑, ρ↓],

�(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )

=
√

KG1(r1, r2, . . . , rN ). (20)

Indeed,
√

KG1(r1, r2, . . . , rN ) is a function that is antisym-
metric in the first M, or N↑, coordinates and in the last
(N − M ), or N↓, coordinates. Also,

√
KG1(r1, r2, . . . , rN ) is

normalized to unity.
We now show that the expectation value of T̂ + V̂ee

in Eq. (9), with �(x1, x2, . . . , xN ) given by Eq. (15),
equals the expectation value of T̂ + V̂ee in Eq. (13), with
�(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN ) given by Eq. (20).
To prove the equality of expectation values, use is made
of the fact that the orthonormality of the spin functions
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ζi(s1, s2, . . . , sN ) causes the cross terms to vanish,

〈�(x1, x2, . . . , xN )|T̂ + V̂ee|�(x1, x2, . . . , xN )〉x

=
∑

s1,s2,...,sN =− 1
2 , 1

2

∫
�∗(r1, s1, r2, s2, . . . , rN , sN )(T̂ + V̂ee)�(r1, s1, r2, s2, . . . , rN , sN )dr1dr2...drN

=
∑

s1,s2,...,sN =− 1
2 , 1

2

K∑
i, j=1

∫
G∗

i (r1, r2, . . . , rN )ζi(s1, s2, . . . , sN )(T̂ + V̂ee)Gj (r1, r2, . . . , rN )ζ j (s1, s2, . . . , sN )dr1dr2 · · · drN

=
K∑

i=1

∫
G∗

i (r1, r2, . . . , rN )(T̂ + V̂ee)Gi(r1, r2, . . . , rN )dr1dr2 · · · drN ,

= K
∫

G∗
1(r1, r2, . . . , rN )(T̂ + V̂ee)G1(r1, r2, . . . , rN )dr1dr2 · · · drN

=
∫

[
√

KG∗
1(r1, r2, . . . , rN )](T̂ + V̂ee)[

√
KG1(r1, r2, . . . , rN )]dr1dr2 · · · drN

= 〈�(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )|T̂ + V̂ee|�(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )〉r, (21)

where use is also made of the fact that each Gi(r1, r2, . . . , rN ) differs from G1(r1, r2, . . . , rN ) by an antisymmetric interchange
of coordinates corresponding to the like-spin electrons.

For other purposes, instead of T̂ + V̂ee, other spin-free operators could be used in Eq. (21), including just T̂ , V̂ee, or Î . In the
latter case the equivalence of normalizations is established.

Next, we prove that �(x1, x2, . . . , xN ), as given by Eq. (15), and the corresponding �(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN ),
as given by Eq. (20), yield the same spin densities, through Eqs. (10) and (14), respectively. We accomplish this by starting with
the definition of spin densities in Eq. (10) and transform it in a multistep fashion to the definition of the spin densities in Eq. (14).

First, on the right-hand side of the definition of the up-spin density in Eq. (10), replace �(r, 1
2 , r2, s2, . . . , rN , sN ) with

the expansion terms of Eq. (15) that all start with α(s1) in their spin components ζi(s1, s2, . . . , sN ), as the choice of s1 = 1
2

requires. Also, use the orthonormality of the spin components ζi(s1, s2, . . . , sN ) as well as the fact that each spatial component
Gi(r1, r2, . . . , rN ) is equivalent to G1(r1, r2, . . . , rN ) up to an antisymmetric interchange of coordinates, to obtain

N
∑

s2,...,sN =− 1
2 , 1

2

∫ ∣∣∣∣�
(

r,
1

2
, r2, s2, . . . , rN , sN

)∣∣∣∣
2

dr1dr2 · · · drN = N

{
KM

N

∫
|G1(r1, r2, . . . , rN )|2dr1dr2 · · · drN

}
. (22)

Notice that there are (N−1)!
(N↑−1)!N↓! = KN↑

N = KM
N terms in the above expansion. [The number of terms, where the first spin in each

spin component ζi(s1, s2, . . . , sN ) is fixed to spin-up α(s1), is the same as the number of terms of (N − 1) electrons with (N↑ − 1)
up- and N↓ down-spin electrons. Note the definition of K below Eq. (16).]

Next, further modify Eq. (22) by using Eq. (20),

KM
∫

|G1(r1, r2, . . . , rN )|2dr1dr2 · · · drN = M
∫

|�(r, . . . , rM ; rM+1, . . . , rN )|2dr2, . . . , drMdrM+1, . . . , drN . (23)

Finally, observe that the right-hand side of Eq. (23) is equivalent to the definition of the up-spin density on the right-hand side
of Eq. (14).

The equivalence of the down-spin definitions in Eqs. (10) and (14) proceeds in a similar manner, by first establishing

N
∑

s2,...,sN =− 1
2 , 1

2

∫ ∣∣∣∣�
(

r,−1

2
, r2, s2, . . . , rN , sN

)∣∣∣∣
2

dr1dr2 · · · drN

= N
∑

s1,...,sN↑ ,sN↓+1,...,sN =− 1
2 , 1

2

∫ ∣∣∣∣�
(

r1, s1, r2, s2, . . . , rN↑ , sN↑ , r,−1

2
, . . . , rN , sN

)∣∣∣∣
2

dr1dr2 · · · drN↑drN↑+1dr2 · · · drN . (24)

That is, the coordinate that is not integrated on the right-hand side of the down-spin definition in Eq. (10) is moved from the
first position to the position that corresponds to the first down-spin electron in �(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN ). Further,
proceed as in the up-spin density case.

We now proceed right to left in Eq. (21) and apply expression (18). We obtain that for every 〈T̂ + V̂ee〉r , with a
�(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN ), there is the same 〈T̂ + V̂ee〉x, with the corresponding �(x1, x2, . . . , xN ).
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That is,

〈�(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )|T̂ + V̂ee|�(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )〉r

=
∑

s1,s2,...,sN =− 1
2 , 1

2

∫ √
KG∗

1(r1, r2, . . . , rN )ζ1(s1, s2, . . . , sN )(T̂ + V̂ee)
√

KG1(r1, r2, . . . , rN )ζ1(s1, s2, . . . , sN )dr1dr2 · · · drN

=
∑

s1,s2,...,sN =− 1
2 , 1

2

∫
A{

√
KG∗

1(r1, r2, . . . , rN )ζ1(s1, s2, . . . , sN )}(T̂ + V̂ee)A{
√

KG1(r1, r2, . . . , rN )

× ζ1(s1, s2, . . . , sN )}dr1dr2 · · · drN

= 〈�(x1, x2, . . . , xN )|T̂ + V̂ee|�(x1, x2, . . . , xN )〉x. (25)

The combination of expressions (21) and (25), and the fact that �(x1, x2, . . . , xN ) and �(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )
have the same spin densities, proves the desired result, which is of course,

min
�→(ρ↑,ρ↓ )

〈�(x1, x2, . . . , xN )|T̂ + V̂ee|�(x1, x2, . . . , xN )〉x

= min
�→(ρ↑,ρ↓ )

〈�(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )|T̂ + V̂ee|�(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )〉r . (26)

A generalization of the universal functional, where spin-free eignenfunctions of the spin operator Ŝ2 are used in the
constrained search, is given in the Appendix.

The theorem and proof can be further generalized to ensemble density matrices in the constrained searches.

III. SPIN-DEPENDENT COORDINATE SCALING

Our observation that space only (spin-free) wave functions may be used in the constrained search, for the expectation value
of T̂ + V̂ee, enables the derivation of constraints, such as those involved in coordinate scaling, for approximating F [ρ↑, ρ↓] and
its components in spin-density-functional theory. Along these lines, spin-dependent coordinate scaling for the correlation energy
was introduced in Ref. [11], and the use of spin-free wave functions enables further significant progress.

As a fundamental example, we are now able to assert that

F [ρλ
↑, ρ↓] �

〈
λ

3M
2 �min

(ρ↑,ρ↓ )(λr1, λr2, . . . , λrM ; rM+1, rM+2, . . . , rN )
∣∣T̂

+ V̂ee

∣∣λ 3M
2 �min

(ρ↑,ρ↓ )(λr1, λr2, . . . , λrM ; rM+1, rM+2, . . . , rN )
〉

(27)

follows from the reasoning [12–14] used in the study of the uniform scaling properties of F [ρ]. That is, the in-
equality in Eq. (27) arises from the fact that the scaled wave function on its right-hand side is not equal to
�min

(ρλ
↑,ρ↓ )

(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN ), where

ρλ
↑(r) = ρλ

↑(x, y, z) = λ3ρ↑(λx, λy, λz). (28)

More generally, we have

F [ρλ↑
↑ , ρ

λ↓
↓ ] �

〈
λ

3M
2

↑ λ
3(N−M )

2
↓ �min

(ρ↑,ρ↓ )(λ↑r1, λ↑r2, . . . , λ↑rM ; λ↓rM+1, λ↓rM+2, . . . , λ↓rN )
∣∣T̂

+ V̂ee

∣∣λ 3M
2

↑ λ
3(N−M )

2
↓ �min

(ρ↑,ρ↓ )(λ↑r1, λ↑r2, . . . , λ↑rM ; λ↓rM+1, λ↓rM+2, . . . , λ↓rN )
〉
. (29)

Further generalizations include the use of nonuniform scale factors for the x, y, z components of the up- and down-spin densities.
But for the purposes here, inequality (27) should suffice.

Inequality (27) leads to

F [ρλ
↑, ρ↓] � λ2T↑[ρ↑, ρ↓] + T↓[ρ↑, ρ↓] + λVee,↑[ρ↑, ρ↓] + Vee,↓[ρ↑, ρ↓] + N↑N↓

〈
�min

(ρ↑,ρ↓ )

∣∣ 1

| r1
λ

− rN |
∣∣�min

(ρ↑,ρ↓ )

〉
, (30)

where

T↑[ρ↑, ρ↓] = M
〈
�min

(ρ↑,ρ↓ )

∣∣T̂1

∣∣�min
(ρ↑,ρ↓ )

〉
, (31)

T↓[ρ↑, ρ↓] = (N − M )
〈
�min

(ρ↑,ρ↓ )

∣∣T̂N

∣∣�min
(ρ↑,ρ↓ )

〉
, (32)

Vee,↑[ρ↑, ρ↓] = M(M − 1)

2

〈
�min

(ρ↑,ρ↓ )

∣∣ 1

|r1 − r2|
∣∣�min

(ρ↑,ρ↓ )

〉
, (33)

Vee,↓[ρ↑, ρ↓] = (N − M )(N − M − 1)

2

〈
�min

(ρ↑,ρ↓ )

∣∣ 1

|rN−1 − rN |
∣∣�min

(ρ↑,ρ↓ )

〉
. (34)
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From inequality (30) and the corresponding one for F [ρ↑, ρλ
↓], it follows that

lim
λ→0

F [ρλ
↑, ρ↓] + lim

λ→0
F [ρ↑, ρλ

↓] � F [ρ↑, ρ↓] − N↑N↓
〈
�min

(ρ↑,ρ↓ )

∣∣ 1

|r1 − rN |
∣∣�min

(ρ↑,ρ↓ )

〉
� F [ρ↑, ρ↓]. (35)

Also, inequality (30) and the corresponding one for F [ρ↑, ρλ
↓] imply

lim
λ→∞

F [ρλ
↑, ρ↓]

λ2
+ lim

λ→∞
F [ρ↑, ρλ

↓]

λ2
� T↑[ρ↑, ρ↓] + T↓[ρ↑, ρ↓], (36)

which means that

0 � lim
λ→∞

F [ρλ
↑, ρ↓]

λ2
+ lim

λ→∞
F [ρ↑, ρλ

↓]

λ2
�

(
∂F [ρλ

↑, ρ↓]

∂λ

)
λ=1

+
(

∂F [ρ↑, ρλ
↓]

∂λ

)
λ=1

− F [ρ↑, ρ↓], (37)

where use has been made of

T↑[ρ↑, ρ↓] + T↓[ρ↑, ρ↓] =
(

∂F [ρλ
↑, ρ↓]

∂λ

)
λ=1

+
(

∂F [ρ↑, ρλ
↓]

∂λ

)
λ=1

− F [ρ↑, ρ↓], (38)

which follows from the fact that expression (30) and its counterpart involving ρλ
↓ are equalities at λ = 1.

From the reasoning in Refs. [12–14], the fundamental equality counterpart to inequality (27) is

F [ρλ
↑, ρ↓] = 〈

�min
(ρλ

↑,ρ↓ )(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )
∣∣T̂ + V̂ee

∣∣�min
(ρλ

↑,ρ↓ )(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )
〉
, (39)

or

F [ρλ
↑, ρ↓] = 〈

λ
3M
2 �min,λ

(ρ↑,ρ↓ )(λr1, λr2, . . . , λrM ; rM+1, rM+2, . . . , rN )
∣∣T̂

+ V̂ee

∣∣λ 3M
2 �min,λ

(ρ↑,ρ↓ )(λr1, λr2, . . . , λrM ; rM+1, rM+2, . . . , rN )
〉
, (40)

or

F [ρλ
↑, ρ↓] = 〈

�min,λ

(ρ↑,ρ↓)(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )
∣∣B̂(λ)

∣∣�min,λ
(ρ↑,ρ↓ )(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )

〉
, (41)

where �min,λ
(ρ↑,ρ↓ )(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN ) is the wave function that yields ρ↑ and ρ↓ and simultaneously minimizes the

expectation value of B̂(λ), where

B̂(λ) = −1

2
λ2

M∑
i=1

∇2
�ri

− 1

2

N∑
i=M+1

∇2
�ri

+ λ

M∑
j=i+1

M−1∑
i=1

1

|�ri − �r j | +
N∑

j=i+1

N−1∑
i=M+1

1

|�ri − �r j | +
N∑

j=M+1

M∑
i=1

1∣∣ �ri
λ

− �r j

∣∣ . (42)

Upon the scaling of ρ↑, FKS is given by

FKS[ρλ
↑, ρ↓] = 〈

	KS
(ρ↑,ρ↓ )(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )

∣∣B̂(λ)
∣∣	KS

(ρ↑,ρ↓ )(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )
〉
, (43)

where, consistent with its most common spin-density defi-
nition [15], 	KS

(ρ↑,ρ↓ )(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN ) =
	KS

ρ↑ (r1, r2, . . . , rM )	KS
ρ↓ (rM+1, rM+2, . . . , rN ), and where

	KS
ρ↑ and 	KS

ρ↓ are the antisymmetric Kohn-Sham wave
functions for ρ↑ and ρ↓, respectively.

With F [ρλ
↑, ρ↓] given by expression (41) and FKS[ρλ

↑, ρ↓]
by expression (43), the corresponding correlation energy is

Ec[ρλ
↑, ρ↓] = F [ρλ

↑, ρ↓] − FKS[ρλ
↑, ρ↓]. (44)

It can be shown that expressions (41)–(44) lead to

lim
λ→0

F [ρλ
↑, ρ↓] � F [0, ρ↓] (45)

and

lim
λ→0

FKS[ρλ
↑, ρ↓] = FKS[0, ρ↓], (46)

because B̂(λ) approaches the down-spin Hamiltonian for
(N-M) electrons as λ approaches zero. Consequently, we

obtain

lim
λ→0

Ec[ρλ
↑, ρ↓] � Ec[0, ρ↓]. (47)

However, expressions (45) and (47) are equalities if, and
only if, ρ↓ is such that the value of F [0, ρ↓] cannot be
lowered by replacing wave functions with ensembles in its
constrained-search definition, as for example, when ρ↓ is
pure-state v-representable, for the all down-spin electron
case. In an alternative equality case, it can be shown that
expressions (45) and (47) are equalities for any ρ↓ when
the constrained-search minimizing wave functions are re-
placed by constrained-search minimizing ensembles in the
definitions of FKS[ρλ

↑, ρ↓] and F [ρλ
↑, ρ↓]. In either equality

case,

lim
λ→0

Ec[ρλ
↑, ρ↓] = Ec[0, ρ↓], (48)

which is what has previously been conjectured [11].
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IV. CONCLUDING THOUGHTS

Incidentally, by using the connection of density-functional
theory and spin-density-functional theory in Eq. (3), it is
interesting to observe that with

ρ(r) = ρ↑(r) + ρ↓(r), (49)

and with the situation where

F [ρ] = F [ρ↑, ρ↓], (50)

the coordinate scaling on both sides of Eq. (50) leads to an
inequality rather than an equality,

F [ρλ] � F [ρλ
↑, ρλ

↓]. (51)

Through our new expression for F [ρ↑, ρ↓] as a constrained
search with wave functions (or ensemble density matrices)
that are entirely spin free, one is now better able to find
exact properties of F [ρ↑, ρ↓] and its components, for ap-
proximation purposes. As examples, we were able to derive
coordinate scaling constraints for F [ρ↑, ρ↓] by utilizing the
basic inequality in expression (27) and the basic equality in
expression (41), which arise from the definition of F [ρλ

↑, ρ↓]
and by scaling the first M spatial coordinates of the appropri-
ate wave functions. It is significant that the use of spin-free
wave functions especially enables the derivation of important
exact constraints for approximating the correlation energy
functional.

Our spin-free constrained-search approach presented in
this paper can be further generalized to universal density-
matrix functional theories. It would also be interesting to
see if this approach could be generalized to the two- and
four-component relativistic versions of DFT, so that, for in-
stance, cases involving noncollinear magnetism and spin-orbit
coupling could be covered [16].

In closing, we observe that the spin-free constrained search
in the universal functional in expression (11) should be useful
for the explicit wave-function constructions of it [17–20] and
of its functional derivatives [20].
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APPENDIX

Universal functionals that are defined by constrained
search can be symmetry adapted [21]. In particular, they
can be restricted to the eigenstates of the spin operator Ŝ2

[1,2,16]. Since these universal functionals impose additional
constraints, they give higher energies compared to the con-
ventional universal functional but can be useful in a variety
of contexts, for example, in calculating excited states that are
also triplet ground states.

In the spin-explicit approach, a projection operator may be
used in the constrained search to restrict the wave functions to
the eigenfunctions �S (x1, x2, . . . , xN ) of Ŝ2 with eigenvalue
S(S + 1).

In the spin-free approach, the equivalent effect is achieved
by the following analog of the expansion in Eq. (15),

�S (x1, x2, . . . , xN )=
K∑

i=1

G̃i(r1, r2, . . . , rN )ζ̃i(s1, s2, . . . , sN ),

(A1)

where

G̃i(r1, r2, . . . , rN ) =
NS∑
j=1

T i jGj (r1, r2, . . . , rN ),

ζ̃i(s1, s2, . . . , sN ) =
NS∑
j=1

Ti jζ j (s1, s2, . . . , sN ). (A2)

ζ̃i(s1, s2, . . . , sN ) are the NS spin eigenstates of Ŝ2 with
the eigenvalue of S(S + 1) and Ti j is an orthonormal
matrix [9,10].

The expectation value of �S (x1, x2, . . . , xN ) is computed
by an analog of Eq. (21),

〈�S (r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )|T̂ + V̂ee|�S (r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )〉r

=
K∑

i=1

NS∑
j=1

NS∑
k=1

Ti jTik

∫
G∗

j (r1, r2, . . . , rN )(T̂ + V̂ee)Gk (r1, r2, . . . , rN )dr1dr2 · · · drN . (A3)

As in the case of Eq. (21), instead of T̂ + V̂ee, any other spin-free operator could be used in Eq. (A3), including just T̂ , V̂ee, or Î .
The densities of �S (x1, x2, . . . , xN ) are computed in analogy to Eq. (22–24),

ρ↑(r) = M
K∑

i=1

NS∑
j=1

NS∑
k=1

Ti jTik

∫
G∗

j (r, . . . , rM ; rM+1, . . . , rN )Gk (r, . . . , rM ; rM+1, . . . , rN )dr2, . . . , drMdrM+1, . . . , drN

ρ↓(r) = (N − M )
K∑

i=1

NS∑
j=1

NS∑
k=1

Ti jTik

∫
G∗

j (r1, . . . , rM ; r, . . . , rN )Gk (r1, . . . , rM ; r, . . . , rN )dr1, . . . , drMdr, . . . , drN . (A4)
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With all of the above in place, the following is the spin-free version of the universal functional with the S(S + 1) eigenfunctions
�S (x1, x2, . . . , xN ) of Ŝ2 in the constrained search,

FS[ρ↑, ρ↓] = min
�S→(ρ↑,ρ↓ )

〈�S (r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )|T̂ + V̂ee|�S (r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )〉r. (A5)

It can be shown that the spin-explicit and spin-free definitions are equivalent in this case as well.
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