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High-precision ab initio calculations of the spectrum of Lr+

E. V. Kahl,1 J. C. Berengut,1 M. Laatiaoui,2,3 E. Eliav,4 and A. Borschevsky5

1School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
2Johannes Gutenberg-Universität Mainz, Institut für Kernchemie, 55128 Mainz, Germany

3Helmholtz-Institut Mainz, 55128 Mainz, Germany
4School of Chemistry, Tel Aviv University, 6997801 Tel Aviv, Israel

5Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 Groningen, The Netherlands

(Received 14 August 2019; published 9 December 2019)

The planned measurement of optical resonances in singly ionized lawrencium (Z = 103) requires accurate
theoretical predictions to narrow the search window. We present high-precision, ab initio calculations of the
electronic spectra of Lr+ and its lighter homologue lutetium (Z = 71). We have employed the state-of-the-
art relativistic Fock space coupled cluster approach as well as the configuration interaction with many-body
perturbation theory (CI + MBPT) method to calculate atomic energy levels, g factors, and transition amplitudes
and branching ratios. Our calculations are in close agreement with experimentally measured energy levels and
transition strengths for the homologue Lu+, and are well converged for Lr+, where we expect a similar level
of accuracy. These results present large-scale, systematic calculations of Lr+ and will serve to guide future
experimental studies of this ion.
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I. INTRODUCTION

The study of the transfermium elements (Z > 100) lies
at the frontier of contemporary nuclear and atomic physics
research. The element synthesis itself provides a fertile ter-
rain for studying effective interactions and nuclear matter
under extreme conditions. Experimental shell gaps and single-
particle energies can be obtained from nuclear spectroscopy,
which helps to improve model predictions for the next spheri-
cal shell closures in the nuclear map: the location of the island
of stability of superheavy elements.

Optical spectroscopy gives access to the atomic struc-
ture and provides insights into fundamental physics such as
relativistic, correlation, and quantum electrodynamic (QED)
effects. In addition, it can provide complementary information
on single-particle and collective properties of atomic nuclei
via hyperfine structure measurements. Such studies are con-
tinuously applied to ever heavier elements and are penetrating
territories of the map that were previously inaccessible [1].
A good example of this is the recent laser spectroscopy of
the element nobelium (Z = 102) [2], which demonstrated the
technical feasibility—despite a complete lack of tabulated
spectral lines and production yields from nuclear fusion reac-
tions of about one atom per second. These experiments have
clearly shown how atomic modeling can efficiently support
and guide atomic structure investigations and, in particular,
that experiments and theory have to be pursued hand in
hand. Current developments target the next heavier element,
lawrencium (Z = 103), in its neutral and singly charged states
from both theory and experimental viewpoints.

The planned experiments will attempt to optically excite Lr
in a supersonic gas-jet: the Lr atoms are produced with high
energy from fusion reactions and are stopped and thermal-
ized in a buffer gas cell. The gas-jet method enables one to

accelerate the lawrencium-buffer gas mixture into a low-
pressure and low-temperature jet. This in turn allows one to
reduce collisional broadening and thus to increase the experi-
mental resolution [1,3]. Previous experiments proved that the
gas mixture contains both atomic species, neutral as well as
singly ionized Lr, wherein the fraction of the ions substantially
dominates the sample composition under typical experimental
conditions [4,5]. For both species, due to the extremely low
production yields, highly precise theoretical predictions of the
spectral lines are required to develop excitation schemes and
to narrow down the search window to be able to pinpoint the
ground-state transitions. Moreover, predictions of lifetimes
and branching ratios are needed to quantify experimental
parameters such as required detector sensitivities and beam
times.

In this work we provide high accuracy prediction of the
energies and the g factors of the low-lying excited states of
Lr+, along with transition rates and branching ratios between
the different states. The calculations are performed within
two complementary state-of-the-art relativistic approaches:
the Fock space coupled cluster (FSCC) method [6,7], and the
configuration interaction approach combined with many-body
perturbation theory (CI + MBPT) method [8]. In order to
estimate the accuracy of our predictions for Lr+, analogous
calculations were performed for its lighter homologue, Lu+,
where we can compare the results of our calculations to
experimental values.

While numerous predictions were reported for neutral Lr,
to the best of our knowledge, no experimental and only
three prior theoretical studies of atomic properties of Lr+ are
available. Dzuba et al. [9] calculated the first to the third
ionization potentials of Lr using a linearized CI + all-order
approach, while Cao and Dolg [10] calculated the first to
the fourth ionization potentials of Lr using relativistic ab
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initio pseudopotentials combined with the complete active
space self-consistent field method and corrected for spin-
orbit effects. In a much earlier publication, Fraga presented
a Hartree-Fock investigation of this system [11]; however, in
that work, the ground state of Lr+ was misidentified as 6d2.

II. METHODS AND COMPUTATIONAL DETAILS

All the calculations were carried out within the framework
of the projected Dirac-Coulomb-Breit (DCB) Hamiltonian
[12] (atomic units h̄ = me = e = 1 are used throughout this
work),

HDCB =
∑

i

hD(i) +
∑

i< j

(1/ri j + Bi j ). (1)

Here, hD is the one-electron Dirac Hamiltonian,

hD(i) = c αi · pi + c2(βi − 1) + Vnuc(i), (2)

where α and β are the four-dimensional Dirac matrices. The
nuclear potential Vnuc takes into account the finite size of
the nucleus. The two-electron term includes the nonrelativis-
tic electron repulsion and the frequency independent Breit
operator,

Bi j = − 1

2ri j

[
αi · α j + (αi · ri j )(α j · ri j )/r2

i j

]
, (3)

and is correct to second order in the fine structure constant α.

A. FSCC

We have calculated the transition energies of Lr+ and
its lighter homologue Lu+ using the relativistic multirefer-
ence valence universal FSCC method, described in detail in
Refs. [6,7] and implemented in TRAFS-3C [13]. This approach
has demonstrated a high degree of accuracy when treating
heavy atomic systems; see, for example, Ref. [14]. Its partic-
ular advantage is the possibility of obtaining a large number
of energy levels; it is therefore very well suited for calculating
excitation spectra.

Our calculations start by solving the relativistic Hartree-
Fock equations and correlating the closed-shell reference
states for Lr3+ and Lu3+, which correspond to closed shell
configurations. After the first stage of the calculation, two
electrons were added, one at a time, to obtain the singly ion-
ized atoms. At each stage of the calculations the appropriate
coupled cluster equations were solved iteratively. To achieve
optimal accuracy, large model spaces were used, going up
to 13s11p9d8 f 6g5h for Lu+ and 14s12p10d9 f 6g5h for Lr+,
and the convergence of transition energies with respect to the
model space size was verified. In order to allow the use of
such large model spaces without encountering convergence
difficulties in the coupled cluster iterations, the FSCC cal-
culations were augmented by the extrapolated intermediate
Hamiltonian approach (XIH) [15].

The uncontracted universal basis set [16] was used, consist-
ing of even-tempered Gaussian type orbitals, with exponents
given by

ξn = γ δ(n−1), γ = 106 111 395.371 615,

δ = 0.486 752 256 286. (4)

The basis set used for both ions consists of 37 s (n = 1–37),
31 p (n = 5–35), 26 d (n = 9–34), 21 f (n = 13–33), 16 g
(n = 17–32), 11 h (= 21–31), and 6 i (n = 25–30) functions.
The outer 60 electrons of Lu+ and 74 electrons of Lr+ were
correlated, and virtual orbitals with energies over 200 a.u.
were omitted. The FSCC calculations were performed using
the Tel-Aviv Relativistic Atomic Fock Space coupled cluster
code (TRAFS-3C) [13].

To account for the QED corrections to the transition en-
ergies we applied the model Lamb shift operator (MLSO)
of Shabaev and co-workers [17] to the atomic no-virtual-
pair many-body DCB Hamiltonian as implemented into the
QEDMOD program [17]. Our implementation of the MLSO
formalism into the Tel Aviv atomic computational package
allows us to obtain the vacuum polarization and self energy
contributions beyond the usual mean-field level, namely at
the level of Dirac-Coulomb-Breit Fock-space coupled cluster
with single and double excitations (DCB-FSCCSD).

B. CI + MBPT

Our calculations of the transition lifetimes and branching
ratios as well as the Landè g factors for the excited states
of Lr+ and Lu+ were performed using the relativistic con-
figuration interaction approach augmented with many-body
perturbation theory method, via the AMBiT atomic struc-
ture software [18]. We also present the transition energies
calculated via this approach. The full details of this process
have been extensively discussed elsewhere (see, for example
Refs. [8,18–22]), so we will only present a brief outline of the
method here.

We start with a Dirac-Hartree-Fock calculation in the V N−1

potential [23]; that is, all but one electron in the atom are
included in the self-consistency calculations. This results in
a set of Dirac-Fock orbitals which are optimised for states
with a single electron-excitation (i.e., 6snl or 7snl for Lu+

and Lr+, respectively). Small-scale CI-only and CI + MBPT
calculations showed that this choice of potential produces
closer agreement to experimental and FSCC energy levels
than including all N electrons in Dirac-Fock.

We generate a large basis of one-particle orbitals by diag-
onalizing a set of B-splines over the one-electron Dirac-Fock
operator [24,25]. We modify the operator to incorporate Lamb
shift corrections via the radiative potential method developed
by Flambaum and Ginges [26], which includes the self-
energy [27] and vacuum polarization [28] contributions (finite
nuclear-size effects are included using a Fermi distribution for
nuclear charge). These corrections are propagated throughout
the rest of the calculation by modification of the radial CI
(Slater) and MBPT integrals.

Next, we use the B-spline basis functions to construct a
set of many-electron configurations for the CI expansion. We
form the many-body functions by allowing all single and
double excitations from the 6s2 (Lu+) or 7s2 (Lr+) ground
state up to 16spdf g (i.e., excitations with n < 16, and 0 <

l < 4). We then take the Slater determinants with a given
MJ corresponding to these excitations and diagonalize the J2

operator to form configuration state functions (CSFs), which
are used to form the CI wave function via the standard CI
eigenvalue problem [19].
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TABLE I. Ionization potential (top row), excitation energies, and g factors of Lu+. The CI+MBPT and FSCC calculations include the Breit
and the QED corrections, the latter of which is shown in a separate column for comparison between the two calculations. Only levels relevant
to the proposed Lr+ experiment are presented here.

g factor Energy (cm−1)

State Expt. CI+MBPT FSCC � QED CI+MBPT � QED Expt. [33]

6s2 1S0 IP 112696 −100 111970
5d6s 3D1 0.5 0.52 12354 −158 11664 −144 11796

3D2 1.16 1.14 12985 −156 12380 −143 12432
3D3 1.33 1.41 14702 −148 14267 −134 14199
1D2 1.01 1.09 17892 −157 17875 −160 17332

6s6p 3P0 27091 −103 27303 −105 27264
3P1 1.47 1.51 28440 −105 28520 −106 28503
3P2 1.50 1.66 32294 −89 32603 −97 32453
1P1 1.02 0.99 38464 −155 37385 −129 38223

We employ the “emu” CI method [18,22] to significantly
reduce the size of the CI eigenproblem by exploiting the fact
that the CI expansion is typically dominated by contributions
from Ndominant low-lying, dominant configurations. We divide
the CI Hamiltonian matrix elements into three classes: leading
diagonal elements, off-diagonal matrix elements containing at
least one dominant configuration, and off-diagonal elements
with no dominant configurations. The contributions from the
high-lying off-diagonal terms to the low-energy levels are
small compared to the dominant terms, and so can be set to
zero without significant loss of accuracy [22,29]. Typically
Ndominant � NCI, so emu CI can significantly reduce the size
of the CI matrix and thus computational load when compared
to standard CI.

For both Lr+ and Lu+, we construct the dominant configu-
rations from all single excitations up to 16spdf g and single
and double excitations up to 12spdf g; further increasing
Ndominant changes the energy levels by less than 0.01%, sug-
gesting this threshold captures all important configurations.
In both systems, increasing the basis size beyond 16spdf g
changes the energy by ∼1%, indicating that the CI component
of our calculations are well converged.

Additionally, we include corrections from core-valence
correlations to second order via the diagrammatic MBPT tech-
nique described in Refs. [8,20]. We have included all one- and
two-body diagrams with orbitals up to 35spdf ghi (n � 35,
0 � l � 6). The MBPT corrections are rapidly convergent as
more partial waves are added, and adding orbitals with l � 7
to the MBPT basis changes the energy by less than ∼50 cm−1.
Consequently, the MBPT component of our calculation is also
well- converged.

The resulting CI + MBPT wave functions are used to cal-
culate the Landè g factors and transition matrix elements. We
include only the lowest-order matrix element of the complete
correlated wave unction. Transition lifetimes and branching
ratios are derived from these matrix elements. Our use of
MBPT to account for core-valence correlations means that
in principle the electromagnetic transition operators should
be modified [30,31]. The resulting effective operators may
be approximated by including higher-order corrections such
as those from the random-phase approximation, but these
effects generally affect the matrix elements at well below our
estimated precision of 30% [32].

For Lu+ the experimental transition energy was used in the
expression for Einstein coefficients, while for Lr+ we used the
calculated energies (our recommended values obtained from
averaging the FSCC and the CI + MBPT results; see Sec. III
for further details).

III. RESULTS

Table I contains the calculated ionization potential and
transition energies of Lu+, obtained with both approaches,
along with the experimental energies. While many states are
obtained in the calculations, here we present only the eight
lowest levels (from the 5d6s and the 6s6p configurations) that
correspond to experimentally relevant transitions in Lr+. Gen-
erally, the results are in good agreement with experimental
values, with average differences between theory and experi-
ment of −263 (348) cm−1 (where the number in brackets is
the standard deviation of the difference) for the FSCC ap-
proach and 16 (389) cm−1 for CI + MBPT. The two methods
are also in good agreement with each other (average absolute
difference of 278 (496) cm−1). We expect similar accuracy for
the calculated transition energies of the heavier homologue
of Lu+, Lr+, where no experimental data is yet available.
The Breit interaction effect lowers the excitation energies by
20–150 cm−1, depending on the level. The QED corrections
from both the MLSO formalism (for FSCC) and radiative
potential method (for CI + MBPT) contribute 100–200 cm−1,
also lowering the energies. Table I also contains the calculated
g factors, which are overall in good agreement with experi-
ment, indicating that the CI + MBPT approach successfully
reproduces the character of the electronic wavefunction. A
notable exception is the g factor of the 3P2 state, which is
predicted to be 1.5, while the experimental value is reported
as 1.66 [33] (an assignment that may be erroneous).

Table II contains the calculated ionization potential, excita-
tion energies, and g factors of the lawrencium ion. In all cases
the energies are significantly higher than the corresponding
levels in Lu+ (see the Grotrian energy-level diagram for both
Lu+ and Lr+ in Fig. 1). This is due to the relativistic stabili-
sation of the valence 7s shell in the heavier ion, which makes
this system more inert. The effect of the Breit interaction is
higher in Lr+ than in Lu+, but the signs remain the same.
Similarly, QED corrections in Lr+ are slightly larger than in
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TABLE II. Ionization potential (top row) and excitation energies of Lr+. The CI+MBPT and FSCC columns include the Breit and the
QED corrections, the latter of which is shown in a separate column for comparison between the two calculations. The recommended values
are obtained as the mean of FSCC and CI+MBPT results. Lifetimes and and g-factors derived from CI+MBPT calculations are also included.

Energy (cm−1)
g factor

State CI+MBPT FSCC �QED CI+MBPT �QED Recommended Lifetime (s)

7s2 1S0 116949 −219 116949 ± 389
6d7s 3D1 0.5 20265 −342 21426 −374 20846 ± 1161 2.23 × 106

3D2 1.15 21623 −344 22507 −373 22065 ± 884 8.26 × 10−2

3D3 1.33 26210 −326 26313 −355 26262 ± 389 2.97 × 10−2

1D2 1.02 31200 −373 30942 −397 31071 ± 389 1.53 × 10−3

7s7p 3P0 29487 −167 29059 −306 29273 ± 428 2.56 × 10−7

3P1 1.42 31610 −179 31470 −314 31540 ± 389 1.45 × 10−8

3P2 1.50 43513 −240 42860 −308 43186 ± 653 2.43 × 10−8

1P1 1.08 47819 −260 46771 −376 47295 ± 1048 1.11 × 10−9

Lu+, but remain on the order of 300 cm−1, and are negative
for all the considered states. The order of levels obtained using
CI + MBPT and FSCC is the same, and the average difference
between the two methods is −47 (747) cm−1.

Table II also contains the recommended values for the ex-
citation energies for the Lr+ ion. The FSCC and CI + MBPT
calculations have a comparable accuracy for Lu+, often brack-
eting the experimental values. We use this observation to pro-
pose recommended transition energies which we calculate as
the mean of the FSCC and CI + MBPT results. A conservative
uncertainty estimate is given by either the difference between
the two calculated energies or the standard deviation of the
difference between the CI + MBPT and experimental energy
levels for Lu+ (389 cm−1), whichever is larger.

Einstein A coefficients (transition probabilities) for
electric-dipole allowed (E1) transitions and branching-ratios
for the transitions between the eight lowest states in Lu+ and
for a number of other transitions where experimental results
are available are shown in Table III.

FIG. 1. Grotrian diagram of experimental energy levels for Lu+

(dashed, black) and recommended calculated energy levels for Lr+

(solid, red). Levels are labeled by their approximate LS-coupling
term symbol.

Our calculated A values are mostly larger than experimen-
tal values tabulated in [34] by 10%–30%, but the relative
strengths are very well reproduced, and the strongest transi-
tions are identified correctly. The results of our CI + MBPT
calculations for Lr+ transitions are shown in Table IV. We
expect an accuracy for the predicted Einstein coefficients and
branching ratios similar to that obtained for the lighter ho-
mologue Lu+. The 7s7p configurations can decay via electric
dipole transitions; however, the even-parity 6d7s states can
only decay via M1 or E2 transitions to other even-parity
states, for which the Einstein A coefficients are shown in
Table V.

The lifetimes of the Lr+ levels, calculated via the Einstein
A-coefficients, are presented in Table II. Because M1 and
E2 transitions are slow, even-parity states have significantly
longer lifetimes than states which can decay via E1 transi-
tions. In particular, the 6d7s 3D1 state can only decay to the
ground state via a suppressed M1 transition, and so it has a
lifetime of 2.2 × 106 seconds, or ∼25 days, which is several
orders of magnitude longer than any of the other levels.

IV. SUMMARY AND CONCLUSION

We have calculated energies, g-factors, and lifetimes of
several low-lying atomic levels in Lr+. A good agreement
between the calculated FSCC and CI + MBPT energies is
achieved. Similar calculations for the lighter homologue Lu+

support the high accuracy of both approaches. In view of
the prospects opened up by the forthcoming experiments,
we identified two strong ground-state transitions in Lr+,
leading to 7s7p 3P1 and 7s7p 1P1 states at 31 540 cm−1

and 47 295 cm−1, respectively, that should in principle be
amenable for experimental verification. The level searches
are likely to focus on the 3P1 state, which is predicted with
a relatively higher accuracy and exhibits an experimentally
more convenient transition wavelength for optical probing.
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TABLE III. Einstein coefficients (ACI+MBPT) for dipole-allowed E1 transitions in Lu+, calculated within the CI+MBPT approach using
experimental transition energies, and compared to experimental values (ENIST, ANIST) where available [34]. Note that levels which are not
relevant to the proposed Lr+ experiment and are not included in [34] have been omitted, so branching ratios may not sum to 100% for all
levels.

Upper level Lower level ENIST ACI+MBPT (s−1) ANIST (s−1) Branching ratio

6s6p 3P0 5s5d 3D1 2.19 × 107 1.00
6s6p 3P1 6s2 1S0 28503 1.62 × 107 1.25 × 107 0.41
6s6p 3P1 5d6s 3D1 6.84 × 106 0.17
6s6p 3P1 5d6s 3D2 16707 1.60 × 107 9.90 × 106 0.40
6s6p 3P1 5d6s 1D2 7.39 × 104 0.18 × 10−3

6s6p 3P2 5d6s 3D1 5.64 × 105 0.016
6s6p 3P2 5d6s 3D2 6.20 × 106 0.17
6s6p 3P2 5d6s 3D3 2.88 × 107 0.80
6s6p 3P2 5d6s 1D2 3.56 × 105 9.91 × 10−3

6s6p 1P1 6s2 1S0 38223 5.21 × 108 4.53 × 108 0.96
6s6p 1P1 6s2 3D1 9.60 × 103 1.77 × 10−5

6s6p 1P1 6s2 3D2 9.86 × 106 0.02
6s6p 1P1 6s2 1D2 1.07 × 107 0.02
5d6p 3D1 6s2 1S0 45532 4.78 × 107 7.14 × 107 0.13
5d6p 3D3 5d6s 3D3 36298 1.82 × 108 1.66 × 108 0.56
5d6p 3D3 5d6s 3D2 34534 1.09 × 108 9.20 × 107 0.33

TABLE IV. Einstein coefficients (ACI+MBPT) for dipole-allowed E1 transitions in Lr+, calculated within the CI+MBPT approach and
using our recommended calculated energies (Ecalc). Branching ratios for each transition are also shown. We estimate the uncertainty in the A
coefficients at 30% (see text).

Upper level Lower level Ecalc(cm−1) ACI+MBPT(s−1) Branching ratio

7s7p 3P0 7s6d 3D1 8515 5.44 × 106 1.00
7s7p 3P1 7s2 1S0 31540 6.36 × 107 0.900
7s7p 3P1 7s6d 3D1 10694 2.42 × 106 0.034
7s7p 3P1 7s6d 3D2 9475 4.66 × 106 0.066
7s7p 3P1 7s6d 1D2 608 4.54 × 10−1 6.4 × 10−9

7s7p 3P2 7s6d 3D1 22391 9.41 × 105 0.021
7s7p 3P2 7s6d 3D2 21172 9.70 × 106 0.214
7s7p 3P2 7s6d 3D3 16967 3.43 × 107 0.758
7s7p 3P2 7s6d 1D2 12304 3.19 × 105 0.007
7s7p 1P1 7s2 1S0 47295 8.34 × 108 0.960
7s7p 1P1 7s6d 3D1 26449 1.36 × 106 0.002
7s7p 1P1 7s6d 3D2 25230 1.63 × 107 0.019
7s7p 1P1 7s6d 1D2 16363 1.68 × 107 0.019

TABLE V. Einstein coefficients (ACI+MBPT) for M1 and E2 transitions in Lr+, calculated within the CI+MBPT approach and using our
recommended calculated energies. We estimate the uncertainty in the A coefficients at 30% (see text).

Upper level Lower level Ecalc(cm−1) AM1(s−1) AE2(s−1)

7s6d 3D1 7s2 2S0 20846 4.48 × 10−7

7s6d 3D2 7s2 2S0 22065 10.82
7s6d 3D2 7s6d 3D1 1219 0.79 2.78 × 10−5

7s6d 3D3 7s6d 3D1 5416 0.0061
7s6d 3D3 7s6d 3D2 4197 33.61 0.015
7s6d 1D2 7s2 2S0 31552 806.55
7s6d 1D2 7s6d 3D1 10306 49.81 0.0694
7s6d 1D2 7s6d 3D2 9087 5.72 0.0623
7s6d 1D2 7s6d 3D3 4890 5.67 0.0034
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