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QED calculation of electron-electron correlation effects in heliumlike ions
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A fully relativistic approach to evaluating the correlation effects in highly charged ions is presented. The
interelectronic-interaction contributions of first and second orders in 1/Z are treated rigorously within the
framework of bound-state quantum electrodynamics, whereas the calculations of the third- and higher-order
contributions are based on the Dirac-Coulomb-Breit Hamiltonian. The developed approach allows one to deal
with single as well as degenerate or quasidegenerate states. We apply this approach to the calculations of the
correlation contributions to the n = 1 and n = 2 energy levels in heliumlike ions. The obtained contributions
are combined with the one-electron QED, screened QED, nuclear recoil, and nuclear polarization corrections to
get the total theoretical predictions for the ionization and transition energies in high-Z heliumlike ions.
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I. INTRODUCTION

Heavy highly charged ions provide a unique opportunity
for testing bound-state quantum electrodynamics (QED) in
the strong-field regime. Nowadays, the accuracy of the Lamb
shift measurements in H-like uranium has achieved a level
of a few percent of the total QED contribution [1,2]. Even
better precision is obtained in experiments aiming to probe
the QED effects in Li-like uranium [3–7]. In order to meet the
constantly improving accuracy in existing [8–16] and planned
[17–21] experiments with highly charged ions, a number of
rigorous QED calculations have been performed (see, e.g.,
Refs. [22–31] and references therein). Whenever possible,
theoretical predictions have been compared with the results of
high-precision measurements, and good agreement has been
found.

Heliumlike ions play a special role among other highly
charged ions. Possessing only two bound electrons, they
represent the simplest system where the many-electron QED
effects can be studied. The calculations of the ground and
n = 2 singly excited energy levels in He-like ions performed
in Ref. [32] more than ten years ago are considered as a bench-
mark theoretical treatment of these effects in two-electron
systems. In Ref. [32], all two-electron QED corrections up
to the second order of the perturbation theory were evaluated
within the rigorous QED approach without an expansion in
the parameter αZ (α is the fine-structure constant, and Z is the
nuclear charge number). A review of the previous relativistic
calculations of heliumlike ions and a comparison with the
experimental data available at that time can be found in
Ref. [32]. Later, drawing on the x-ray transition measurements
in He-like titanium and statistical treatment of the previous
experimental data, Chantler et al. [33,34] claimed that a
divergence between the experimental results and the theory
from Ref. [32] growing as Z3 takes place. New measurements
of the transition energies in middle-Z heliumlike ions have
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been undertaken [35–40], and the obtained results fall out-
side the Z3 trend predicted in Refs. [33,34]. Moreover, new
statistical studies [38,40,41], which include the extended sets
of experimental data, have shown that there is no evidence
for the aforementioned Z-dependent deviation. Finally, in our
recent study [42] we have performed completely independent
ab initio calculations of the x-ray transitions in heliumlike
argon, titanium, iron, copper, and krypton. We found no
possible explanation from the theoretical side for the signif-
icant discrepancy between the theory and measurements with
heliumlike Ti20+ performed in Ref. [33]. On the other hand,
our results were found to be generally in agreement with the
most recent high-precision experimental values.

In the present paper, we are focused on the description
of the method used in Ref. [42] in order to evaluate the
contribution of the correlation effects to the binding energies
of He-like ions. Study of the correlation effects in heliumlike
ions has a long history. There are many relativistic electronic-
structure calculations performed within the lowest-order rela-
tivistic (Breit) approximation using the Dirac-Coulomb-Breit
(DCB) Hamiltonian [43–50]. The most advanced QED treat-
ment of the correlation effects includes the two-photon ex-
change contribution [32,51–57]. In the present paper, the nu-
merical approach employed in Ref. [32] has been revised thor-
oughly, and the introduced modifications are discussed below.
We perform a rigorous evaluation of the correlation effects for
n = 1 and n = 2 energy levels in several heliumlike ions. The
contributions of the first and second orders in 1/Z are taken
into account to all orders in αZ . The higher-order corrections
are treated within the Breit approximation using the large-
scale configuration interaction (CI) method and the recursive
perturbation theory (PT). The developed method is suitable
for both single and (quasi)degenerate levels. In comparison
with Ref. [42], the calculations are extended to high-Z ions
including heliumlike uranium. An important feature of the
present paper is the systematic estimation of uncertainties of
the obtained results. The evaluated interelectronic-interaction
contributions to the binding energies are compared with the
previous calculations. Our results are in agreement with those,
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but have much higher accuracy. In addition, the calculations
of the electron-electron correlation effects are supplemented
with the evaluation of the one-electron and screened QED cor-
rections as well as nuclear recoil and nuclear polarization con-
tributions. This allows us to extend ab initio QED calculations
of the n = 1 and n = 2 energy levels performed in Ref. [42] to
the high-Z region. The results obtained for the ionization and
transition energies are compared with the previous evaluation
by Artemyev et al. [32] and the experimental data [12,13].

The paper is organized as follows. In Sec. II A, we de-
scribe our ab initio QED approach to evaluate the first-
and second-order interelectronic-interaction effects in highly
charged ions. Section II B is devoted to the description of two
independent methods (CI and PT) to treat the higher-order
correlation contributions within the Breit approximation. In
Sec. III A, the numerical results for the electron-electron
interaction contributions to the n = 1 and n = 2 energy levels
in He-like ions are presented, and the comparison with the
previous theoretical calculations is given. In Sec. III B, the
QED calculations of the ionization and transition energies in
high-Z heliumlike ions are performed. The relativistic units
(h̄ = 1, c = 1) and the Heaviside charge unit (α = e2/4π ,
e < 0) are used throughout the paper.

II. METHODS OF CALCULATIONS

A. QED formalism

The two-time Green’s function (TTGF) method [58] repre-
sents a convenient approach to construct the QED perturbation
theory for energy levels in highly charged ions. The natural
zeroth-order approximation for the corresponding perturba-
tion series is provided by the Furry picture [59] with the un-
perturbed many-electron relativistic wave functions defined in
the j j coupling. In case of two-electron ions, these functions
read as

|ui〉 = AN

∑
mi1 mi2

〈
ji1 mi1 ji2 mi2

∣∣JMJ
〉 ∑

P

(−1)P|Pi1Pi2〉, (1)

where AN is the normalization factor equal to 1/
√

2 for
nonequivalent electrons and 1/2 for equivalent electrons, ji1
and ji2 are the one-electron angular momenta, mi1 and mi2
are their projections, J is the total angular moment, MJ is
its projection, 〈 ji1 mi1 ji2 mi2 |JMJ〉 are the Clebsch-Gordan
coefficients, P is the permutation operator∑

P

(−1)P |Pi1Pi2〉 = |i1i2〉 − |i2i1〉,

and |i1i2〉 is the product of one-electron wave functions ϕi1 (x1)
and ϕi2 (x2) obtained from the Dirac equation

hDϕi ≡ [α · p + βm + Vnucl]ϕi = εiϕi. (2)

In Eq. (2), α and β are the Dirac matrices, p is the mo-
mentum operator, and Vnucl is the potential of the nucleus.
Therefore, in the Furry picture the electron-nucleus interac-
tion is taken into account to all orders in αZ from the very
beginning. The interaction with the quantized electromagnetic
field and the interelectronic interaction are considered by the
perturbation theory in the parameters α and 1/Z , respectively

[58,60–64]. We note that for very heavy ions the parameters
α and 1/Z become comparable in magnitude, therefore all the
contributions can be classified by the powers of α.

The TTGF method allows one to derive the formal
expressions for the QED corrections for both single and
(quasi)degenerate states. In case of a single level, for each
QED effect the TTGF method assigns some contribution
which has to be included into the total binding energy of the
considered state additively. This approach works well for the
single states such as (1s 1s)0, (1s 2s)0, (1s 2s)1, (1s 2p1/2)0,
and (1s 2p3/2)2. However, evaluating the energies for the
n = 2 states in heliumlike ions, along with the single levels
listed above, one encounters also the quasidegenerate levels
(1s 2p1/2)1 and (1s 2p3/2)1 which are split only by the rela-
tivistic effects. The energies of a set of s (quasi)degenerate
states can be determined by diagonalizing the s × s matrix
H (in the case under consideration s = 2). This matrix plays
the role of the Hamiltonian acting in the subspace of the
unperturbed (quasi)degenerate states. It is constructed by the
perturbation theory in α and 1/Z and has to include all
the relevant contributions. Note that a single level can be
considered as a particular case of the set of degenerate levels
with s = 1.

Let us formulate briefly the basic ideas of how to
construct within the TTGF method the matrix H for a
set of s (quasi)degenerate levels with unperturbed energies
E (0)

1 , . . . , E (0)
s . As usual, we assume that the energy shifts of

the levels under consideration are much smaller than the dis-
tance to other levels. For generality, we consider a N-electron
ion, while for heliumlike ions N = 2. The detailed description
of the method can be found, e.g., in Refs. [58,65,66]. The
fundamental object of the method is the two-time Green’s
function defined as

G(t ′, t ; x′
1, . . . , x′

N ; x1, . . . , xN )

=〈0|T ψ (x′
1) · · · ψ (x′

N )ψ̄ (xN ) · · · ψ̄ (x1)|0〉
∣∣∣∣x′0

1 = . . . = x′0
N ≡ t ′

x0
1 = . . . = x0

N ≡ t

,

(3)

where ψ is the electron-positron field operator in the Heisen-
berg representation, ψ̄ = ψ†γ 0, x = (x0, x), and T is the
time-ordering operator. The perturbation theory for the two-
time Green’s function G is formulated by means of the transi-
tion to the interaction picture. For the subsequent derivation,
it is convenient to define the Fourier transform of the two-time
Green’s function (3) by

G(E ; x′
1, . . . , x′

N ; x1, . . . , xN )δ(E − E ′)

= 1

2π i

1

N!

∫ ∞

−∞
dtdt ′ eiE ′t ′−iEt

× G(t ′, t ; x′
1, . . . , x′

N ; x1, . . . , xN ). (4)

The unperturbed wave functions {u j}s
j=1 of the

(quasi)degenerate levels form the s-dimensional subspace

. Denoting the projector on 
 by

P(0) =
s∑

j=1

|u j〉〈u j |, (5)
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FIG. 1. The diagram of the one-photon exchange.

one can introduce the projection of the Green’s function (4)
on 
 as follows:

g(E ) = P(0)G(E )γ 0
1 . . . γ 0

N P(0), (6)

where the spatial coordinates are omitted for brevity and the
integration is implicit. Employing the Green’s function (6) one
can determine the operators K̂ and P̂ by the expressions

K̂ ≡ 1

2π i

∮
�

dE Eg(E ), (7)

P̂ ≡ 1

2π i

∮
�

dE g(E ). (8)

The anticlockwise oriented contour � in the complex E
plane surrounds all s levels under consideration and keeps
outside all other singularities of g(E ). It can be shown (see
Ref. [58] for the detailed derivation) that the system of the
(quasi)degenerate levels is described by the operator Ĥ de-
fined as

Ĥ = P̂−1/2 K̂ P̂−1/2. (9)

The perturbation theory for the Green’s function (3) leads to
the perturbation series for the operator Ĥ . The exact energies
E1, . . . , Es of the states arising from the (quasi)degenerate
levels with energies E (0)

1 , . . . , E (0)
s can be found from the

equation

det(E − H ) = 0, (10)

where H is the s × s matrix with elements determined by
Hik = 〈ui|Ĥ |uk〉.

To date, state-of-the-art QED calculations of the energy
levels in highly charged ions comprise all contributions up
to the second order in α and 1/Z . The present paper is
devoted to the evaluation of the correlation effects. For con-
venience, we collect here the final expressions for the first-
and second-order contributions due to the interelectronic-
interaction effects which can be derived within the TTGF
method. The corresponding Feynman diagrams for heliumlike
ions are depicted in Figs. 1 and 2, respectively. A double line
represents the electron propagator in the field of the nucleus,
while a wavy line corresponds to the photon propagator.
These diagrams do not contain any self-energy or vacuum-
polarization loop and arise naturally in the QED as well
as non-QED approaches [the contribution of the diagram in
Fig. 2(b) vanishes identically in the latter case]. We present
the formulas for the quasidegenerate states only, but their
reduction to the single-level case is straightforward.

In the j j-coupling scheme, the n = 2 quasidegener-
ate energy levels in He-like ions can be written as

(a) (b)

FIG. 2. The two-electron diagrams of the two-photon exchange.

|u1〉 = |(1s 2p1/2)1〉 and |u2〉 = |(1s 2p3/2)1〉. In what follows,
the indices i and k enumerate these states (we recall that
now s = 2 and i, k = 1, 2). In particular, the unperturbed
energies E (0)

i are given by the sum of the one-electron Dirac
energies (2):

E (0)
1 = ε1s + ε2p1/2 , E (0)

2 = ε1s + ε2p3/2 . (11)

Within the zeroth-order approximation, the Green’s function
(6) is

g(0)(E ) =
s∑

j=1

|u j〉〈u j |
E − E (0)

j

. (12)

Therefore, one readily obtains for the zeroth-order contribu-
tion to the 2 × 2 matrix H

H (0)
ik = E (0)

i δik . (13)

The derivation of the correction corresponding to the one-
photon exchange diagram in Fig. 1 also does not pose any
difficulties. The contribution of the interelectronic-interaction
effects of first order in 1/Z to the matrix H can be represented
by the expression

H (1)
ik = FiFk

1

2

∑
P

(−1)P
[
IPi1Pi2k1k2 (�1) + IPi1Pi2k1k2 (�2)

]
,

(14)

where Iabcd (ω) = 〈ab|I (ω)|cd〉, I (ω) = e2α
μ
1 αν

2 Dμν (ω), αν =
γ 0γ μ = (1,α), Dμν (ω) denotes the photon propagator, �1 =
εPi1 − εk1 and �2 = εPi2 − εk2 , and, for brevity, we use the
following notation:

Fi |Pi1Pi2〉 ≡
∑

mi1 mi2

〈
ji1 mi1 ji2 mi2

∣∣JMJ
〉 |Pi1Pi2〉 (15)

for the summation over the angular momentum projections
with the Clebsch-Gordan coefficients.

For the quasidegenerate levels, the derivation of the formal
expressions for the two-photon exchange diagrams depicted
in Fig. 2 is a very complicated problem. As compared to the
single-level case, the rigorous formulas obtained within the
TTGF method for the off-diagonal elements of the matrix
H contain additional terms with double integration over the
energy parameters instead of the standard single integration
for the diagonal elements and the single levels. This makes
the direct evaluation of the second-order QED corrections for
the quasidegenerate states rather difficult and time consuming.
However, in Ref. [58] it was noticed that these extra terms
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contribute at the level of the higher-order QED corrections.
Our consideration of the QED effects is restricted to the first
and second orders of the perturbation theory. Therefore, these
terms are neglected within the present calculations.

Further simplification of the calculation formulas for
the off-diagonal matrix elements which was suggested in
Ref. [32] is associated with the replacement of the zeroth-
order energies E (0)

i and E (0)
k with their average value Ē (0)

ik =
(E (0)

i + E (0)
k )/2. For diagonal i = k matrix elements, this

transformation is identical and does not change the expres-
sions. Similar to the extra integrals, a small variation of the
off-diagonal elements introduced by this replacement can be
disregarded as belonging to the higher-order QED effects (see
also the discussion below). It is essential that the replace-
ment introduced is symmetric with respect to the energies

of both quasidegenerate states. For example, the nonsym-
metric transformations E (0)

i , E (0)
k → E (0)

1 or E (0)
i , E (0)

k → E (0)
2

would change the values of the off-diagonal matrix elements
significantly.

Keeping this in mind, after rather tedious derivation one
can obtain the calculation formulas for the second-order
QED corrections due to the correlation effects in case of
the quasidegenerate states. The contribution of the diagram
shown in Fig. 2(a), which is referred to as the ladder (“ld”)
diagram, is divided naturally into the reducible (“red”) and
irreducible (“irr”) parts. The reducible term is determined
by the conditions that the intermediate states |n1n2〉 belong
to the 
 subspace, whereas the irreducible term corresponds
to the remainder. The final expressions for the irreducible and
reducible parts of the ladder contribution read as follows:

H ld,irr
ik = FiFk

2

∑
P

(−1)P

E (0)
n 	=E (0)

1 ,E (0)
2∑

n1n2

i

2π

∫ ∞

−∞
dω

{
IPi1Pi2n1n2

(
ω − εPi1

)
In1n2k1k2

(
εk1 − ω

)
[
ω − εn1 (1 − i0)

][
Ē (0)

ik − ω − εn2 (1 − i0)
]

+ IPi1Pi2n1n2

(
ω − εPi2

)
In1n2k1k2

(
εk2 − ω

)
[
Ē (0)

ik − ω − εn1 (1 − i0)
][

ω − εn2 (1 − i0)
]

}
, (16)

H ld,red
ik = −FiFk

2

∑
P

(−1)P

E (0)
n =E (0)

1 ,E (0)
2∑

n1n2

i

2π

∫ ∞

−∞
dω

{
IPi1Pi2n1n2

(
ω − εPi1

)
In1n2k1k2

(
εk1 − ω

)
[
ω − εn1 − i0

][
ω + εn2 − Ē (0)

ik − i0
]

+ IPi1Pi2n1n2

(
ω − εPi2

)
In1n2k1k2

(
εk2 − ω

)
[
ω + εn1 − Ē (0)

ik − i0
][

ω − εn2 − i0
]

}
. (17)

The diagram in Fig. 2(b) is termed as the crossed (“cr”) diagram. For its contribution we obtain the following formula:

H cr
ik = FiFk

2

∑
P

(−1)P
∑
n1n2

i

2π

∫ ∞

−∞
dω

{
IPi1n2n1k2

(
ω − εPi1

)
In1Pi2k1n2

(
εk1 − ω

)
[
ω − εn1 (1 − i0)

][
Ē (0)

ik − εPi1 − εk1 + ω − εn2 (1 − i0)
]

+ IPi1n2n1k2

(
εk2 − ω

)
In1Pi2k1n2

(
ω − εPi2

)
[
Ē (0)

ik − εPi2 − εk2 + ω − εn1 (1 − i0)
][

ω − εn2 (1 − i0)
]

}
. (18)

The formulas (16) and (17) for the irreducible and reducible
parts of the ladder term and the expression (18) for the crossed
term differ from the ones presented in Ref. [32]. The final
expressions corresponding to the diagrams in Fig. 2 have
to be symmetric relative to the permutation of the electron
lines, i.e., the transformation i1 ↔ i2, k1 ↔ k2, n1 ↔ n2 has
to leave the total contribution to the matrix H unchanged. In
Ref. [32] the symmetrization of the given expressions was
implied, while in the present paper the explicitly symmetric
formulas are shown.

Finally, in order to complete the discussion of the second-
order QED corrections due to the interelectronic-interaction
effects, it is worth noting that an additional minor modifica-
tion for the off-diagonal elements of the matrix H has been
introduced in the present paper compared to Ref. [32]. This
modification influences the final result actually only in case
of quasidegenerate levels with E (0)

1 	= E (0)
2 . As is known, the

formula for the second order of the many-body perturbation

theory (MBPT) can be obtained from the general second-order
QED expression if one neglects the energy dependence of
the photon propagator in the Coulomb gauge and restricts
the summation over the intermediate electron states to the
positive-energy part of the Dirac spectrum. Then, the ω in-
tegration can be carried out analytically employing Cauchy’s
residue theorem. Within this approximation, the contributions
of the reducible (17) and crossed (18) terms vanish, while
the irreducible part of the ladder diagram (16) leads to the
expression

H̃ (2)
ik [MBPT]=FiFk

∑
P

(−1)P
(+)∑
n1n2

′ IPi1Pi2n1n2 (0)In1n2k1k2 (0)

Ē (0)
ik − E (0)

n

,

(19)

where E (0)
n = εn1 + εn2 and the prime on the sum indicates

that the terms with E (0)
n = E (0)

1 , E (0)
2 have to be omitted in the
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summation. The formula (19) for E (0)
i 	= E (0)

k differs slightly
from the standard MBPT expression, which can be derived

from the irreducible contribution without the replacement
E (0)

i , E (0)
k → Ē (0)

ik introduced:

H (2)
ik [MBPT] = FiFk

2

∑
P

(−1)P
(+)∑
n1n2

′
[

1

E (0)
i − E (0)

n

+ 1

E (0)
k − E (0)

n

]
IPi1Pi2n1n2 (0)In1n2k1k2 (0)

= FiFk

∑
P

(−1)P
(+)∑
n1n2

′ Ē (0)
ik − E (0)

n(
E (0)

i − E (0)
n

)(
E (0)

k − E (0)
n

) IPi1Pi2n1n2 (0)In1n2k1k2 (0). (20)

Once again, we stress that the Coulomb gauge is implied for
the photon propagator in Eqs. (19) and (20). Defining in a
self-consistent way the “pure” QED correction to the matrix
H by

H (2)
ik [QED] ≡ H̃ (2)

ik − H̃ (2)
ik [MBPT], (21)

where

H̃ (2)
ik = H ld,irr

ik + H ld,red
ik + H cr

ik (22)

is the sum of Eqs. (16), (17), and (18), it is natural to consider
the expression

H (2)
ik ≡ H (2)

ik [QED] + H (2)
ik [MBPT]

= H̃ (2)
ik − H̃ (2)

ik [MBPT] + H (2)
ik [MBPT], (23)

as the final second-order contribution to the matrix H . In
contrast to Eq. (22), the expression (23) leads to the standard
formula for the second-order contribution within the Breit
approximation. This modification distinguishes the present
consideration of the second-order interelectronic-interaction
effects from the calculations performed in Ref. [32].

B. Higher-order correlation effects

High-precision calculations of energy levels in few-
electron ions have to take into account also the higher-order
correlation effects at least within the lowest-order relativistic
approximation. In Ref. [32], the interelectronic-interaction
contributions due to the exchange by three or more pho-
tons were included by employing the results of the 1/Z
expansions performed within the LS-coupling scheme. The
corresponding coefficients for nonrelativistic energies were
taken from Refs. [67,68], while for the relativistic Breit-Pauli
correction the results from Ref. [43] were used. In case of the
quasidegenerate levels (1s 2p1/2)1 and (1s 2p3/2)1, the j j-LS
recoupling matrix R, defined according to(|1s2p 3P1〉

|1s2p 1P1〉

)
= R

(|(1s 2p1/2)1〉
|(1s 2p3/2)1〉

)
, R = 1√

3

(√
2 −1

1
√

2

)
,

was employed to obtain the contribution of the higher-order
correlation effects to the matrix H in the j j coupling (see
the discussion in Refs. [32,43]). The matrix R relates the
wave functions constructed in two different couplings within
the nonrelativistic approximation. Nevertheless, it is highly
desirable to have a kind of self-consistent procedure for
consideration of the correlation effects which treats all orders
of the perturbation theory within the relativistic approach
on equal footing. Additional motivation for developing an

alternative procedure is that the method employed in Ref. [32]
does not allow for the calculations within the extended Furry
picture. The latter implies modification of the zeroth-order
approximation by including a local screening potential into
the Dirac Hamiltonian hD in Eq. (2). On the one hand, this
method was found to be very useful in the QED calcula-
tions of the different atomic properties in few-electron ions
[25,26,29,42,69–75] and many-electron atoms [76–79], but,
on the other hand it leads to the rearrangement of all pertur-
bation series. Since the 1/Z-expansion coefficients are known
for the Coulomb potential of the point nucleus only, the related
calculations with another choice of the initial approximation
are not possible.

In the present paper we employ two independent methods
in order to evaluate the higher-order correlation effects. Both
methods use the DCB Hamiltonian to treat the interelectronic
interaction:

HDCB = �(+)[H0 + Vint]�
(+), (24)

H0 =
N∑
i

hD
i , Vint =

N∑
i< j

[
V C

i j + V B
i j

]
, (25)

hD = α · p + βm + Vnucl, (26)

V C
i j = α

ri j
, V B

i j = − α

2ri j

[
αi · α j + (αi · ri j )(α j · ri j )

r2
i j

]
,

(27)

where ri j = ri − r j , ri j = |ri j |, and V C and V B are the
Coulomb and Breit parts of the electron-electron interaction
operator within the Breit approximation. One can note that
V C

i j + V B
i j = e2α

μ
i αν

j Dμν (0, ri j ) provided the photon propaga-
tor Dμν in the Coulomb gauge is considered. In Eq. (24),
�(+) is the product of the one-electron positive-energy-states
projectors corresponding to the potential Vnucl. The general-
ization of the Hamiltonian (24) to the case of the extended
Furry picture is discussed in detail, e.g., in Ref. [80]. The
key point for merging the ab initio QED results with the
higher-order interelectronic-interaction contributions is that
the projectors �(+) must be defined with respect to the same
Dirac Hamiltonian hD in Eq. (2) which provides the initial
approximation for the QED perturbation theory. Therefore,
hD and �(+) should be defined consistently when the QED
calculations within the extended Furry picture are performed.
As indicated, e.g., in Ref. [80], this is not generally needed in
relativistic calculations based on the DCB Hamiltonian.
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The first approach employed in the present paper for cal-
culations of the higher-order correlation effects is the large-
scale CI method in the basis of the Dirac-Sturm (DS) orbitals
[81,82]. In case of single levels, the procedure to extract the
desired third- and higher-order contributions from the total
CI results is well known. In order to subtract the zeroth-,
first-, and second-order terms, one can calculate them within
the Breit approximation by the perturbation theory using the
same basis set. Alternatively, the corresponding terms can
be obtained by evaluating the derivatives of the CI energies
with respect to the factor artificially introduced before the
interaction term Vint in the DCB Hamiltonian (see the details,
e.g., in Refs. [25,31]).

In order to obtain the contribution of the higher-order
correlation effects to the matrix H for the set of s
(quasi)degenerate levels within the CI approach, we have
developed the following procedure, which was applied first
in Ref. [42]. The CI method allows one to calculate the ener-
gies ECI

1 , . . . , ECI
s and the corresponding many-electron wave

functions {� j}s
j=1 for the (quasi)degenerate states. Therefore,

in the spirit of the TTGF method, one can introduce the
projection of the CI Green’s function on the subspace 


spanned by the unperturbed wave functions {u j}s
j=1:

gCI(E ) = P(0)

⎡
⎣ s∑

j=1

|� j〉〈� j |
E − ECI

j

+ �

⎤
⎦P(0), (28)

where the projector P(0) is defined in Eq. (5) and the term �

includes the remaining part of the many-electron CI spectrum.
The CI versions of the operators (7) and (8) can be determined
by

K̂CI ≡ 1

2π i

∮
�

dE EgCI(E ), (29)

P̂CI ≡ 1

2π i

∮
�

dE gCI(E ), (30)

where the contour � surrounds all the poles corresponding to
the CI energies ECI

1 , . . . , ECI
s and keeps outside all the other

singularities arising from the term �. Substituting gCI(E ) from
Eq. (28) into Eqs. (29) and (30) we obtain the following s × s
matrices:

KCI
ik =

s∑
j=1

ECI
j 〈ui|� j〉〈� j |uk〉, (31)

PCI
ik =

s∑
j=1

〈ui|� j〉〈� j |uk〉. (32)

Finally, the matrix H can be constructed from the matrices
(31) and (32) according to Eq. (9). The described method
allows one to take into account the interelectronic-interaction
effects to all orders in 1/Z . The low-order terms can be
subtracted using the PT calculations performed within the
Breit approximation with the same basis set. For two-electron
ions, the zeroth- and second-order contributions to the matrix
H within the Breit approximation are presented in Eqs. (13)
and (20), respectively. The first-order term is given by Eq. (14)
considered in the Coulomb gauge with �1,2 replaced with
zero.

The second method employed is based on the perturbation
theory in the basis of Slater determinants. The latter are
constructed from the one-electron wave functions of the finite
basis set, which is exactly the same as the one used for the
QED calculations. In order to access arbitrary high orders
of PT we employ the recursive formulation. This approach
first implemented in Ref. [83] was used in the calculations
of the higher-order interelectronic-interaction contributions to
the energies of boronlike ions [31,84]. Extended to the case
of multiple perturbations, it has been applied recently to the
Zeeman splitting in lithiumlike and boronlike ions [85–87],
including the nuclear recoil effect [75,88,89]. In the form pre-
sented in Ref. [83], it has a limitation that the reference state
in the zeroth-order approximation must be represented exactly
by one Slater determinant. For the case of excited states in
heliumlike ions it has been trivially generalized to deal with
the many-determinant reference states. This generalization is
closely connected to the nontrivial construction of the PT for
the (quasi)degenerate states. Since pioneering works by Kato
[90] and Bloch [91] considerable effort has been devoted to
development of the general PT expressions for the cases of
degenerate and quasidegenerate states (see, e.g., Refs. [92–94]
and references therein). The compact recursive algorithm for
derivation of these expressions has been proposed recently
by Brouder and coauthors [95]. Within the recursive scheme,
the pth-order contributions to the energies and wave functions
of the reference state(s) are constructed from the lower-order
contributions, from zeroth to (p − 1)th order [83]. For the
(quasi)degenerate states the corresponding expression can be
written for the matrix element H (p)

ik . The most problematic
question is which one of the zeroth-order energies {E (0)

j }s
j=1

appears in the denominator in each particular term. The an-
swer to this question has been implemented within the combi-
natorial algorithm given in Ref. [95]. While the complete set
of formulas cannot be written in a compact form, we illustrate
the PT for the (quasi)degenerate states by the closed formula
for the third-order contribution:

H (3)
ik [MBPT] = 1

2

{
(+)∑
nm

′ 〈ui|Vint

∣∣� (0)
n

〉〈
� (0)

n

∣∣Vint

∣∣� (0)
m

〉〈
� (0)

m

∣∣Vint|uk〉(
E (0)

k − E (0)
n

)(
E (0)

k − E (0)
m

)

−
(+)∑
n

′ s∑
j=1

〈ui|Vint

∣∣� (0)
n

〉〈
� (0)

n

∣∣Vint|u j〉〈u j |Vint|uk〉(
E (0)

k − E (0)
n

)(
E (0)

j − E (0)
n

) + (i ↔ k)

⎫⎬
⎭. (33)

Here, |� (0)
n 〉 and |� (0)

m 〉 are the unperturbed wave functions orthogonal to the 
 subspace, which is stressed by the prime over the
sum symbol. The symmetrization is made explicitly by averaging with the transposed expression (i ↔ k). For the two-electron
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TABLE I. Two-photon exchange correction to the binding energies of the n = 1 and n = 2 single states in He-like ions, in eV.

Z (1s 1s)0 (1s 2s)0 (1s 2s)1 (1s 2p1/2)0 (1s 2p3/2)2 Ref.

18 −4.57813(18) −3.24755(3) −1.310570(4) −2.13280(2) −2.008834(10)
−4.5770 −3.2473 −1.3106 −2.1328 −2.0088 [32]

−3.247532 −1.310570 [55]

20 −4.64476(19) −3.27867(3) −1.315457(4) −2.16820(2) −2.014088(10)
−4.6435 −3.2784 −1.3154 −2.1682 −2.0141 [32]
−4.6447 [51]

26 −4.88586(18) −3.39290(4) −1.333430(3) −2.30013(2) −2.033087(10)

30 −5.08122(17) −3.48720(5) −1.348270(3) −2.41114(2) −2.048399(10)
−5.0795 −3.4868 −1.3483 −2.4111 −2.0484 [32]
−5.0812 −1.348326 −2.411120 −2.048340 [51,53]

−3.487164 −1.348268 [55]
−3.473 −1.348 [54]

54 −6.87670(15) −4.41694(6) −1.492310(7) −3.58493(7) −2.181609(8)
−6.8742 −4.4162 −1.4923 −3.5848 −2.1816 [32]

60 −7.51412(16) −4.77222(6) −1.545868(10) −4.06444(8) −2.225107(7)
−7.5114 −4.7714 −1.5459 −4.0642 −2.2251 [32]
−7.5142 −1.54558 −4.06446 −2.22510 [51,53]

−4.772148 −1.545868 [55]
−4.781 −1.542 −4.068 [56]

80 −10.37493(22) −6.51439(9) −1.796080(20) −6.59554(15) −2.397384(7)
−10.3719 −6.5135 −1.7961 −6.5950 −2.3974 [32]
−10.375 −1.79562 −6.59593 −2.39806 [51,53]

−6.504 −1.789 −6.598 [54,56]

92 −12.87444(45) −8.21322(22) −2.022063(25) −9.27103(21) −2.522774(8)
−12.8714 −8.2122 −2.0221 −9.2701 −2.5228 [32]

−2.02034 −9.27598 −2.52228 [53]
−8.213058 −2.021988 [55]
−8.184 −2.018 −9.274 [54,56]

systems under consideration this formula can be rewritten in the following form:

H (3)
ik [MBPT] = FiFk

2

∑
P

(−1)P
(+)∑
n1n2

′
{

(+)∑
m1m2

′ IPi1Pi2n1n2 (0)In1n2m1m2 (0)Im1m2k1k2 (0)(
εk1 + εk2 − εn1 − εn2

)(
εk1 + εk2 − εm1 − εm2

)

−
∑

Q

(−1)Q
∑
j=1,2

IPi1Pi2n1n2 (0)In1n2Q j1Q j2 (0)IQ j1Q j2k1k2 (0)(
εk1 + εk2 − εn1 − εn2

)(
ε j1 + ε j2 − εn1 − εn2

) + (i ↔ k)

⎫⎬
⎭. (34)

The second permutation operator Q is introduced here, and
all other notations have been defined before. We note that, in
contrast to the CI method, the recursive PT provides direct
access to the required contributions, specifically to the third
and higher orders in the present case. No subtraction of the
leading-order terms is needed, which is advantageous from
the numerical point of view.

III. NUMERICAL RESULTS AND DISCUSSION

A. Electron-electron correlation effects in He-like ions

In this section, we present the results of the calculations
of the correlation effects in heliumlike ions. For the sin-
gle (1s 1s)0, (1s 2s)0, (1s 2s)1, (1s 2p1/2)0, and (1s 2p3/2)2

states, the interelectronic-interaction contributions to the
binding energies are evaluated. For the pair of quaside-
generate levels (1s 2p1/2)1 and (1s 2p3/2)1, the correspond-
ing contributions to the 2 × 2 matrix H are obtained. In
what follows, when we refer to the mixing configurations,
(1s 2p1/2)1 and (1s 2p3/2)1 stand for the diagonal contri-
butions while “off-diag.” denotes the contributions to the
off-diagonal matrix elements. In the calculations, the Fermi
model with the thickness parameter equal to 2.3 fm is em-
ployed in order to describe the nuclear charge distribution.
The root-mean-square (rms) radii are taken from Ref. [96].
The CODATA 2014 recommended values of the fundamen-
tal constants [97] are used: α−1 = 137.035 999 139(31) and
mc2 = 0.510 998 9461(31) MeV.
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TABLE II. Two-photon exchange contributions to the matrix Hik for the n = 2 quasidegenerate states in He-like ions, in eV. (1s 2p1/2)1

and (1s 2p3/2)1 stand for the corresponding diagonal matrix elements of the operator H , whereas “off-diag.” refers to the off-diagonal matrix
elements evaluated according to Eqs. (22) and (23). See the text for details.

Z (1s 2p1/2)1 (1s 2p3/2)1 off-diag. Eq. (22) off-diag. Eq. (23) Ref.

18 −2.81743(2) −3.56150(4) −1.06268(6) −1.06268(6)
−2.8173 −3.5613 −1.0626 [32]
−2.8168 −3.5603 −1.0618 [57]

20 −2.83385(2) −3.57346(5) −1.05907(5) −1.05908(5)
−2.8337 −3.5733 −1.0589 [32]

26 −2.89433(4) −3.61710(8) −1.04592(4) −1.04595(4)
−2.8938 −3.6142 −1.0450 [57]

30 −2.94445(5) −3.65280(10) −1.03521(3) −1.03527(3)
−2.9443 −3.6525 −1.0350 [32]
−2.9439 −3.6506 −1.0350 [57]

54 −3.44310(7) −3.98749(17) −0.93906(6) −0.93966(6)
−3.4429 −3.9871 −0.9387 [32]

60 −3.63509(8) −4.10707(17) −0.90671(6) −0.90760(6)
−3.6348 −4.1066 −0.9064 [32]
−3.635 −4.105 −0.893 [57]

80 −4.58691(13) −4.63156(17) −0.77545(11) −0.77781(11)
−4.5866 −4.6312 −0.7752 [32]
−4.585 −4.628 −0.771 [57]

92 −5.53336(21) −5.05529(18) −0.67877(12) −0.68190(12)
−5.5329 −5.0550 −0.6787 [32]
−5.531 −5.053 −0.683 [57]

We start with the results obtained within the rigorous QED
approach. The electron-correlation contributions correspond-
ing to the two-photon exchange diagrams depicted in Fig. 2
are presented for the single and quasidegenerate states in
Tables I and II, respectively. The QED calculations of the
second-order interelectronic-interaction effects for the n = 1
and n = 2 levels in heliumlike ions are based on Eqs. (16)–
(18). The summation over the intermediate electronic states is
performed by using the finite-basis set which is constructed
from B splines [98] within the framework of the dual-kinetic-
balance method [99]. The integration over ω is carried out
numerically after applying Wick’s rotation. The uncertainties
indicated in the parentheses are due to the numerical com-
putation errors. The off-diagonal matrix elements evaluated
according to Eqs. (22) and (23) are shown in the fourth and
fifth columns of Table II, respectively. One can see that the
discrepancy between the results tends to zero with decreasing
the nuclear charge number Z . On the other side, the difference
becomes noticeable for high-Z heliumlike ions. As mentioned
in Sec. II A, the deviation between Eqs. (22) and (23) is at the
level of the higher-order QED effects which are beyond the
scope of the present paper. Indeed, this difference turns out
to be well within our estimation of the uncertainty due to the
uncalculated QED contributions of the third and higher orders
in 1/Z (see the discussion below).

For the single states, the two-photon exchange diagrams
represent the gauge invariant set. However, this is not the case
for the mixing (1s2p)1 levels. The individual contributions
to the matrix H of a particular order in 1/Z may vary from

gauge to gauge. Only the eigenvalues of the complete matrix
H evaluated to all orders in α and 1/Z are gauge invariant.
In the present paper, we are interested in merging the QED
results with the higher-order contributions obtained within the
Breit approximation. As noted above, the latter calculations
are based on the DCB Hamiltonian (24) which, in turn, is
naturally related to the Coulomb gauge [65]. For this reason,
the second-order interelectronic-interaction contributions to
the matrix H presented in Table II were obtained by operating
in the Coulomb gauge. However, as a check of the numerical
procedure, we repeated the calculations of the two-photon
exchange for all the states in the Feynman gauge as well.
For the single levels, the results in both gauges were found in
excellent agreement with each other. For the mixing configu-
rations, the difference between the second-order contributions
calculated in the Coulomb and Feynman gauges lies within
the uncertainties specified in Table II. For low-Z ions, the
difference is negligible. It increases with Z and, for heliumlike
uranium, its absolute value reaches approximately 0.14 and
0.02 meV for the diagonal and off-diagonal matrix elements,
respectively.

In Tables I and II, our results for the two-photon exchange
correction for the n = 1 and n = 2 states in heliumlike ions
are compared with the previous QED calculations [32,51,53–
57]. It is seen that the obtained results are generally in
agreement with the values available in the literature but have
higher accuracy. As indicated in Ref. [42], a small discrepancy
with the results presented in Ref. [32] takes place for the
J = 0 states, namely, for (1s 1s)0, (1s 2s)0, and (1s 2p1/2)0.
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FIG. 3. Comparison of the different calculations within the Breit approximation of the third- and higher-order interelectronic-interaction
contributions to the binding energies of the n = 1 and n = 2 single states in He-like ions, in meV. The difference �(3+) between our results
and the values obtained within the 1/Z expansion is plotted. The results of the CI approach are shown as blue squares, while the results of the
PT calculations are depicted as red circles. See the text for details.

It is most pronounced for the ground state. The reason for
the discrepancy is probably in the underestimation of the
uncertainty of the calculations performed in Ref. [32].

The second key point of the present calculations is the
evaluation of the third- and higher-order correlation effects
within the Breit approximation. As a benchmark, we consider
the approach which was employed in Refs. [32,43]. This
approach is based on the 1/Z expansions of the nonrelativistic
energies and the Breit-Pauli correction. In order to evaluate the
desired contribution in the framework of this method, we used
the 1/Z-expansion coefficients tabulated in Ref. [100]. Since
the off-diagonal matrix element of the Breit-Pauli Hamilto-
nian between the | 1s2p 3P1 〉 and | 1s2p 1P1 〉 states cannot
be unambiguously identified from Ref. [100], we employed
the corresponding coefficients from Ref. [43]. Our results for

the third- and higher-order interelectronic-interaction contri-
butions for the single and quasidegenerate levels in heliumlike
ions are presented in Figs. 3 and 4, respectively. In view
of the high accuracy of the calculations, it is convenient
to analyze the difference �(3+) between our results and the
values obtained within the 1/Z-expansion method. The results
of the CI approach in terms of �(3+) are shown in Figs. 3
and 4 as blue squares, and the corresponding PT results are
given as red circles. For each particular state and each nuclear
charge, we perform our calculations with a wide variety of
the basis sets (constructed from the DS orbitals and the B
splines in the CI and PT methods, respectively). By increasing
the size of the basis in all possible directions and analyzing
the successive increments of the results, we obtain a reliable
estimation of how well our CI and PT calculations converge.
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FIG. 4. Comparison of the different calculations within the Breit approximation of the third- and higher-order interelectronic-interaction
contributions to the matrix Hik for the n = 2 quasidegenerate states in He-like ions, in meV. The difference �(3+) between our results and the
values obtained within the 1/Z expansion is plotted. (1s 2p1/2)1 and (1s 2p3/2)1 stand for the corresponding diagonal matrix elements of the
operator H , whereas “off-diag.” corresponds to the off-diagonal matrix elements. The results of the CI approach are shown as blue squares,
while the results of the PT calculations are depicted as red circles. See the text for details.

In Figs. 3 and 4, the uncertainties of the calculated higher-
order correlation effects are shown only if they exceed the size
of the squares or circles plotted. One can see that the results of
both independent approaches are in good agreement with each
other. The deviation from the 1/Z-expansion values, �(3+),
arises from the different treatment of the relativistic effects.
While in Refs. [43,100] the Breit part V B of the electron
interaction operator is considered as a perturbation to first
order, it is taken into account to all orders in 1/Z in the present
calculations. At the αZ → 0 limit, the deviation tends to zero,
as it should be.

Finally, all the interelectronic-interaction corrections for
the single and quasidegenerate states in heliumlike iron (Z =
26), xenon (Z = 54), and uranium (Z = 92) are collected
in Tables III and IV. For each ion, the first line contains
the zeroth-order approximation E (0)

Dirac arising from the Dirac
equation (2), that is the sum of the Dirac energies with
the rest massess subtracted. The interelectronic-interaction
contributions of the first, second, and higher orders evaluated
within the Breit approximation are given in the rows E (1)

Breit ,
E (2)

Breit , and E (3+)
Breit , respectively. The first- and second-order

QED corrections, E (1)
QED and E (2)

QED, are obtained as the differ-
ences between the contributions of the one- and two-photon
exchange diagrams calculated within the rigorous QED ap-
proach and within the Breit approximation. The uncertainty

E (3+)
QED due to uncalculated QED contributions to the higher-

order interelectronic-interaction effects is conservatively esti-
mated as E (3+)

Breit multiplied by 2 E (2)
QED/E (2)

Breit . This uncertainty
calculated for the ground state is used for all the other states
also in order to avoid an underestimation due to anomalously
small values of the E (3+)

Breit contribution for some states and
ions. As can be seen, the estimation employed covers the
difference between the calculations of the second-order con-
tribution for the off-diagonal matrix element by Eqs. (22)
and (23). The total interelectronic-interaction correction to
the binding energies of the single states and to the matrix
H for the quasidegenerate states is shown in the line labeled
as Eint. The last line represents the sum of the zeroth-order
contribution and the total interelectronic-interaction correc-
tion, Etot = E (0)

Dirac + Eint. The uncertainties of the Dirac and
the first-order values are determined by the nuclear size
effect. It is conservatively estimated by adding quadratically
two terms. The first one is obtained by varying the rms
nuclear radius within its error bar. The second one estimates
conservatively the uncertainty of the nuclear charge distri-
bution by varying the distribution model from the Fermi
model to the homogeneously charged sphere model. The
uncertainty of the Dirac energies can be reduced if one
takes into account the nuclear deformation correction, e.g.,
according to Ref. [101]. The uncertainties of the other
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TABLE III. Zeroth-order contribution and interelectronic-interaction corrections to the binding energies of the n = 1 and n = 2 single
states in He-like ions, in eV.

Nucleus Contribution (1s 1s)0 (1s 2s)0 (1s 2s)1 (1s 2p1/2)0 (1s 2p3/2)2

56
26Fe E (0)

Dirac −18563.38437(11) −11607.41420(6) −11607.41420(6) −11607.42096(5) −11586.25098(5)

E (1)
Breit 454.61698(1) 168.42821 134.957868 165.43432 160.747756

E (1)
QED 0.0 0.00140 0.000468 −0.00123 −0.013014

E (2)
Breit −4.89911(9) −3.39621(1) −1.333235(3) −2.30222(1) −2.034093(9)

E (2)
QED 0.01325(9) 0.00331(3) −0.000196(1) 0.00209 0.001007(1)

E (3+)
Breit 0.02516(4) 0.01727(3) −0.004815(1) −0.01340 −0.017656(1)

E (3+)
QED ±0.00014 ±0.00014 ±0.00014 ±0.00014 ±0.00014

Eint 449.75628(26) 165.05398(15) 133.62009(14) 163.11957(14) 158.68400(14)

Etot −18113.62809(28) −11442.36022(16) −11473.79411(15) −11444.30138(15) −11427.56698(15)

132
54 Xe E (0)

Dirac −82687.590(14) −51786.8006(83) −51786.8006(83) −51787.2428(72) −51360.5206(72)

E (1)
Breit 1036.55776(24) 383.43652(6) 295.372824(34) 387.58771(2) 341.414191(11)

E (1)
QED 0.0 0.05252 0.017508 −0.03052 −0.503357

E (2)
Breit −7.04127(7) −4.46021(2) −1.495551(1) −3.63599(1) −2.210487(4)

E (2)
QED 0.16457(8) 0.04327(4) 0.003241(5) 0.05106(6) 0.028878(4)

E (3+)
Breit 0.04198(8) 0.02362(4) −0.001328(1) 0.00819(1) −0.007960(1)

E (3+)
QED ±0.0020 ±0.0020 ±0.0020 ±0.0020 ±0.0020

Eint 1029.7230(20) 379.0957(20) 293.8967(20) 383.9805(20) 338.7213(20)

Etot −81657.867(15) −51407.7049(85) −51492.9039(85) −51403.2624(75) −51021.7993(75)

238
92 U E (0)

Dirac −264162.56(83) −166259.03(50) −166259.03(50) −166292.35(43) −161731.12(42)

E (1)
Breit 2265.887(12) 849.4612(40) 587.9448(17) 922.8337(14) 618.12333(36)

E (1)
QED 0.0 0.67547 0.225155(1) 0.36470 −7.196269(20)

E (2)
Breit −14.15639(13) −8.57043(4) −2.074590(8) −9.75205(4) −2.790592(3)

E (2)
QED 1.28195(32) 0.35722(18) 0.052527(17) 0.48102(16) 0.267818(5)

E (3+)
Breit 0.09633(15) 0.05801(5) 0.001969(2) 0.07502(2) −0.002922(1)

E (3+)
QED ±0.017 ±0.017 ±0.017 ±0.017 ±0.017

Eint 2253.109(21) 841.981(18) 586.150(18) 914.002(18) 608.401(17)

2253.079a 841.953a 586.148a 913.935a 608.399a

Etot −261909.46(83) −165417.05(50) −165672.88(50) −165378.35(43) −161122.72(42)

aArtemyev et al. [32]. The results are corrected for the updated value of the root-mean-square nuclear radius from Ref. [96].

contributions are due to the numerical errors. They are de-
termined by analyzing the convergence of the results with
increasing the basis. The uncertainty of the total values is
obtained by summing quadratically the uncertainty due to the
nuclear size effect, the numerical uncertainty, and the uncer-
tainty due to uncalculated higher-order QED contributions.
In Tables III and IV, our theoretical predictions for the total
interelectronic-interaction correction in heliumlike uranium
are compared with the ones obtained in Ref. [32]. The results
of Ref. [32] have been reevaluated using the new value of the
rms radius [96]. One can see that there is a small discrepancy
between the results which is due to the two-photon exchange
and higher-order correlation contributions.

B. QED calculations of the ionization and
transition energies in He-like ions

In Ref. [42], we performed the QED evaluation of the four
transitions from the L to K shell in middle-Z heliumlike ions.

In the present paper, we extend these calculations to high-Z
ions. In order to complete the rigorous QED treatment in
first and second orders, one has to consider the one-electron
and screened QED graphs in addition to the one- and two-
photon exchange Feynman diagrams shown in Figs. 1 and 2.
The two-loop one-electron corrections are accounted for by
employing the results from Ref. [22]. The contributions of the
one-loop one-electron and screened QED diagrams depicted
in Figs. 5 and 6, respectively, are evaluated in the present
paper. As noted in Sec. II B, the QED calculations of the
energy levels can be performed with another choice of the
zeroth-order approximation by including the local screening
potential into the Dirac equation (2). The calculations of
the second-order two-electron QED contributions within this
approach enable more accurate estimation of the higher-order
QED corrections, which finally leads to the more precise
evaluation of the energy levels in highly charged ions. In
the previous section, we restricted our consideration of the
correlation effects by the Coulomb potential in order to
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TABLE IV. Zeroth-order contribution and interelectronic-interaction corrections to the matrix Hik for the n = 2 quasidegenerate states in
He-like ions, in eV. (1s 2p1/2)1 and (1s 2p3/2)1 stand for the corresponding diagonal matrix elements of the operator H , whereas “off-diag.”
refers to the off-diagonal matrix elements.

Nucleus Contribution (1s 2p1/2)1 (1s 2p3/2)1 off-diag.

56
26Fe E (0)

Dirac −11607.42096(5) −11586.25098(5) 0.0

E (1)
Breit 171.21174 177.16373 10.72632

E (1)
QED −0.00041 0.00524 0.00799

E (2)
Breit −2.89462(1) −3.61679(3) −1.04482(1)

E (2)
QED 0.00029(4) −0.00031(5) −0.00113(3)

E (3+)
Breit −0.00004(1) 0.01696(2) 0.02294(1)

E (3+)
QED ±0.00014 ±0.00014 ±0.00014

Eint 168.31696(15) 173.56883(17) 9.71130(14)

Etot −11439.10400(16) −11412.68215(18) 9.71130(14)

132
54 Xe E (0)

Dirac −51787.2428(72) −51360.5206(72) 0.0

E (1)
Breit 382.11692(1) 377.42038 17.59572(1)

E (1)
QED −0.01017 0.20549 0.30647

E (2)
Breit −3.45773(2) −3.98282(7) −0.91310(3)

E (2)
QED 0.01463(5) −0.00468(9) −0.02656(3)

E (3+)
Breit 0.00515(1) 0.01606(3) 0.01293(2)

E (3+)
QED ±0.0020 ±0.0020 ±0.0020

Eint 378.6688(20) 373.6544(20) 16.9755(20)

Etot −51408.5740(75) −50986.8661(75) 16.9755(20)

238
92 U E (0)

Dirac −166292.35(43) −161731.12(42) 0.0

E (1)
Breit 809.58318(90) 683.97647(2) 8.66822(25)

E (1)
QED 0.12157 3.02676(1) 4.26371(2)

E (2)
Breit −5.71256(5) −4.98203(9) −0.45327(6)

E (2)
QED 0.17920(16) −0.07326(9) −0.22863(6)

E (3+)
Breit 0.01722(1) 0.02370(2) 0.00848(1)

E (3+)
QED ±0.017 ±0.017 ±0.017

Eint 804.189(17) 681.972(17) 12.259(17)

804.180a 681.969a 12.267a

Etot −165488.16(43) −161049.15(42) 12.259(17)

aArtemyev et al. [32]. The results are corrected for the updated value of the root-mean-square nuclear radius from Ref. [96].

demonstrate the methods developed and compare the results
obtained with the previous calculations. Nevertheless, all the
methods described can readily be adopted to operate within
the extended Furry picture. As in Ref. [42], we perform the
calculations of the energy levels in high-Z heliumlike ions
starting from the Coulomb potential as well as by adding
two different types of the screening potential into the zeroth-
order approximation. We use the core-Hartree (CH) and local
Dirac-Fock (LDF) screening potentials to modify the zeroth-
order Hamiltonian hD (see, e.g., Refs. [31,76,102] for the
construction procedures and applications of these potentials).
When applying the extended version of the Furry picture, one
has to complement the diagrams shown in Figs. 1–6 with
the counterterm diagrams in order to avoid double counting
of the screening effects. The nuclear recoil effect on the
binding energies of heliumlike ions is accounted for in the
present paper in accordance with the scheme described in
detail in Ref. [103]. We take into account also the nuclear

polarization correction arising from the electron-nucleus in-
teractions which include the excited intermediate nuclear
states [22,104–107].

The individual contributions to the binding energies of
heliumlike uranium evaluated for the LDF, CH, and Coulomb
potentials are shown in Table V. As in Tables III and IV,
the E (0)

Dirac term corresponds to the energy obtained from the

(a) (b)

FIG. 5. The self-energy and vacuum-polarization diagrams.
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(c) (d)(a) (b)

FIG. 6. The screened QED diagrams.

Dirac equation. The first- and second-order interelectronic-
interaction contributions calculated employing the QED ap-
proach are given by E ( j)

int = E ( j)
Breit + E ( j)

QED, where j = 1, 2.
The higher-order correlation contribution evaluated within the
Breit approximation is given by E (3+)

Breit . The one-electron and

screened QED corrections are shown in columns E1el
QED and

E2el
ScrQED, respectively. The contribution of the nuclear recoil

effect is presented in the column labeled with Erec. Finally, the
sum of all the given contributions is shown in the last column.
In Table V, the effects of the nuclear deformation and nuclear
polarization are omitted. In case of the Coulomb potential, two
total values are presented. Following the scheme described in
Ref. [32], the second total value for the Coulomb potential
is obtained by adding the higher-order QED correction Eho

QED
evaluated according to Ref. [43]. One can see that for the
uranium ion the inclusion of the Eho

QED correction increases
the discrepancy between the Coulomb results and the data
obtained for the screening potentials in some cases (see the
related discussion in Ref. [42]).

TABLE V. Individual contributions to the binding energies of He-like uranium evaluated for the local Dirac-Fock (LDF), core-Hartree
(CH), and Coulomb (Coul) potentials as the initial approximations, in eV. The nuclear deformation and nuclear polarization corrections are
omitted. For the quasidegenerate states, the contributions to the H -matrix elements are listed.

State Veff E (0)
Dirac E (1)

int E (2)
int E (3+)

Breit E 1el
QED E 2el

ScrQED Erec Sum

(1s 1s)0 LDF −260754.077 −1150.188 −5.264 0.060 525.922 −2.915 0.931 −261385.531
CH −260311.808 −1593.468 −4.245 0.047 524.714 −1.697 0.930 −261385.526
Coul −264162.564 2265.887 −12.874 0.096 530.131 −7.151 0.935 −261385.540

−261385.591a

(1s 2s)0 LDF −163906.247 −1507.099 −3.739 0.029 311.555 0.903 0.585 −165104.014
CH −163655.001 −1757.754 −4.332 0.030 310.858 1.602 0.584 −165104.013
Coul −166259.030 850.137 −8.213 0.058 314.601 −2.168 0.588 −165104.028

−165104.038a

(1s 2s)1 LDF −163906.247 −1765.402 −1.237 0.005 311.555 2.030 0.586 −165358.711
CH −163655.001 −2015.782 −2.107 0.008 310.858 2.728 0.585 −165358.711
Coul −166259.030 588.170 −2.022 0.002 314.601 −1.023 0.589 −165358.714

−165358.711a

(1s 2p1/2)0 LDF −163805.880 −1570.384 −2.117 0.015 269.491 1.534 0.521 −165106.821
CH −163550.249 −1825.675 −2.457 0.011 268.846 2.182 0.520 −165106.821
Coul −166292.353 923.198 −9.271 0.075 271.912 −0.911 0.523 −165106.827

−165106.826a

(1s 2p3/2)2 LDF −159398.331 −1723.089 −1.305 0.004 271.414 1.918 0.500 −160848.888
CH −159161.309 −1959.201 −2.219 0.008 270.780 2.553 0.499 −160848.889
Coul −161731.119 610.927 −2.523 −0.003 273.841 −0.517 0.502 −160848.892

−160848.885a

(1s 2p1/2)1 LDF −163805.880 −1680.798 −1.501 0.008 269.491 1.769 0.541 −165216.369
CH −163550.249 −1935.653 −2.281 0.011 268.846 2.416 0.541 −165216.370
Coul −166292.353 809.705 −5.533 0.017 271.912 −0.668 0.544 −165216.377

−165216.376a

(1s 2p3/2)1 LDF −159398.331 −1648.768 −2.062 0.013 271.414 1.995 0.545 −160775.192
CH −159161.309 −1884.975 −2.879 0.017 270.780 2.630 0.545 −160775.192
Coul −161731.119 687.003 −5.055 0.024 273.841 −0.441 0.547 −160775.200

−160775.202a

off-diag. LDF 0.0 12.759 −0.497 0.006 0.0 0.094 0.030 12.392
CH 0.0 12.781 −0.519 0.006 0.0 0.094 0.030 12.393
Coul 0.0 12.932 −0.682 0.008 0.0 0.094 0.030 12.383

12.378a

aThe higher-order QED correction �E ho
QED evaluated according to Refs. [32,43] is added to the total Coulomb value; see the details in Ref. [42].

062506-13



Y. S. KOZHEDUB et al. PHYSICAL REVIEW A 100, 062506 (2019)

TABLE VI. Interelectronic-interaction contributions to the binding energies of the n = 1 and n = 2 single states in He-like uranium
evaluated for the local Dirac-Fock (LDF), core-Hartree (CH), and Coulomb (Coul) potentials, in eV. The “DCB” stands for the calculations
based on the Dirac-Coulomb-Breit Hamiltonian (24) and its generalization to the case of the extended Furry picture. The “DCB+QED” values
include the one- and two-photon exchange QED contributions. All the given digits are correct within the numerical uncertainty. The uncertainty
of the nuclear size effect and the uncertainty due to uncalculated higher-order QED contributions are omitted.

Contrib. Veff (1s 1s)0 (1s 2s)0 (1s 2s)1 (1s 2p1/2)0 (1s 2p3/2)2

DCB LDF −261910.814 −165418.107 −165673.170 −165379.129 −161115.807
CH −261910.854 −165418.121 −165673.183 −165379.123 −161115.821
Coul −261910.737 −165418.081 −165673.158 −165379.197 −161115.789

DCB+QED LDF −261909.469 −165417.056 −165672.882 −165378.367 −161122.721
CH −261909.473 −165417.057 −165672.882 −165378.369 −161122.721
Coul −261909.455 −165417.049 −165672.880 −165378.351 −161122.717

From Table V it is seen that the individual terms may vary
from potential to potential, whereas the total values of the
binding energies obtained starting from the different initial
approximation are in good agreement with each other. In this
aspect, it is of interest to return once again to the discus-
sion of the correlation effects. As noted, e.g., in Ref. [80],
the arbitrariness in the realization of the projector �(+) in
the DCB Hamiltonian (24) leads to some ambiguity in the
Breit-approximation results, and this ambiguity could be fully
eliminated only within the rigorous QED approach. In our
case, we define the projector �(+) with respect to the one-
electron Dirac Hamiltonian hD which provides the zeroth-
order approximation for the perturbation series. Therefore,
the definition of the projector changes if we add one or
the other screening potential. In the upper half of Table VI
labeled with “DCB,” we present the binding energies of the
ground and n = 2 single states in He-like uranium evaluated
within the Breit approximation for the LDF, CH, and Coulomb
potentials. In the lower “DCB + QED” part, the DCB ener-
gies supplemented with the one- and two-photon exchange
corrections are given. In Table V, we omit the uncertainties
of the nuclear size effect as well as the uncertainties due to
the uncalculated higher-order QED corrections, and keep only
the numerical ones. It is seen that the scatter of the results
corresponding to the different choices of the projector �(+)

decreases when one takes into account the QED corrections.
Moreover, the scatter of the “DCB + QED” values may serve
as an alternative estimation of the uncalculated higher-order
QED effects. One can conclude that the algorithm employed
in Tables III and IV for the determination of the E (3+)

QED term
provides a reliable estimation.

The results of the calculations performed for the LDF
screening potential have been employed as the final values of
the binding energies in the present paper. The energies of the
mixing configurations 1s2p 1P1 and 1s2p 3P1 have been eval-
uated by diagonalizing the matrix H . When calculating the
final results, in addition to the contributions listed in Table V,
we take into account the nuclear polarization contribution.
For the uranium ion, we account for the nuclear deformation
correction for the Dirac energies evaluated for the Coulomb
potential. In Table VII, we present our theoretical predictions
for the ionization energies for the n = 1 and n = 2 states in
He-like iron, xenon, and uranium. The ionization energies
are obtained by subtracting the binding energies of the states
under consideration from the binding energy of the 1s state.
The results for iron are based on the calculations performed in
Ref. [42] and presented here for completeness. The theoretical
uncertainties given in parentheses are estimated by summing
quadratically the uncertainty due to the nuclear size effect, the
numerical error of the calculations, and the uncertainty due to
the uncalculated QED contributions of the higher orders. As
in Ref. [42], the uncertainty associated with the uncalculated
higher-order screened QED effects is estimated in several
ways. First, we study the scatter of the final results obtained
for the different initial approximations. For the excited states,
the maximum of the scatter for the corresponding level and the
scatter for the ground state divided by the factor of 4 is taken.
Second, in order to estimate the screening of the two-loop one-
electron contributions by the interelectronic interaction we
take the corresponding term for the 1s state multiplied by the
factor 2/Z . We have estimated the higher-order screened QED
corrections by means of the model QED approach [108–110]

TABLE VII. Ionization energies for the n = 1 and n = 2 states in He-like ions, in eV, and comparison with Artemyev et al. [32]. The
results of Ref. [32] are reevaluated using the CODATA 2014 recommended values of the fundamental constants [97] and corrected for the
updated value of the uranium root-mean-square nuclear radius from Ref. [96].

Z 1s2 1S0 1s2s 1S0 1s2s 3S1 1s2p 3P0 1s2p 3P1 1s2p 1P1 1s2p 3P2 Ref.

26 8828.1896(25) 2160.1625(8) 2191.5742(7) 2162.6253(7) 2160.6082(7) 2127.7523(9) 2145.8530(7)
8828.1875(11) 2160.1632(7) 2191.5745(6) 2162.6261(10) 2160.6085(4) 2127.7524(2) 2145.8532(2) [32]

54 40 271.726(26) 10 057.5425(78) 10 142.5688(70) 10 059.4870(65) 10 065.4536(65) 9641.6669(65) 9677.3570(65)
40 271.722(16) 10 057.561(32) 10 142.579(32) 10 059.496(12) 10 065.4554(80) 9641.6693(72) 9677.3570(72) [32]

92 129 570.09(53) 33 288.33(10) 33 543.02(10) 33 291.081(43) 33 400.664(43) 28 959.411(39) 29 033.142(39)
129 570.62(64) 33 288.57(24) 33 543.21(24) 33 291.15(13) 33 400.68(11) 28 959.41(10) 29 033.12(10) [32]
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TABLE VIII. Transition energies in He-like ions, in eV, and comparison with Artemyev et al. [32]. The results of Ref. [32] are reevaluated
using the CODATA 2014 recommended values of the fundamental constants [97] and corrected for the updated value of the uranium root-
mean-square nuclear radius from Ref. [96].

Z 1s2p 1P1 → 1s2 1S0 1s2p 3P2 → 1s2 1S0 1s2p 3P1 → 1s2 1S0 1s2s 3S1 → 1s2 1S0 1s2p 3P2 → 1s2s 3S1 Ref.

26 6700.4373(25) 6682.3366(25) 6667.5814(25) 6636.6154(25) 45.7212(10)
6700.4351(11) 6682.3343(11) 6667.5790(12) 6636.6130(13) 45.7213(6) [32]

54 30 630.059(27) 30 594.369(27) 30 206.273(27) 30 129.157(27) 465.2119(96)
30 630.053(18) 30 594.365(18) 30 206.267(18) 30 129.143(36) 465.222(33) [32]

92 100 610.68(54) 100 536.95(54) 96 169.43(54) 96 027.07(54) 4509.88(11)
100 611.21(65) 100 537.50(65) 96 169.94(65) 96 027.41(68) 4510.09(26) [32]

4509.71(99) [12]

as well. These estimations are found to be within the
uncertainties obtained. In Table VII, our theoretical predic-
tions for the ionization energies are compared with the results
obtained by Artemyev et al. [32]. One can see that the
values presented are in agreement with each other. For high-Z
ions, our results have higher accuracy. On the other side, for
middle-Z He-like ions our uncertainties are evaluated in a
more conservative way than in Ref. [32].

Finally, in Table VIII we present the transition energies
in He-like iron, xenon, and uranium. The transition energies
were obtained as the differences of the corresponding ioniza-
tion energies. Our theoretical predictions are compared with
the ones obtained in Ref. [32]. It is seen that the values
of the transition energies are in agreement with each other.
For He-like uranium, our results have a higher accuracy. The
theoretical predictions for the 1s2p 3P2 → 1s2s 3S1 transition
energy in He-like uranium are in good agreement with the
experimental value by Trassinelli et al. [12]. As one can see
from the table, the theory for high-Z heliumlike ions is by one
order of magnitude more accurate than the experimental value
available to date.

IV. SUMMARY

To summarize, we have performed ab initio QED calcula-
tions of the interelectronic-interaction corrections for the n =
1 and n = 2 states (including the quasidegenerate states) in
heliumlike ions. Our approach merges the rigorous QED eval-

uation to first and second orders in 1/Z with the calculations of
the third- and higher-order contributions within the Breit ap-
proximation. The latter are based on the Dirac-Coulomb-Breit
Hamiltonian and performed by means of two independent
methods (large-scale configuration interaction and recursive
perturbation theory). The obtained results are supplemented
with the systematic estimation of the uncertainties including
the contribution of the uncalculated third- and higher-order
QED corrections. As a result, the most precise up-to-date
theoretical predictions for the correlation effects in heliumlike
ions are obtained.

In addition, we have performed rigorous QED calculations
of the ionization and transition energies in high-Z heliumlike
ions with the most advanced methods available to date. All
two-electron QED corrections up to the second order are
taken into account within the extended Furry picture. The
nuclear recoil and nuclear polarization effects are considered
as well. We have thoroughly estimated all possible sources
for theoretical uncertainties. As a result, the most precise
theoretical predictions for energy levels in high-Z He-like
ions are obtained. In future, we plan to apply the developed
approaches for QED calculations of the binding and ionization
energies of the low-lying excited states in berylliumlike ions,
which are of current experimental interest [15].
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