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This paper addresses the problem of designing universal quantum circuits to transform k uses of a
d-dimensional unitary input operation into a unitary output operation in a probabilistic heralded manner. Three
classes of protocols are considered, parallel circuits, where the input operations can be performed simultaneously,
adaptive circuits, where sequential uses of the input operations are allowed, and general protocols, where the use
of the input operations may be performed without a definite causal order. For these three classes, we develop a
systematic semidefinite programming approach that finds a circuit which obtains the desired transformation with
the maximal success probability. We then analyze in detail three particular transformations: unitary transposition,
unitary complex conjugation, and unitary inversion. For unitary transposition and unitary inverse, we prove that
for any fixed dimension d , adaptive circuits have an exponential improvement in terms of uses k when compared
to parallel ones. For unitary complex conjugation and unitary inversion we prove that if the number of uses
k is strictly smaller than d − 1, the probability of success is necessarily zero. We also discuss the advantage
of indefinite causal order protocols over causal ones and introduce the concept of delayed input-state quantum
circuits.
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I. INTRODUCTION

In quantum mechanics, deterministic transformations be-
tween states are represented by quantum channels and proba-
bilistic transformations by quantum instruments, which con-
sist of quantum channels followed by a quantum measure-
ment. Understanding the properties of quantum channels and
quantum instruments is a standard and well established field of
research with direct impact for theoretical and applied quan-
tum physics [1,2]. Similarly to states, quantum channels may
also be subjected to universal transformation in a paradigm
usually referred as higher order transformations. Higher order
transformations can be formalized by quantum supermaps
[3,4] and physically implemented by means of quantum cir-
cuits (see Fig. 1). Despite its fundamental value and potential
for applications (e.g., quantum circuit designing [3], quan-
tum process tomography [5], testing causal hypothesis [6],
channel discrimination [7], aligning reference frames [8,9],
and analyzing the role of causal order [10,11]), higher order
transformations are still not well understood when compared
to quantum channels and quantum instruments.

Reversible operations play an important role in mathemat-
ics and in various physical theories such as quantum mechan-
ics and thermodynamics. In quantum mechanics, reversible
operations are represented by unitary operators [12,13]. This
work considers universal transformations between reversible
quantum transformations, that is, we seek for quantum circuits
which implement the desired transformation for any unitary
operation of some fixed dimension without any further spe-
cific details of the input unitary operation. From a practical
perspective, this universal requirement ensures that the circuit
does not require any readjustments or modification when
different inputs are considered and the circuit implements
the desired transformation even when the description of the

d-dimensional reversible operation is unknown. Note that
the universal requirement also imposes strong constraints on
transformations which can be physically realized. A well-
known example which pinpoints these constraints when con-
sidering quantum states is quantum cloning, although it is
simple to construct a quantum device that clones qubits which
are promised to be in state |0〉 or |1〉, it is not possible to design
a universal quantum transformation that clones all qubit states
[14]. Another interesting example can be found in Ref. [15]
where the authors consider universal NOT gates for qubits.

Universal transformations on reversible quantum opera-
tions have been studied from several perspectives and mo-
tivations such as gate discrimination [16,17], cloning uni-
tary operations [18], preventing quantum systems to evolve
[19,20], designing quantum circuits [3], learning the action
of a unitary [9,21–24], transforming unitary operations into
their complex conjugate [25], understanding the role of causal
order in quantum mechanics [10,26], and others [27,28].
Probabilistic exact transformations between multiple uses of
reversible operations via quantum circuits have been consid-
ered in Ref. [29] where the authors target transforming an
arbitrary unitary operation into its inverse and in Ref. [30]
where the authors consider the case where the unitary input
operation and the unitary output operation are two different
representations of the same group element. Also, Refs. [20,31]
consider the probabilistic exact circuits which act only in an
auxiliary system which interacts to the target one via some
random Hamiltonian.

This paper is focused on designing universal quantum
circuits which are not exclusively tailored for a particular
class of input operations. That is, it should attain the desired
transformation for any d-dimensional unitary operation even
if its description is not known. In particular, we focus on prob-
abilistic heralded transformations between multiple uses of
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FIG. 1. Pictorial representation of parallel and adaptive quantum
circuits that transform k uses of a d-dimensional arbitrary unitary
input operation described by Ud into another unitary operation de-
scribed by f (Ud ). The circuit elements Ẽ and Ẽi are quantum deter-
ministic operations, i.e., quantum channels, that may be interpreted
as encoders and the element D̃ stands for decoder, a probabilistic
quantum operation (quantum instrument), that is, a quantum channel
with a quantum measurement that when the “correct” outcome is
obtained, the target transformation is obtained perfectly.

reversible operations. In particular, we focus on probabilistic
heralded transformations between multiple uses of reversible
operations. More precisely, we consider circuits which make
use of a quantum measurement with an output associated
with success and, when the success outcome is obtained, the
transformation is implemented perfectly. We consider three
classes of quantum protocols: parallel circuits, where the input
operations can be performed simultaneously, adaptive circuits,
where the input operations may be used sequentially, and
general protocols, which may not be realizable by quantum
circuits but are consistent with quantum theory when the use
of the input operations may be performed in an indefinite
causal order [10,11,32]. We present a systematic approach
based on semidefinite programming that allows us to analyze
transformations which is linear on quantum operations. We
then analyze in details three particular transformations: uni-
tary transposition, unitary complex conjugation, and unitary
inversion.

Section II reviews results related to quantum circuits such
as quantum supermaps, quantum combs, process matrices,
and other important concepts. Section III presents a general
semidefinite programming (SDP) approach to design optimal
probabilistic exact quantum circuits. Section IV introduces the
concept of delayed input-states quantum circuits. Section V
analyzes circuits for implementing unitary complex conjuga-
tion. Section VI analyzes circuits for unitary transposition.
Section VII analyzes circuits for unitary inversion and
Sec. VIII concludes and discusses the main results.

II. REVIEW ON HIGHER ORDER QUANTUM
OPERATIONS AND SUPERMAPS

In this section we establish our notations and review how
to represent and analyze quantum circuits and transformations
between quantum operations in terms of supermaps. We refer
to transformations between quantum states as lower order
operations (i.e., quantum channels and quantum instruments)
and transformations between quantum operations (e.g.,
channels, instruments, quantum circuits) as higher order

operations, which will be named as superchannels and
superinstruments.

A. The Pills-Choi-Jamiołkowski isomorphism

We start by reviewing the Choi isomorphism [33–35] (also
known as Pills-Choi-Jamiołkowski isomorphism), a useful
way to represent linear maps and particularly convenient
for completely positive ones. Let L(H) be the set of linear
operators mapping a linear (Hilbert) space H to another
space isomorphic to itself. This work only considers finite
dimensional quantum systems, hence all linear spaces H are
isomorphic to Cd , d-dimensional complex linear spaces. Any
map1 �̃ : L(Hin) → L(Hout) has a one to one representation
via its Choi operator defined by

C(�̃) :=
∑

i j

�̃(|i〉〈 j|) ⊗ |i〉〈 j| ∈ L(Hout ⊗ Hin ), (1)

where {|i〉} is an orthonormal basis. An important theorem re-
garding the Choi representation is that a map �̃ is completely
positive (CP) if and only if its Choi operator C(�̃) is positive
semidefinite [35].

When the Choi operator C(�̃) of some map is given, one
can obtain the action of �̃ on any operator ρin ∈ L(Hin) via
the relation

�̃(ρin) = Trin
(
C(�̃)

[
Iout ⊗ ρT

in

])
, (2)

where ρT
in is the transposition of the operator ρin in terms of

the {|i〉} basis of Hin.
We now present a useful mathematical identity regarding

the Choi isomorphism. Let Ud , A, and B be d-dimensional
unitary operators.2 Any unitary quantum operation Ũd (ρ) :=
UdρU †

d can be represented by its Choi operator as C(Ũd ) and
a straightforward calculation shows that

[A ⊗ B]C(Ũd )[A† ⊗ B†] = C( ˜AUd BT ). (3)

B. Supermaps with single use of the input operations

In quantum mechanics, physical states are represented by
positive operators ρ ∈ L(H), ρ � 0, with unit trace Tr(ρ) =
1. In this language, universal transformations between quan-
tum states are represented by linear maps, to which we refer
as just maps, �̃ : L(Hin) → L(Hout) that are CP [1,2]. Here,
by universal we mean that the map �̃ is defined for all
quantum states ρ ∈ L(Hin) and the physical transformation
can be applied to any of these states. Quantum channels
are deterministic quantum operations and are represented
by CP maps that preserve the trace of all quantum states
ρ ∈ L(Hin). Probabilistic heralded universal transformations
between quantum states are represented by quantum instru-
ments, a set of CP maps {�̃i} that sum to a trace preserv-
ing one, i.e., �̃ := ∑

i �̃i is trace preserving (TP). Quantum

1Symbols with a tilde represent linear maps.
2In principle, this identity also holds even when Ud , A, and B are

not unitary but general d-dimensional linear operators.
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instruments describe measurements in quantum mechanics.3

When the set of instruments {�̃i} is performed, the outcome
i is obtained with probability Tr(�̃i(ρ)), and the state ρ is
transformed to �̃i (ρ)

Tr(�̃i (ρ))
.

An important realization theorem of quantum channels
is given by the Stinespring dilation [36] which states that
every quantum channel �̃ can be realized by first applying an
isometric operation, i.e., a unitary with auxiliary systems and
then discarding a part of the system. More precisely, every
CPTP map �̃ : L(Hin) → L(Hout) can be written as

�̃(ρ) = TrA′ (U [ρ ⊗ σA]U †), (4)

where σA ∈ L(A) is some (constant) auxiliary state, U :
Hin ⊗ A → Hout ⊗ A′ is a unitary acting on the main and
auxiliary system, and TrA′ is a partial trace on some subsystem
A′ such that Hout ⊗ A′ is isomorphic to Hin ⊗ A.

Quantum instruments also have an important realization
theorem that follows from Naimark’s dilation [1,37]. Every
quantum instrument can be realized by a quantum channel
followed by a projective measurement, i.e., a measurement
which all its POVM elements are projectors, on some aux-
iliary system. More precisely, if {�̃i : L(Hin) → L(Hout)}
represents an instrument, there exist a quantum channel C̃ :
L(Hin) → L(Hout ⊗ A) and a projective measurement given
by {�i} where �i ∈ L(A) which satisfies

�̃i(ρ) = TrA′ (C̃(ρ)[IHout ⊗ �i]). (5)

We now define universal transformations between quan-
tum operations in an analogous way in terms of linear su-
permaps [4]. Linear supermaps, to which we also refer as
just supermaps, are linear transformations between maps. A
supermap4

˜̃S : [L(H2) → L(H3)] → [L(H1) → L(H4)] (6)

represents transformations between input maps �̃in :
L(H2) → L(H3) to output ones �̃out : L(H1) → L(H4).

For instance, let Ũd (ρ) := UdρU †
d be the map associated

with the d-dimension unitary operation Ud , the supermap that
transforms a unitary operation into its inverse is given by˜̃S(Ũd ) = Ũ −1

d .

We say that a supermap ˜̃S is TP preserving (TPP) if it
transforms TP maps into TP maps. Similarly, a supermap is
CP preserving (CPP) when it transforms CP maps into CP
maps, and completely CP preserving (CCPP) if the every

trivial extension ˜̃S ⊗˜̃I , of ˜̃S is CPP, where ˜̃I (�̃) = �̃, ∀�̃.
A superchannel ˜̃C is a supermap which respects two basic
constraints: (1) it transforms valid quantum channels into
valid quantum channels (hence CPP and TPP); and (2) when
performed to a part of a quantum channel the global channel
remains valid (hence CCPP).

3Every instrument {�̃i} corresponds to a unique positive
operator valued measure (POVM) measurement {Mi}, Mi ∈
L(Hin ), Mi � 0,

∑
i Mi = IHin, such that Tr(ρMi ) = Tr(�̃i(ρ )) for

every state ρ ∈ L(Hin ). The POVM {Mi} can be written explicitly

as Mi = �̃†
i (IHout ) where �̃†

i is the adjoint map of �̃i.
4Symbols with a double tilde represent linear supermaps.

FIG. 2. Every superchannel ˜̃C : [L(H2) → L(H3)] →
[L(H1) → L(H4)] transforming input channels �̃in : L(H2) →
L(H3) into output channels �̃out : L(H1) → L(H4) can be

decomposed as ˜̃C(�̃in ) = D̃ ◦ [�̃in ⊗ ĨA] ◦ Ẽ where the encoder
operation Ẽ : L(H1) → L(H2) ⊗ L(HA) is an isometry operation,
L(HA) is a space for some possible auxiliary system, and the decoder
D̃ : L(H3 ⊗ HA) → L(H4) is a unitary operation followed by a
partial trace on a part of the system.

Any one single use superchannel ˜̃C has a deterministic
realization in quantum theory and similarly to the Stinespring
dilation theorem, it can be shown that every superchannel
admits a decomposition in terms of encoder and decoder of
the form [4]

˜̃C(�̃) = D̃ ◦ [�̃ ⊗ ĨA] ◦ Ẽ , (7)

where Ẽ : L(H1) → L(H2) ⊗ L(HA) is an isometry which
maps an input-state ρin ∈ L(H1) to the space where the map
�̃ acts and an auxiliary one L(HA), ĨA is the identity map
on the auxiliary system [i.e., ĨA(σA) = σA, ∀ σA ∈ L(HA)],
D̃ : L(H3 ⊗ HA) → L(H4) is a unitary operation followed by
a partial trace on a part of the system (see Fig. 2).

The Choi representation allows us to describe any

supermap ˜̃S : [L(H2) → L(H3)] → [L(H1) → L(H4)] as a
map S̃ : L(H3 ⊗ H2) → L(H4 ⊗ H1) acting on Choi opera-
tors. And by exploiting the Choi representation again, we can

represent any supermap ˜̃S by a linear operator S := C(S̃) ∈
L(H4 ⊗ H1 ⊗ H3 ⊗ H2), which is useful to characterize the
set of supermaps with quantum realizations. In Refs. [3,4] the

authors show that a ˜̃C is a superchannel if and only if its Choi
representation C respects

C � 0,

Tr4C = Tr43C ⊗ I3

d3
,

Tr234C = Tr1234C ⊗ I1

d1
,

Tr(C) = d1d3,

(8)

where di is the dimension of the linear space Hi. We remark
that although we introduce the general formalism where the
dimensions di may depend on i, we focus our results to the
case where di = d is independent of i.

Supermaps with a probabilistic heralded quantum realiza-
tion are given by superinstruments and play a similar role of
instruments in higher order quantum operations, that is, it for-
malizes probabilistic transformations on quantum operations.

Superinstruments are a set of CCPP supermaps {˜̃Ci} that sums
to a superchannel. The probability of obtaining the outcome i

when the superinstrument {˜̃Ci} acts on the input-map �̃ and

input-state ρ is Tr([˜̃Ci(�̃)](ρ)) and the state [˜̃Ci (�̃)](ρ)

Tr([˜̃Ci (�̃)] (ρ))
is
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FIG. 3. Illustration of a parallel (upper circuit) and an adaptive
(lower circuit) protocol that transform a pair of quantum operations
�̃1 and �̃2 into an output one �̃out.

obtained. It follows from Ref. [38] that any superinstrument
can be realized by a superchannel followed by a projective
measurement, or equivalently,

˜̃Ci(�̃) = D̃i ◦ [�̃ ⊗ ĨA] ◦ Ẽ , (9)

here Ẽ : L(H1) → L(H2) ⊗ L(HA) is an isometry which
maps an input-state ρ ∈ L(H1) to the space where the map
�̃ acts and an auxiliary one L(HA), ĨA is the identity map
on the auxiliary system [i.e., ĨA(σA) = σA, ∀ σA ∈ L(HA)],
and the maps D̃i : L(H3 ⊗ HA) → L(H4) form an instrument
corresponding to a projective measurement.

C. Supermaps involving k input operations

In the previous section we have introduced supermaps
corresponding to protocols involving a single use of an input
operation. We now consider protocols transforming k, poten-

tially different, operations into another. Let ˜̃C be a superchan-
nel which transforms k input channels5�̃ j : L(I j ) → L(O j )
with j ∈ {1, . . . , k} into an output one �̃0 : L(I0) → L(O0).
We also define the total input-state space as I := ⊗k

j=1 I j

and the total output-space state O := ⊗k
j=1 O j , hence ˜̃C :

[L(I ) → L(O)] → [L(I0) → L(O0)].
Similarly to the single input-channel case, superchannels

transforming k quantum operations are supermaps which: (1)
transform k valid quantum channels into a valid quantum
channel; and (2) when performed on a part of a quantum
channel, the global channel remains valid. Differently from
the k = 1 case, not all superchannels have a deterministic
quantum realization in terms of encoders and decoders in the
standard quantum circuit formalism [10]. This impossibility
occurs because the definition of quantum realization does not
require explicitly that the k channels should be used in a
definite causal order and it allows protocols which use the
input channels with an indefinite causal order [11].

Protocols that can be implemented in the standard causally
ordered circuit formalism are referred to as quantum networks
and quantum combs [3] or channels with memory [39]. We

5We remark that here the subindex j stands for a label for the
channel �̃ j : L(I j ) → L(O j ), not for some instrument element of
an instrument {� j}.

divide these ordered circuits into two classes: (a) parallel
ones where k channels can be used simultaneously; and (b)
adaptive ones where the k channels are explored in a causal
sequential circuit (see Fig. 3).

Parallel protocols transforming k channels are very similar
to single-channel superchannels presented in the last subsec-

tion. Define �̃ := ⊗k
j=1 �̃ j , a superchannel ˜̃C represents a

parallel protocol if it can be written as ˜̃C(�̃) = D̃ ◦ [�̃ ⊗ ĨA] ◦
Ẽ for some channels Ẽ : L(I0) → L(I ⊗ A) and D̃ : L(O ⊗
A) → O0. It follows from the characterization of Eq. (8)
that a Choi operator C ∈ L(I0 ⊗ ⊗k

j=1 I j ⊗ ⊗k
j=1 O j ⊗ O0)

represents a parallel protocol if and only if

C � 0,

TrO0C = TrOO0C ⊗ IO
dO

,

TrIOO0C = TrI0IOO0C ⊗ II0

dI0

,

Tr(C) = dI0 dO.

(10)

Adaptive circuits can exploit a causal order relation be-
tween the channels �̃ j to implement protocols that cannot be
done in a parallel way. A simple example is the supermap that
concatenates the channels �̃1 and �̃2 to obtain �̃2 ◦ �̃1. This
supermap has a trivial implementation in an adaptive circuit
(just concatenates the channels) but cannot be implemented in
a deterministic parallel scheme.

A superchannel ˜̃C : [L(I ) → L(O)] → [L(I0) → L(O0)]
corresponds to an adaptive circuit if it can be written as6

˜̃C(�̃) = D̃ ◦ [�̃k ⊗ ĨA] ◦ Ẽk ◦ · · · ◦ [�̃1 ⊗ ĨA] ◦ Ẽ1 (11)

for some channels Ẽ1 : L(I0) → L(I1 ⊗ A), Ẽi : L(Oi−1 ⊗
A) → (Ii ⊗ A) with i ∈ {2, . . . , k}, and D̃ : L(Ok ⊗ A) →
L(O0). A Choi operator C ∈ L(I0 ⊗ ⊗k

j=1 I j ⊗ ⊗k
j=1 O j ⊗

O0) represents an adaptive superchannel if and only if [3,39]

C � 0,

TrO0C = TrOkO0C ⊗ IOk

dOk

,

TrIiC
(i) = TrIiOiC

(i) ⊗ IOi

dOi

∀i ∈ {k, . . . , 2},

TrI1C
(1) = TrI0I1C

(1) ⊗ II0

dI0

,

Tr(C) = dI0 dO,

(12)

where C(i) := TrIi+1Oi+1C
(i+1) for i ∈ {1, . . . , k − 1} and

C(k) := TrOkO0C.
We now consider the most general protocols that transform

k quantum channels into a single one. As mentioned before,
these superchannels may have an indefinite causal order be-
tween the use of these k channels, hence they may not have
an implementation in terms of encoders and decoders in the

6Note that since we do not restrict the dimension of the auxiliary
system A, all parallel protocols can be realized by an adaptive circuit.
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standard quantum circuit formalism. Even without necessarily
having a realization by ordered circuits, it is possible to
have a simple characterization of these general superchannels.
Before presenting the necessary and sufficient condition for a
general (possibly with an indefinite causal order) superchan-
nel, it is convenient to introduce the trace and replace notation
introduced in Ref. [26]. Let A ∈ L(H1 ⊗ H2) be a general lin-
ear operator, we define H2 A := TrH2 A ⊗ IH2

dH2
. A Choi operator

C ∈ L(I0 ⊗ I1 ⊗ I2 ⊗ O1 ⊗ O2 ⊗ O0) represents a general
superchannel transforming k = 2 channels into a single one
if and only if it respects [40]

C � 0,

I1O1O0C = I1O1O2O0C,

I2O2O0C = O1I2O2O0C,

O0C + O1O2O0C = O1O0C + O2O0C,

IOO0C = I0IOO0C,

Tr(C) = dI0 dO1 dO2 .

(13)

We remark that the bipartite process matrices presented
in Refs. [11,26] correspond to a particular case of general
superchannels with two input channels presented above. This
correspondence is made by setting the dimension of the linear
spaces I0 and O0 as one. This occurs because Refs. [11,26]
focus on superchannels that transform pairs of instruments
into probabilities, not into quantum operations. Also, the
general superchannels presented in Eq. (13) are equivalent
to the general process matrices presented in Ref. [40] which
uses the terminology common past and common future to
denote the spaces I0 and O0, respectively.

It is also possible to characterize general superchannels
transforming k channels on terms of their Choi operators. For
that, one can exploit the methods used in Refs. [26,40] to
characterize process matrices (see also Ref. [41]). Using such
methods, we have characterized general superchannels which
transforms k = 3 input channels into a single output one. A
Choi operator C ∈ L(I0 ⊗ I1 ⊗ I2 ⊗ I3 ⊗ O1 ⊗ O2 ⊗ O3 ⊗
O0) represents a general superchannel that transforms k = 3
channels into another one if and only if it respects

C � 0,

I1O1I2O2O0C = I1O1I2O2O3O0C,

I2O2I3O3O0C = O1I2O2I3O3O0C,

I1O1I3O3O0C = I1O1O2I3O3O0C,

I1O1O0C + I1O1O2O3O0C = I1O1O2O0C + I1O1O3O0C,

I2O2O0C + O1I2O2O3O0C = O1I2O2O0C + I2O2O3O0C,

I3O3O0C + O1O2I3O3O0C = O1I3O3O0C + O2I3O3O0C,

O0C + O1O2O3O0C = O1O0C + O2O0C + O3O0C

+O1O2O0C + O1O3O0C + O2O3O0C,

IOO0C = I0IOO0C,

Tr(C) = dI0 dO1 dO2 dO3 . (14)

Similarly to the single use case, probabilistic heralded
protocols are also represented by superinstruments. Superin-
struments also admit a simple representation in terms of their

induced Choi operators. A set of parallel, adaptive, and gen-
eral superinstruments transforming k channels into another
is given by a set of positive semidefinite operators Ci � 0
where C := ∑

i Ci is a valid parallel, adaptive, and general
superchannel, respectively. The probability of obtaining the

outcome i when performing the superinstrument {˜̃Ci} on k
input channels represented by �̃ := ⊗k

j=1 �̃ j and the input-

state ρ is given by Tr([˜̃Ci(�̃)](ρ)).

III. OPTIMAL UNIVERSAL QUANTUM
CIRCUITS VIA SDP

In this section we construct a systematic method to de-
sign probabilistic heralded quantum circuits for transforming
multiple uses of the same unitary operations. Let Ud : L(Cd )
be a d-dimensional unitary operator and Ũd be a linear map
representing the operation associated with Ud , that is, when
the operation Ũd is applied into a quantum state ρ ∈ L(Cd )
the output is given by Ũd (ρ) = UdρU †

d . We consider linear
supermaps given by f : Ũd 
→ f (Ũd ) mapping unitary opera-
tions into unitary operations. Our goal is to transform k uses of
an arbitrary Ũd into f (Ũd ) with the highest heralded constant
probability p.

From the results of the previous section, this transforma-
tion can be implemented via quantum circuits when there ex-
ists a superinstrument element, i.e., a CCPP linear supermap,˜̃S such that ˜̃S(Ũ ⊗k

d ) = p f (Ũd ) for every unitary operation Ũd

(see Sec. II).We stress that, even though we have presented an
explicit characterization of superinstruments in Sec. II, finding
the optimal success probability for this transformation and its
associated quantum circuit is, in general, a nontrivial task.
First, note that action of the supermap f is only described for
unitary channels7 but the action of a superinstrument element˜̃S must be defined for any CP linear map. The supermap ˜̃S can
then be any CCPP linear supermap that extends the action of f
from unitary operations to general CP maps (see Refs. [42,43]
for a related lower-order version problem which consists of
finding CP extensions of linear maps defined on subspaces).
Second, since k uses of the input operation are available, it
may be the case that even if f does not have a linear CCPP
extension for some number of uses k0 but it has for k > k0 (see
Refs. [15,44] for a lower-order analog of this problem where
multiple copies of the input state can be used to implement a
linear positive non-CP map).

Before presenting our general approach we illustrate the
subtleties of this extension problem by discussing the uni-
versal channel complex conjugation studied in Ref. [25].
Let �̃ : Hin → Hout be a quantum channel with the Kraus
decomposition given by �̃(ρ) = ∑

i KiρK†
i , we define the

complex conjugate of �̃ as the map which respects �̃∗(ρ) =∑
i K∗

i ρK∗†

i for every ρ where the complex conjugation of Ki

is made in a fixed orthonormal basis, e.g., the computational
basis. One can show that, for any linear spaces Hin and Hout

with dimension greater than or equal to two, CCPP supermaps

7Since we have imposed that f is linear, f is also implicitly defined
for linear combination of unitary operations.
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respecting �̃⊗k 
→ p�̃∗ for all channels �̃ necessarily have
p = 0 for any number of uses k ∈ N [45]. Hence, it is not
possible to design a universal quantum circuit for probabilistic
channel adjoint. However, if one relaxes the requirements of
general channels and seeks for a quantum circuit that trans-
forms only unitary operations into their adjoints, universal
complex conjugation can be implemented deterministically
in a parallel circuit with makes k = d − 1 uses of the input
channel presented in Ref. [25]. In Sec. V we prove that k =
d − 1 uses are not only sufficient but also necessary. We then
see that the notion of CCPP extension and the number of uses
play a crucial role in finding superinstruments that implement
some desired transformation given by f .

We now present our SDP approach. Let {̃S̃, ˜̃F } be a su-

perinstrument where the outcome of the element ˜̃S indicates

success and the outcome of ˜̃F indicates failure. The problem
of maximizing the success probability of transforming k uses
of an arbitrary d-dimensional unitary input-operation Ũd into
f (Ũd ) can be phrased as

max p

s.t. ˜̃S(
Ũd

⊗k) = p f (Ũd ) ∀Ud ;

{̃S̃, ˜̃F } is a valid superinstrument,

(15)

where the valid superinstrument representing parallel, adap-
tive, or general protocols. Using the characterization pre-
sented in Sec. II, we can rewrite the above maximization
problem only in terms of linear and positive semidefinite
constraints as

max p

s.t. TrIO
(
S
[
II0 ⊗ C

(
Ũ ⊗k

d

)T

IO ⊗ IO0

]) = pC[ f (Ũd )] ∀Ud ,

S, F ∈ L(I0 ⊗ I ⊗ O ⊗ O0), S � 0, F � 0,

S + F is a valid superchannel.
(16)

Note that the maximization problem presented in Eq. (16)
must hold for all unitary operators Ud and has infinitely many
constraints. This issue can be bypassed by noting that due to
linearity, it is enough to check these constraints only for a
set that spans the set spanned by Choi operators of unitary

operations. That is, if we can write C(Ũ ⊗k
d ) = ∑

i αi C(Ũ ⊗k
d,i )

and it is true that

TrIO
(
S
[
II0 ⊗ C

(
Ũ ⊗k

d,i

)T

IO ⊗ IO0

]) = pC[ f (Ũd,i)] ∀i, (17)

we have that

TrIO
(
S
[
II0 ⊗ C

(
Ũ ⊗k

d

)T

IO ⊗ IO0

])
=

∑
i

TrIO
(
S
[
II0 ⊗ αiC

(
Ũ ⊗k

d,i

)T

IO ⊗ IO0

])

= p
∑

i

αiC[ f (Ũd,i )]

= pC[ f (Ũd )]. (18)

Also, one can always find a finite set, in particular, a basis, of
unitary operations {Ũd,i} that spans the set spanned by Choi

operators of d-dimensional unitary operations, i.e.,

span
(
C
(
Ũ ⊗k

d

)∣∣Ud is unitary
) = span

(
C
(
Ũ ⊗k

d,i

)∣∣Ud,i ∈ {Ud,i}
)
.

(19)

Explicitly obtaining a basis for the subspace

span(C(Ũ ⊗k
d ) | Ud is unitary) is, in general, not

straightforward. For numerical purposes, this problem can be
tackled by sampling a large number of unitaries Ud uniformly
randomly (according to the Haar measure). If the dimension
of this subspace is D, D unitaries sampled uniformly will be
linearly independent with unit probability. Since checking
linear independence can be done in an efficient way, we can
construct a basis for this set by sampling unitaries randomly
until we cannot find more linearly independent ones.

Also note that the dimension D of the subspace

span(C(Ũ ⊗k
d ) | Ud is unitary) may grow very fast with k and

d , this will increase the number of constraints in the SDP
we have presented. Since having a large number of con-
straints may make the SDP intractable for practical pur-
poses [it may take a very long time to run the code or
to consume a very large amount of random-access memory
(RAM)], it is worth noticing that if one runs the SDP (16)
with a set of operators {Ud,i} that do not form a basis for

span(C(Ũ ⊗k
d ) | Ud is unitary), the solution p of the SDP is

not the maximal success probability but an upper bound on
the maximal success probability (it is the same SDP with
fewer constraints). We also point out that since the methods
to solve an SDP also provide the instrument element S that
attains the maximal success probability p, even if the set

{Ud,i} does not form a basis for span(C(Ũ ⊗k
d ) | Ud is unitary),

it may still be the case that the solution obtained is also
the global optimal value.8 In order to check this hypoth-
esis we can extract the superinstrument element S of the
SDP in which the operators {Ud,i} that do not form a basis

for span(C(Ũ ⊗k
d ) | Ud is unitary). Then, we generate a basis

{U ′
d, j} for span(C(Ũ ⊗k

d ) | Ud is unitary) and verify that

TrIO
(
S
[
II0 ⊗ C

(
Ũ ′⊗k

d, j

)T

IO ⊗ IO0

]) = pC[ f (Ũ ′
d, j )] (20)

for every9 j.
We have implemented our code using MATLAB [46] with

the interpreter CVX [47] and tested with the solvers MOSEK,
SeDuMi, and SDPT3 [48–50]. In Table I we apply this method

8We thank Alastair Abbott for pointing out this fact to us.
9When d = 3, k = 2, we have applied this technique to tackle the

unitary transposition and inversion problem. In this case, we have run
our numerical SDPs only for a subset of the space of unitary channels
generated by span(C(Ũ ⊗2

3 ) | U3 is unitary). Numerically, we can see

that the linear space spanned by (C(Ũ ⊗2
3 ) | U3 is unitary) has 994

linearly independent unitary channels but we have only considered
a random subset containing 200 linear independent elements of the
form C(Ũ ⊗2

3 ) in our calculations. After obtaining an upper bound
to the problem, we have verified that the superinstrument element
S transforms the full basis with 994 linearly independent unitary
channels into their inverses, ensuring that the previous upper bound
is tight.
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TABLE I. Table with optimal success probability we have ob-
tained for heralded protocols transforming k uses of Ũd into a single
use of its transpose Ũ T

d . The values in bold were proved analytically
and the rest were obtained via numerical SDP optimization.

d = 2 Parallel Adaptive Indefinite causal order

k = 1 1
4 = 0.25 1

4 = 0.25 1
4 = 0.25

k = 2 2
5 = 0.4 0.4286 ≈ 3

7 0.4444 ≈ 4
9

k = 3 1
2 = 0.5 0.7500 ≈ 3

4 0.9416

d = 3 Parallel Adaptive Indefinite causal order

k = 1 1
9 ≈ 0.1111 1

9 ≈ 0.1111 1
9 ≈ 0.1111

k = 2 2
10 = 0.2 0.2222 ≈ 2

9 0.2500 ≈ 2
8

to obtain the maximal success probability to transform k uses
of a d-dimensional unitary operation, i.e., f (Ũd ) = Ũ T

d under
different constraints. In Sec. VII C we reproduce Table I of
Ref. [29] which contains results for the maximal probability

for unitary inversion, i.e., f (Ũd ) = Ũ −1
d . All our code are

available at Ref. [51] and can be freely used, edited, and
distributed under the MIT license [52] and make extensive use
of the toolbox QETLAB [53].

IV. DELAYED INPUT-STATE PROTOCOLS

In this section we define a particular subclass of quantum
circuits in which we refer to delayed input-state protocols.
This class consists of circuits where the input state is pro-
vided after the input operation which will be transformed
(see Fig. 4). The concept of delayed input state generalizes
the class of supermaps considered in the context of unitary
learning and unitary store-and-retrieve problems [9,21–24].
As we will show next, parallel quantum circuits used for
unitary transposition and unitary inversion can be assumed to
be in the delayed input-state form without loss of generality

FIG. 4. Comparison between a standard quantum circuit (upper
circuit) and a delayed input-state protocol (lower circuit) that trans-
forms general operations. In a delayed input-state protocol, the input
state labeled by the space 1 is not used by the encoder operation
Ẽ . The encoder only prepares a (potentially entangled) state which
partially goes to the input-channel �̃in, and then to the decoder
channel D̃, which can perform a joint operation between the input
state and the auxiliary system.

and the definition of delayed input-state protocols is useful to
prove various theorems presented in this paper.

Consider a scenario where Alice has k uses of a general
unitary operation Ũd until some time t1. In a later time t2,
where Ũd cannot be accessed anymore, she would like to
implement f (Ũd ) on some arbitrary quantum state chosen
at time t2. This scenario can be seen as a particular case of
the general unitary transformation problem where the input
state is only provided after the operation Ũd . Let us start
with the k = 1 case where only a single use of the general
input-operation �̃in is allowed (see Fig. 4).

In this single use case, every superchannel admits a real-
ization in terms of a quantum circuit with an encoder and

a decoder [4]. Let ˜̃C be a superchannel transforming an

input-operation �̃in : L(H2) → L(H3) into ˜̃C(�̃in) = �̃out :
L(H1) → L(H4) and ρin ∈ L(H1) be the input state on which
she would like to apply �̃out. A protocol to implement the

superchannel ˜̃C can be realized as follows:
(1) Alice performs an encoder channel Ẽ : L(H1) →

L(H2 ⊗ HA) on the input-state ρin ∈ L(H1).
(2) The input-operation �̃in : L(H2) → L(H3) is per-

formed on a part of the state Ẽ (ρin) ∈ L(H2 ⊗ HA).
(3) The decoder D̃ : L(H3 ⊗ HA) → L(H4) is applied to

the state [�̃in ⊗ ĨA](Ẽ (ρin)) to obtain the final output state

[˜̃C(�̃in)](ρin) = �̃out(ρin). (21)

In a delayed input-state protocol, the encoder channel Ẽ
does not have access to the input-state ρin, since this state
is only provided after the use of the operation �̃in. Instead
of having an encoder channel, Alice must then prepare a
fixed state φE ∈ L(H2 ⊗ HA) that is independent of ρin. More

precisely, a superchannel ˜̃CD represents a k = 1 delayed input-
state protocol if it can be realized by the following protocol:

(1) Alice prepares a state φE ∈ L(H2 ⊗ HA).
(2) The input-operation �̃in : L(H2) → L(H3) is per-

formed on a part of the state φE ∈ L(H2 ⊗ HA) prepared by
Alice.

(3) The decoder D̃D : L(H1 ⊗ H3 ⊗ HA) → L(H4) is ap-
plied to the state ρin ⊗ [(�̃in ⊗ ĨA)(φE )] to obtain the final
output-state

[˜̃CD(�̃in)](ρin) = �̃out(ρin). (22)

We now consider parallel delayed input-state protocols
with k > 1 uses of the input-channel �̃in. By definition, a par-

allel superchannel ˜̃C : [L(I ) → L(O)] → [L(I0) → L(O0)]
that transforms k identical input operations into another can
be represented by an encoder channel Ẽ : L(I0) → L(I ⊗ A)
and a decoder channel D̃ : L(O ⊗ A) → L(O0) such that

˜̃C(�̃⊗k ) = D̃ ◦ [�̃⊗k ⊗ Ĩ⊗k] ◦ Ẽ . (23)

That is, in order to perform the output operation �̃out =˜̃C(�̃⊗k ) on an arbitrary input-state ρin ∈ L(I0), we first per-
form the encoder operation on ρin, then the k uses of �̃ on a
part of the output of the encoder, and then the decoder D̃:

[˜̃C(�̃⊗k )](ρin) = D̃
{[

�̃⊗k ⊗ ĨA
]
(Ẽ (ρin))

}
. (24)
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In a delayed input-state protocol the encoder cannot not
make use of the input-state ρin. Instead of an encoder channel
Ẽ we now consider some fixed (potentially entangled) quan-
tum state φE ∈ L(I ⊗ A). On a delayed input-state protocol,
the decoder D̃D : L(I0 ⊗ O ⊗ A) → L(O0) acts directly on

input-state ρin. We then say that a parallel superchannel ˜̃CD

represents a delayed input-state parallel protocol if can be
written as

[˜̃CD(�̃⊗k )](ρin) = D̃D
{[(

�̃⊗k ⊗ ĨA
)
(φE )

] ⊗ ρin
}
, (25)

for some decoder channel D̃D : L(I0 ⊗ O ⊗ A) → L(O0)
and some state φE ∈ L(I ⊗ A). If we define a ψ

�̃⊗k :=
[�̃⊗k ⊗ ĨA](φE ), we can rewrite Eq. (25) as

[˜̃CD(�̃⊗k )](ρin) = D̃(ψ
�̃⊗k ⊗ ρ). (26)

Parallel delayed input-state superchannels ˜̃CD also have a
simple characterization in terms of its Choi operator CD ∈
L(I0 ⊗ I ⊗ O ⊗ O0). Since the encoder acts trivially on the
space L(Io), it follows from the same tools used to character-
ize standard ordered circuits [3] that CD represents a parallel
delayed input-state protocol if and only

CD � 0,

TrO0CD = II0

dI0

⊗ TrI0OO0CD ⊗ IO
dO

,

Tr(CD) = dI0 dO.

(27)

Or equivalently, CD respects the standard parallel supermap
restrictions of Eq. (10) and also

TrOO0CD = TrI0OO0CD ⊗ II0

dI0

. (28)

The formal definition and a simple Choi characterization
of adaptive delayed input-state protocols follow straightfor-
wardly from the discussions of the parallel case presented
here.10 The case of superchannels with indefinite causal order
is more subtle. Since they have no encoder and decoder
ordered quantum circuit implementation their physical inter-
pretation is not evident. We let the precise definition and the
characterization of noncausally ordered delayed input-state
protocols for future research.

Probabilistic heralded parallel (adaptive) delayed input-
state protocols are given by superinstruments whose elements
add to a superchannel representing a parallel (adaptive) de-
layed input-state protocol. It follows from the circuit realiza-
tion of quantum instruments [38] that every parallel (adaptive)
delayed input-state protocol can be realized by an encoder
(k − 1 encoders) where the input state is not required and a
decoder, which makes use of the input state, followed by a
projective measurement.

10For adaptive protocols where the input-operation �̃in can be
used k times one can also define the notion of k-delayed input-state
protocol, where the input state is provided after the kth use of
the input-operation �̃in. The characterization of such protocols also
follows from the discussion presented in this section and the methods
presented in Sec. II.

We will now show that any probabilistic supermap can be
implemented via a parallel probabilistic delayed input-state
protocol with a smaller, but nonzero success probability. That

is, if a supermap ˜̃S represents a superinstrument element
of some higher order transformation, there exists a delayed
input-state parallel superinstrument which, when successful,

implements the action of ˜̃S in a probabilistic heralded way.

This theorem holds true even if the supermap ˜̃S corresponds
to an indefinite causal order protocol. Intuitively, one can
understand this theorem in terms of state teleportation and
probabilistic heralded gate teleportation (see Sec. VI A for a
review of gate teleportation). In order to “parallelize” any su-
perinstrument one can use the gate teleportation to rearrange
the position of all input operations in parallel. Also, one can
always delay the use of the input state by exploiting the state
teleportation protocol [54]. Although the teleportation and
gate teleportation protocol may fail, the success probability
is strictly positive for any fixed dimension, ensuring that the
success probability of the parallel circuit is nonzero.

Lemma 1. Let ˜̃S : [L(
⊗k

i=1 Ii ) → L(
⊗k

o=1 Oo)] →
[L(I0) → L(O0)] be a supermap representing a general
(possibly with indefinite causal order) probabilistic protocol
that makes k uses of a unitary operation Ũd and transforms
to some other unitary operation f (Ũd ) with probability

pU , i.e., ˜̃S(Ũd
⊗k

) = pU f (Ũd ). There exists a parallel
delayed input-state protocol implementing the supermap˜̃S with a probability greater than or equal to pU

dtotal
, where

dtotal is the product of all linear space dimensions, i.e.,
dtotal = ∏k

i=0 dIi

∏k
i=0 dOi .

Proof. By assumption, ˜̃S(Ũ ⊗k
d ) = pU f (Ũd ) for all Ud with

probability pU . Since ˜̃S must be a superinstrument element,
the corresponding Choi operator S is positive and respects
Tr(S) � dOdI0 , hence 0 � 1

dtotal
S � 1

dIdO0
I , where I ∈ L(I0 ⊗

I ⊗ O ⊗ O0) is the identity operator. Note that the Choi op-
erator CP := 1

dIdO0
I represents a valid parallel delayed input-

state superchannel, i.e., it satisfies the parallel delayed input-
state superchannel conditions of Eq. (27). We thus define the
new superinstrument via the Choi of its elements as SP :=

1
dtotal

S and FP := 1
dIdO0

I − 1
dtotal

S. It follows that FP � 0 and

SP + FP = CP = 1
dIdO0

I is a valid parallel delayed input-state

superchannel, hence the operators SP and FP form a valid
delayed-input state parallel superinstrument. By linearity, we

can verify that ˜̃SP(Ũ ⊗k
d ) = 1

dtotal

˜̃S(Ũ ⊗k
d ) = pU

dtotal
f (Ũd ), ensuring

that when the output associated with SP is obtained, the
probabilistic parallel delayed input-state protocol represented
by the superinstrument elements SP and FP performs the

transformation of the supermap ˜̃S with probability pU

dtotal
. �

V. UNIVERSAL UNITARY COMPLEX CONJUGATION

In this section we consider the problem of transform-
ing k uses of an arbitrary d-dimensional unitary Ũd into
its complex conjugate Ũ ∗

d for some fixed basis. We prove
that when k < d − 1 uses are accessible, any exact unitary
complex conjugation quantum protocol, including protocols
with indefinite causal order, necessarily have zero success
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probability. In Ref. [25] the authors present a deterministic
parallel quantum circuit that transforms k = d − 1 uses of a
d-dimensional unitary operation Ũd into its complex conju-
gate11 Ũ ∗

d . Hence, when combined with Ref. [25], our result
reveals a characteristic threshold property for exact unitary
complex conjugation: if k < d − 1, universal exact unitary
complex conjugation is impossible (zero success probability),
if k = d − 1 exact unitary complex conjugation is possible
with probability one with a parallel circuit implementation.

Theorem 1 (Unitary complex conjugation: no-go). Any
universal probabilistic heralded quantum protocol (including
protocols without definite causal order) transforming
k < d − 1 uses of a d-dimensional unitary operation Ũd

into its complex conjugate Ũ ∗
d with probability p that does

not depend on Ũd necessarily has p = 0, i.e., null success
probability.

Proof. From Lemma 1 we see that if there exists a su-
perinstrument that transforms k uses of Ũd into its complex
conjugate Ũ ∗

d with some possibly smaller but still positive

probability, there also exists a parallel superinstrument ˜̃S that
transforms k uses of Ũd into its complex conjugate Ũ ∗

d with

some positive probability p, i.e., ˜̃S(Ũ ⊗k
d ) = pŨ ∗

d . From the
realization theorem of the superinstruments (see Eq. (9) and
Ref. [9]), there exist an isometry Ẽ : L(I0) → L(I ) ⊗ L(A)
and an instrument element corresponding to success D̃S :
L(I ⊗ A) → L(O0) such that

˜̃S(Ũ ⊗k
d ) = D̃S ◦ [

Ũ ⊗k
d ⊗ ĨA

] ◦ Ẽ . (29)

Let ρIA be the Naimark dilation, the instrument element D̃S is
given by

D̃S (ρIA) = TrA(DρIAD†) (30)

for some operator D ∈ L(I ⊗ A). Set {|a〉} as a basis for the
auxiliary system A. The previous equation becomes

D̃S (ρIA) =
∑

a

〈a|DρIAD†|a〉. (31)

The operators Da := 〈a|D form a possible set of operators
realizing the instrument D̃S .

Since we assume ˜̃S(Ũ ⊗k
d ) = pŨ ′

d , ˜̃S(Ũ ⊗k
d ) must return a

pure state whenever the input state is a pure state. The
instrument element Ẽ is an isometry, hence its output is
always a pure state if the input state is pure. This forces
D̃S to preserve the purity of pure input states, which in turn
implies that 〈a|DρIAD†|a〉 must be the same for all a up to
a proportionality constant. Let D̃a denote the map given by
D̃a(ρIA) := DaρIAD†

a = 〈a|DρIAD†|a〉. The above argument

shows that D̃a ◦ [Ũ ⊗k
d ⊗ ĨA] ◦ Ẽ is also a valid universal con-

jugation supermap.
Without loss of generality we assume that k = d − 2, since

we may always opt to not use any of the input operations for
the remaining cases of k < d − 2. The imaginary unit

√−1
throughout this section will be denoted by the Italic font j.

11Reference [45] also proves that when d > 2, k > 1 uses of the
input-unitary operation Ũd are required for any non-null probabilistic
heralded implementation.

By hypothesis, every pure state |ψ〉 ∈ I0
∼= Cd and unitary

operator Ud ∈ L(C) must respect

Da
[
U ⊗d−2

d ⊗ I
]
E |ψ〉 = e jφψ,Ud

√
pU ∗

d |ψ〉, (32)

where φψ,Ud is a global phase that may depend on |ψ〉 and Ud .
We see, however, that φψ,Ud must be independent of the input
state. Set {|i〉}d−1

i=0 as the computational basis for Cd and the
phase φi,Ud for when the input-state |ψ〉 is equal to |i〉. Take a
maximally entangled state |φ+

d 〉 := 1√
d

∑d−1
i=0 |i〉|i〉 in I0 ⊗ IR,

where IR is a “copy” of I0, i.e., another d-dimensional quan-

tum system left untouched by ˜̃S. We denote the corresponding
phase by φφ+

d ,Ud
. Let MU := Da[U ⊗d−2

d ⊗ I]E . Then, by lin-
earity of MU and Eq. (32), we conclude that φi,Ud = φφ+

d ,Ud
,

hence no dependence on i. The subscript of φψ,Ud for the input
state shall be omitted as φUd .

We now parametrize the operators E and Da via their action
on this basis as

E |i〉I0 =
∑
�i,i,a

α�i,i,a|i1, . . . , id−2〉I ⊗ |a〉A,

O0〈i|Da =
∑
�i,i,a

β�i,i,a|i1, . . . , id−2〉I ⊗ |a〉A,
(33)

where �i = [i1, . . . , id−2] is a vector such that iλ ∈ {0, . . . , d −
1} for any λ = 1, . . . , d − 2. Hereafter, we restrict to unitary
operators Ud that are diagonal in the computational basis such
that Ud = ∑

i e jθi |i〉〈i| where θi is any real number. For such
diagonal Ud its complex conjugate can be written as U ∗

d =∑
i e− jθi |i〉〈i|. By Eq. (32),

〈i′|Da
[
U ⊗d−2

d ⊗ I
]
E |i′〉 = e jφUd

√
p〈i′|U ∗

d |i′〉. (34)

Substituting the definition (33), we obtain∑
�i,i,a

α�i,i,aβ�i,i,a e j[
∑d−2

λ=1 θiλ ] = e jφUd
√

pe− jθi′ (35)

or, equivalently,∑
�i,i,a

α�i,i,aβ�i,i,a e j[θi′ +
∑d−2

λ=1 θiλ ] = e jφUd
√

p, (36)

for all i, i′ ∈ {0, . . . , d − 1} and the diagonal Ud . Note that
each Ud corresponds to some choice of real numbers �θλ =
[θ0, θ1, . . . , θd−1] and vice versa. Moreover, the left-hand side
of Eq. (36) depends on i′, but the right-hand side does not.

In combinatorics, a weak composition of an integer n is a
sequence of non-negative integers that sum to n. The weak
compositions that appear in this proof are that of d − 1 with
d elements. The set of all such weak compositions will be
denoted by � and its elements (i.e., the individual weak
decomposition) by �γ = [γ0, . . . , γd−1], where the subscripts
denote the elements of �γ .

In Eq. (36) the summation on i ranges between 0 and d − 1
and �i over all possible combinations of �i = [i1, . . . , id−2]
where each in ranges between 0 and d − 1. Let νl denote the
number of times an integer l between 0 and d − 1 appears
in �i and i. Recall that �i consists of d − 2 variables, thus �i
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and i in total are d − 1 variables. We see that
∑d−1

l=0 νl =
d − 1. Clearly the sequence [ν0, . . . , νd−1] belongs to �. With
slight abuse of notation, let us set [�i, i] = [i1, . . . , id−2, i].
Each [�i, i] corresponds to �γ ∈ �. Each [�i, i] with a given
�γ can be differentiated by an additional parameter, say κ .
More specifically, let K (�γ ) denote the set of all sequences
[�i, i] with the weak decomposition �γ . This extra parameter
κ is then a natural number that enumerates the sequences in
K (�γ ) (e.g., via lexicographic ordering). Thus the summation∑

�i,i,a in Eq. (36) can be relabeled as
∑

�γ ,κ,a. Introducing
α′

�γ := ∑
κ,a α�γ ,κ,aβ�γ ,κ,a, we have∑

�γ
α′

�γ e j[
∑d−1

l=0 γl θl ] = e jφUd
√

p. (37)

Observe that for different �γ , the functions e j[
∑d−1

l=0 γl θl ] are
linearly independent since θiλ may take any value in the set
of the real numbers. Each �γ contains d elements and must
sum up to d − 1. One of the elements, say γl ′ , must be zero
because the elements are non-negative. Set i′ = l ′ in Eq. (35)
and use Eq. (37) to replace e jφUd

√
p on the left-hand side of

Eq. (35). Then all the terms that appear on the right-hand side
contain an exponent with a non zero coefficient in front of
θl ′ , while the coefficients of θl ′ are zero on the left-hand side.
This equation can only be satisfied by setting α′

�γ = 0, because
exp( jkθ ) and exp( jk′θ ) are linearly independent functions of
θ , for any pair of distinct integers k and k′. Thus, p = 0. �

VI. UNIVERSAL UNITARY TRANSPOSITION

This section addresses the problem of universal unitary
transposition. We consider probabilistic heralded exact uni-
versal quantum protocols transforming k uses of a general
d-dimensional unitary operation Ũd into its transpose Ũd in
terms of a fixed basis. When only parallel protocols are
considered, we show that the maximal success probability
is exactly ps = 1 − d2−1

k+d2−1 . Also, by exploiting ideas of the
port-based teleportation [55], one can design a delayed input-
state parallel circuit that attains this maximal probability.
When adaptive quantum circuits are considered, we present
an explicit protocol that attains a success probability of ps =
1 − (1 − 1

d2 )
� k

d �
, which, for any constant dimension d , has an

exponential improvement over any parallel protocol. We then
analyze quantum protocols with indefinite causal order via the
SDP approach presented in Sec. III and show that indefinite
causal order protocols do have an advantage over causally
ordered ones.

A. Gate teleportation and single-use unitary transposition

Quantum teleportation is a universal protocol that can be
used to send an arbitrary d-dimensional quantum state via
classical communication assisted by quantum entanglement.
We are going to describe the protocol for pure states, as
the extension to general mixed states follows from linearity.
Suppose Alice holds the qudit state |ψ〉 ∈ Cd and shares
with Bob a d-dimensional maximally entangled state |φ+

d 〉 :=∑d−1
i=0

1√
d
|ii〉. In order to “teleport” her state to Bob, Alice

performs a general Bell measurement on |ψ〉 and her share

FIG. 5. Illustration of gate teleportation (upper circuit) and uni-
tary transposition protocol (lower circuit).

of the entangled state and then sends the outcome of her
measurement to Bob. The generalized Bell measurements
have POVM elements given by

M := {[(
X i

d Z j
d

)† ⊗ Id
]|φ+

d 〉〈φ+
d |[(Xd

iZd
j
) ⊗ Id

]}i, j=d−1
i, j=0 ,

(38)

where

X i
d :=

d−1∑
l=0

|l ⊕ i〉〈l|,

Z j
d :=

d−1∑
l=0

ω jl |l〉〈l|,
(39)

ω := e
2π

√−1
d , and l ⊕ i denotes l + i modulo d . The operators

X i
d and Z j

d are known as the shift and clock operators, re-
spectively, and can be seen as a generalization of the qubit
Pauli operators. Straightforward calculation shows that, after
Alice’s measurement, the state held by Bob is given by
X i

d Z j
d |ψ〉.

After the measurement process is complete, Alice sends the
measurement outcomes i and j of her joint measurement to
Bob. Bob can then apply the unitary operation (Zd

j )−1(Xd
i )−1

on his state to recover the state |ψ〉. Remark that, with
probability p = 1

d2 Alice obtains the outcomes i = j = 0 and
Bob does not need to perform any correction.

The standard teleportation protocol can be adapted to
teleport the use of a unitary operation in a process known as
gate teleportation [56]. The idea here is that if Bob performs
a unitary operation Ud on his half of the maximally entangled
state before Alice performs the joint Bell measurement, the
final state is given by Ud X i

d Z j
d |ψ〉, see Fig. 5. In this protocol,

the operation Ud performed by Bob acts on the state |ψ〉 held
by Alice when the outcomes are i = j = 0, which happens
with probability p = 1

d2 . Gate teleportation can be represented
as a quantum circuit (see Fig. 5) and has applications in fault
tolerant quantum computation [56].
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Our method to transform a single use of a general d-
dimensional unitary operation Ũd into its transpose12Ũ T

d
is based on the circuit interpretation of gate teleporta-
tion. The maximally entangled state respects the property
I ⊗ A|φ+

d 〉 = AT ⊗ I|φ+
d 〉 for any linear operator A ∈ L(Cd ).

If Alice performs a general unitary Ud on her half of the
maximally entangled state, the state held by Bob after the
protocol is U T

d X i
d Z j

d |ψ〉. With probability p = 1
d2 , the outcome

i = j = 0 is obtained and U T
d X i

d Z j
d |ψ〉 is equal to U T

d |ψ〉, see
Fig. 5.

B. Port-based teleportation and parallel unitary transposition

Port-based teleportation [55] has the same main goal as the
standard state teleportation protocol. Alice wants to “teleport”
an arbitrary d-dimensional state |ψ〉 to Bob with classical
communication assisted by shared entanglement. The original
motivation of port-based teleportation is to perform a tele-
portation protocol that does not require a correction made
via Pauli operators, but it can be made simply by selecting
some particular “port.” For that, it allows a more general initial
resource state and more general joint measurements. The three
main differences of port-based teleportation when compared
to the standard teleportation protocol presented in the previous
section can be summarized by:

(1) In port-based teleportation, instead of sharing a d-
dimensional maximally entangled state, Alice and Bob
may share a general dk-dimensional entangled state |φ〉 ∈
(Cd ⊗ Cd )

⊗k
. This general entangled state |φ〉 can be seen

as k pairs of qudits, referred to as ports.
(2) Instead of performing a generalized Bell measurement,

Alice can perform a general joint measurement on |ψ〉 and her
half of the k entangled states shared with Bob.

(3) Instead of performing the Pauli correction, Bob
chooses a particular port based on Alice’s message and dis-
cards the rest of the ports of his system.

We note that since no Pauli correction is made, port-based
teleportation can only perform the teleportation task approxi-
mately or probabilistically. In this paper we only consider the
probabilistic exact port-based teleportation where Alice per-
forms a k + 1 outcome measurement, where k outcomes are
associated with the k ports she shares with Bob and another
outcome corresponding to failure. If Alice obtains the out-
come of failure, she sends the failure flag to Bob and the pro-
tocol is aborted. If she obtains an outcome corresponding to
some port l , she communicates this corresponding outcome to
Bob and the state |ψ〉 is teleported to Bob’s port labeled by l .

The optimal probabilistic single port (k = 1) case is essen-
tially the standard state teleportation. Consider the case where
Alice and Bob share the d-dimensional maximally entangled
state |φ+

d 〉. If we set the measurement performed by Alice
as M1 = |φd〉〈φd | and Mfail = I − |φd〉〈φd |, with probability
p = 1

d2 , the state |ψ〉 is obtained in the single port 1, and with
probability pF = 1 − 1

d2 the protocol fails.

12The transposition is taken in the computational basis {|i〉}d−1
i=0 in

which the maximally entangled state |φ+
d 〉 = ∑

i
1√
d
|ii〉 is defined.

Reference [57] shows that the optimal probabilistic port-
based gate teleportation protocol for any dimension d and
number of states k with success probability p = 1 − d2−1

k+d2−1 .
Reference [57] also characterizes the optimal dk-dimensional
shared entangled state and the optimal joint measurement Al-
ice must perform. The optimal state resource state is described
by exploiting the Schur-Weyl duality

Cd ⊗k ∼=
⊕

μ∈irrep(U ⊗k )

Cdim(μ)
μ ⊗ Cmμ, (40)

where irrep(U ⊗k ) is the set of all irreducible representations
μ of the group of special unitary SU(Ud ) contained in the
decomposition U ⊗k and mμ is the multiplicity of the repre-
sentation μ. The optimal resource state used for port-based
teleportation can be written as

|φPBT〉 :=
⊕

μ∈irrep(U ⊗k )

√
pμ|φ+(μ)〉 ⊗ |ψmμ

〉, (41)

where

|φ+(μ)〉 := 1√
dim(μ)

∑
i

|iμiμ〉 ∈ Cdim(μ)
μ ⊗ Cdim(μ)

μ (42)

is the maximally entangled state on the linear space of the
irreducible representation μ, {pμ} is a probability distribution,
and |ψmμ

〉 ∈ Cm(μ) ⊗ Cm(μ) is a pure quantum state.
In Sec. VI A we have exploited the standard state gate tele-

portation to construct a protocol that can be used to transform
a general unitary Ud into its transpose U T

d . We now exploit
port-based gate teleportation to construct a parallel protocol
that transforms k uses of Ud to obtain its transpose.

The first important observation is that the state |φPBT〉
[Eq. (41)] respects

U ⊗k
d ⊗ I|φPBT〉 = I ⊗ U T ⊗k

d |φPBT〉. (43)

This identity holds true because every tensor product of k
unitaries Ud can be decomposed as13

U ⊗k
d

∼=
⊕

μ∈irrep(U ⊗k )

U (μ) ⊗ Imμ
(44)

for some unitaries U (μ) acting on the irreducible represen-
tation space Cdim( j)

j [57]. Hence, similarly to the case of
the single use unitary transposition, we can adapt port-based
gate teleportation to obtain a general protocol to transform
k uses of a general unitary operation Ũd into its transpose
Ũ T

d . It is enough to perform the operation Ũd on each of her
half of entangled qudit states (see Fig. 6). We will show in
Sec. VI D that this protocol is also optimal in terms of success
probability.

C. Review on probabilistic exact unitary learning

We make a brief summary of a problem known as unitary
learning (also known as storage and retrieval of unitary oper-
ations) [9,21–24]. As we will show in Sec. VI D, the problem

13Here the symbol ∼= is used to emphasize that Eq. (44) is true up
to an isometry.
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FIG. 6. Illustration of the modified port-based teleportation pro-
tocol that makes k = 2 uses of an arbitrary d-dimensional unitary
operation Ũd where the state |ψPBT〉 is described in Eq. (41) and the
decoder D̃ simply selects a particular port accordingly to the outcome
of the joint measurement M. The upper circuit exploits port-based
gate teleportation to store k = 2 uses of a input-operation Ũd and
returns a single use of it with probability p. The lower circuit exploits
port-based gate teleportation to transform k uses of Ũd into a single
use of its transpose Ũ T

d . The upper and lower circuits are successful

with probability p = 1 − d2−1
k+d2−1

.

of probabilistic unitary learning is closely connected to the
problem of parallel unitary transposition and results related
to unitary learning will be useful to prove the optimality of
our parallel unitary transposition protocol. Suppose that, until
some time t1, Alice has access to k uses of some general
d-dimensional unitary operation Ud of which the description
is not provided. In a later moment t2, where Alice cannot
access Ud any more, she wants to implement the action of this
unitary on some general quantum state ρ chosen at time t2. A
parallel strategy14 to succeed in this task is to perform the k
uses of Ud on parts of an entangled quantum state φE before
t1 to obtain a quantum state ψM := [U ⊗k

d ⊗ I]φE [U †⊗k

d ⊗ I].
Alice then saves this state ψM until a later time t2 where
she performs a global decoder operation D̃ on the state
ψM together with the target state ρ, which is desired to

14In principle, one may also consider adaptive protocols to perform
better in the unitary learning problem. In an adaptive protocol, one
can perform different encoder operations in between the use of the
unitary to create more general protocols. One may also consider
protocols where the unitaries Ud are used without a definite causal
order. References [9,24] show that, for the unitary learning problem,
the protocol with highest success probability (exact implementation)
and highest expected fidelity (deterministic implementation) can
always be parallelized.

satisfy15D̃(ψM ⊗ ρ) = UdρU †
d . References [9,21–23] con-

sider deterministic nonexact unitary learning protocols and
analyze strategies that simulate the action of Ũd with the max-
imal average fidelity, while Ref. [24] considers probabilistic
heralded protocols that can be used to retrieve (a single use
of) Ũd exactly but may fail with some probability.

The unitary learning problem described above can be
rephrased as the problem of finding delayed input-state pro-
tocols that transform k uses of a general unitary operation Ũd

into itself. In Sec. VI D we present a one-to-one connection
between probabilistic unitary learning protocols and delayed
input-state parallel protocols transforming k uses of a general
unitary operation Ũd into its transpose Ũ T

d . Essentially, we
show that any probabilistic unitary learning with success
probability p can be translated into a parallel unitary trans-
position protocol with success probability p. This one-to-one
connection is related to the fact that the optimal resource state
used for unitary learning and the optimal resource state used
for parallel delayed input-state unitary transposition can be
both chosen as a state |φ〉 which respects the property

U ⊗k
d ⊗ I|φ〉 = I ⊗ U T ⊗k

d |φ〉, (45)

as shown in the next subsection.

D. Optimal parallel unitary transposition protocols

We show how any parallel protocol that can be used to
transform k copies of a general unitary operation Ũd into
its transpose Ũ T

d can be adapted into a delayed input-state
protocol keeping the same success probability.

Lemma 2. Any parallel probabilistic heralded protocol
transforming k copies of a general unitary Ũd into Ũ T

d with
a constant probability p can be converted to a delayed input-
state parallel protocol with the same probability p.

Proof. Let S be the Choi operator of the superinstrument
element associated with success and F be the Choi operator of
the superinstrument element associated with failure. Superin-
strument element S transforms k copies of Ũd into Ũ T

d with
probability p, i.e.,

TrIO
(
S
[
II0 ⊗ C

(
Ũ ⊗k

d

)T ⊗ IO0

]) = pC
(
Ũ T

d

) ∀Ud , (46)

and S + F is a valid parallel superchannel.
Since S transforms every unitary operator into its trans-

pose, we can make the change of variable Ud 
→ BUd AT

where A and B are arbitrary d-dimensional unitary operators.
With that, unitary transposition can be seen as (BUd AT )⊗k 
→
p(BUd AT )T = pAU T

d BT . Our goal now is to show that if S
respects Eq. (46), any operator S′ respecting

S′ = [
AI0 ⊗ B∗⊗k

I ⊗ A∗⊗k

O ⊗ BO0

]
S

× [
A†
I0

⊗ BT ⊗k

I ⊗ AT ⊗k

O ⊗ B†
O0

]
(47)

15We note that although the main goal is to obtain a decoder channel
D̃ and entangled state φE such that D̃(ψM ⊗ ρ ) = UdρU †

d where

ψM := [U ⊗k
d ⊗ I]φE [U †⊗k

d ⊗ I], the unitary learning task cannot be
realized in a deterministic and exact way for a general unitary Ud .
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satisfies

TrIO
(
S′[II0 ⊗ C

(
Ũ ⊗k

d

)T ⊗ IO0

]) = pC
(
Ũ T

d

) ∀Ud . (48)

To prove this fact, first note that the identity presented in

Eq. (3) implies that C( ˜AU T
d BT ) = [A ⊗ B]C(Ũ T

d )[A† ⊗ B†],
and

C
([

˜BUd AT
]⊗k) = [B⊗k ⊗ A⊗k]C

(
Ũ ⊗k

d

)
[B†⊗k ⊗ A†⊗k

], (49)

which implies

C
([

˜BUd AT
]⊗k)T = [B∗⊗k ⊗ A∗⊗k

]C
(
Ũ ⊗k

d

)T
[BT ⊗k ⊗ AT ⊗k

].
(50)

Substituting Eq. (50) and C( ˜AU T
d BT ) = [A ⊗ B]C(Ũ T

d )
[A† ⊗ B†] in Eq. (46) we obtain

TrIO
(
S
{
II0 ⊗ [B∗⊗k ⊗ A∗⊗k

]C
(
Ũ ⊗k

d

)T
[BT ⊗k ⊗ AT ⊗k

] ⊗ IO0

})
= [

AI0 ⊗ BO0

]
C
(
Ũ T

d

)[
A†
I0

⊗ B†
O0

]
. (51)

If we apply the operator A†
I0

⊗ B†
O0

on the left side and the
operator AI0 ⊗ BO0 on the right side of Eq. (51) and use the
cyclic property of the trace, we find that S can be substituted
by

S′′ : = [
A†
I0

⊗ BT ⊗k

I ⊗ AT ⊗k

O ⊗ B†
O0

]
S

× [
AI0 ⊗ B∗⊗k

I ⊗ A∗⊗k

O ⊗ BO0

]
. (52)

Since A and B are arbitrary unitary operators, we can take the
invertible transformations A† 
→ A and B† 
→ B to obtain the
symmetry of Eq. (47).

The symmetry presented in Eq. (47) motivates the defini-
tion of a Haar measure “twirled” map

τ̃ (S) : =
∫

Haar

[
AI0 ⊗ B∗⊗k

I ⊗ A∗⊗k

O ⊗ BO0

]
S

× [
A†
I0

⊗ BT ⊗k

I ⊗ AT ⊗k

O ⊗ B†
O0

]
dAdB. (53)

We now define a twirled version of the superinstrument as
Sτ := τ̃ (S) and Fτ := τ̃ (F ), which respects the conditions of
valid superinstruments and Sτ also transforms k uses of any
Ũd into Ũ T

d with probability p. We now notice that both Sτ

and Fτ respect

TrOO0 Sτ =
∫

Haar

[
AI0 ⊗ B∗⊗k

I

]
TrOO0 (S)

[
A†
I0

⊗ BT ⊗k

I
]
dAdB

∝ II0 ⊗ TrI0OO0 Sτ (54)

since the identity is the only operator that commutes with
all unitary operations (Schur’s lemma). It follows then that
the superchannel Cτ := Sτ + Fτ respects the conditions of a
parallel delayed input-state protocol.

Lemma 3. For every delayed input-state parallel protocol
transforming k uses of a general unitary operation Ũd into its
transpose Ũ T

d with success probability p that is independent of
Ũd , there exists a probabilistic unitary learning protocol with
a success probability p.

Conversely, for every probabilistic unitary learning pro-
tocol with a success with probability p that is independent
of Ũd , there exists a delayed input-state parallel protocol

transforming k uses of a general unitary operation Ũd into its
transpose Ũ T

d with a constant success probability p.
Proof. We start by showing how one can adapt a parallel

protocol transforming k uses of a general unitary operation
Ũd into its transpose Ũ T

d into a unitary learning one with the
same success probability.

Let S be the Choi operator of the superinstrument element
associated with success and F be the Choi operator of the
superinstrument element associated with failure. Superinstru-
ment element S transforms k copies of Ũd into Ũ T

d with
probability p, i.e.,

TrIO
(
S
[
II0 ⊗ C

(
Ũ ⊗k

d

)T ⊗ IO0

]) = pC
(
Ũ T

d

) ∀Ud , (55)

Lemma 2 states that this protocol can be converted to have a
delayed input state and without lost of generality, the super-
channel C = S + F respects the commutation relation[

C, A∗
I0

⊗ B⊗k
I ⊗ A⊗k

O ⊗ B∗
O0

] = 0 (56)

for every pair of unitary operations A, B ∈ SU (d ).
When a Choi operator C represents a delayed input-state

protocol, the operator CI := TrI0OO0C is proportional to the
reduced state TrA(φE ) of the state φE ∈ L(I ⊗ A) prepared
by Alice before the use of the input operations.16 From the
commutation relation in Eq. (56), we see that CI respects[

CI , B⊗k
I

] = 0. (57)

The Schur-Weyl duality states that k identical d-
dimensional unitaries B can be decomposed as (see Sec. VI B)

B⊗k ∼=
⊕

μ∈irrep(U ⊗k
d )

B(μ) ⊗ Im(μ), (58)

where B(μ) ∈ L(Cdim(μ)
μ ) is a unitary operator, and Im(μ) is

the identity on the multiplicity space Cm(μ). Since the re-
duced state TrA(φE ) respects the relation [TrA(φE ), B⊗k] = 0,
Schur’s lemma ensures that the reduced encoder state has the
form of

TrA(φE ) ∝
⊕

μ

Iμ ⊗ ρmμ
, (59)

where Iμ is the identity on the the linear space Cdim(μ)
μ and ρmμ

is some state on the multiplicity space of μ. Without loss of
generality, we can assume that φE = |φE 〉〈φE | is a pure state
with a reduced state that respects Eq. (59). It follows then that
|φE 〉 can be written as

|φE 〉 :=
⊕

μ∈irrep(U ⊗k )

√
pμ|φ+(μ)〉 ⊗ ∣∣ψmμ

〉
, (60)

where

|φ+(μ)〉 := 1√
dim(μ)

∑
i

|iμiμ〉 ∈ Cdim(μ)
μ ⊗ Cdim(μ)

μ (61)

16See Fig. 4 for a pictorial illustration for the case k = 1. Let φE ∈
L(H2 ⊗ HA) be the state created by the encoder of the delayed input-
state protocol of Fig. 4. In this case, C2 := Tr134C is proportional the
reduced state TrAφE .
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is the maximally entangled state on the linear space of the
irreducible representation μ, {pμ} is a probability distribution,
and |ψmμ

〉 ∈ Cm(μ) ⊗ Cm(μ) are some purifications of ρmμ
.

We now make an important observation. Although the state
|φE 〉 is not the maximally entangled state, it respects

U ⊗k
d ⊗ I|φE 〉 = I ⊗ U T ⊗k

d |φE 〉. (62)

This identity holds true because any tensor product of k
identical unitaries Ud can be decomposed as

U ⊗k
d

∼=
⊕

μ∈irrep(U ⊗k )

U (μ) ⊗ Imμ
(63)

for some unitaries U (μ) acting on the invariant representation
space Cdim( j)

j . Any delayed input-state protocol that can be
used for unitary transposition can be used for unitary learning,
since it is enough to perform the unitaries U ⊗k

d on the “other”
half of the entangled state |φE 〉 on which the joint operation is
not performed.

We now show how to transform probabilistic unitary
learning protocols to heralded unitary transposition protocols.
In Ref. [24], the authors have shown that, without loss of
generality, any probabilistic unitary learning protocol can be
made parallel and, moreover, with the entangled state |φE 〉 ∈
L(I ⊗ A) which respects the property

U ⊗k
d ⊗ I|φE 〉 = I ⊗ U T ⊗k

d |φE 〉. (64)

Hence, if we perform the unitary operations U ⊗k
d into the half

of the entangled state |ψ〉 on which the joint measurement is
performed, the unitary recovered after the learning protocol
will be U T

d instead of Ud .
We are now in position to prove that the protocol based

on port-based gate teleportation presented in Sec. VI B is
optimal.

Theorem 2 (Optimal parallel unitary transposition). The
modified port-based gate teleportation protocol can be used
to transform k uses of an arbitrary d-dimensional unitary
operation Ũd into its transpose Ũ T

d with success probability

p = 1 − d2−1
k+d2−1 in a parallel delayed input-state protocol.

Moreover, this protocol attains the optimal success probability
among all parallel protocols with probability p that does not
depend on Ũd .

Proof. As shown above, the identity U ⊗k ⊗ I|φPBT〉 = I ⊗
U T ⊗k |φPBT〉 ensures that port-based gate teleportation can
be used to construct a delayed input-state parallel protocol
that obtains U T

d with k uses of Ud with probability p = 1 −
d2−1

k+d2−1 .
Lemma 3 shows that any protocol transforming k uses of

Ũd into its transpose Ũ T
d in a parallel protocol with probability

p can be used to successfully “learn” the input-operation Ũd

with probability p and k uses. Reference [24] shows that the
optimal protocol for unitary learning a unitary Ud with k uses
cannot have constant probability greater than p = 1 − d2−1

k+d2−1 ,
which bounds our maximal probability of success and finishes
the proof.

FIG. 7. A flowchart illustrating the adaptive unitary transpose
protocol.

E. Adaptive unitary transposition protocols

In this subsection we present an adaptive circuit that trans-
forms k uses of an arbitrary d-dimensional unitary operation
Ũd into a single use of its transpose Ũ T

d with heralded proba-

bility p = 1 − (1 − 1
d2 )

� k
d �

(see Fig. 7).
(1) We start by making a single use of the input-operation

Ũd to implement the probabilistic heralded transposition pro-
tocol based on gate teleportation described in Sec. VI D. When
the generalized Bell measurement returns the outcomes i and
j, the operator Ud is transformed into V1 = U T

d X i
d Z j

d , where
X i

d and Z j
d are the clock and shift operators, respectively [see

Eq. (39)].
(2) If both outcomes i and j correspond to the identity

operator, i.e., i = j = 0, we have V1 = U T
d and we stop the

protocol with success. If some other outcome is obtained, we
make d − 1 uses of Ud to implement the unitary complex con-

jugate protocol [25] to obtain U ∗
d . We then apply X i

d
−1Z j

d

−1
U ∗

d
into V1 to “cancel” the transformation of step 1 to obtain

identity operator [X i
d
−1Z j

d

−1
U ∗

d U T
d Z j

d X i
d = Id ].

(3) Go to step 1.
We see that step 1 fails returning Ũ T

d with probability
(1 − 1

d2 ) and we need in total d uses of the input-operation
Ũd to complete steps 1 and 2. These steps may be repeated
up to � k

d � times, hence they lead to a success probability of

p = 1 − (1 − 1
d2 )

� k
d �

.

F. Optimal protocols via SDP formulation and indefinite causal
order advantage

We apply the SDP methods obtained in Sec. III to the
case of unitary transposition and present the optimal success
probability in Table I. By checking Table I one observes
that the adaptive circuit we have presented in Sec. VI E is
not optimal. One possible intuitive understanding is that the
adaptive protocol we have presented in Sec. VI E “wastes”
d − 1 uses of the input-operation Ũd to recover the input
state. We also notice that indefinite causal order protocols
provide a strictly large success probability when compared to
causally ordered ones. It is interesting to observe that although
indefinite causal order protocols have been reported useful
in tasks such as nonsignaling channel discrimination [58],
quantum computation [32], and quantum channel capacity ac-
tivation [27,28], in these previous examples, the advantage of
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indefinite causal order is obtained by exploiting the quantum
switch [10], a process which is not useful in our task of uni-
tary channel transformation, since the quantum switch would
transform k uses of the any unitary operation Ũd into simple k
concatenations of Ũd , or equivalently, a single use of Ũ k

d . Our
results for indefinite causal order then reveals the existence of
a different class of indefinite causal order protocols, similarly
to the one reported for unitary inverse in Ref. [29].

VII. UNIVERSAL UNITARY INVERSION PROTOCOLS

We now address the problem of transforming k uses of
a general d-dimensional unitary operation Ũd into a single

use of its inverse Ũ −1
d with probabilistic heralded quantum

circuits. We have presented our adaptive circuit in Ref. [29]
and here we present a parallel implementation and provide
more details on the adaptive circuit.

Before presenting our protocols we prove that, similarly to
the complex conjugation case, any protocol performing exact
universal unitary inversion with k < d − 1 uses of the unitary
input-operation Ũd necessarily has null success probability.
Also, this no-go result also holds even when protocols with
indefinite causal order are considered.

Theorem 3 (Unitary inversion: no-go). Any universal pro-
babilistic heralded quantum protocol (including protocols
without definite causal order) transforming k < d − 1 uses of
a d-dimension unitary operation Ũd into a single use of its

inverse Ũ −1
d with success probability p that does not depend

on Ud necessarily has p = 0, i.e., null success probability.
Proof. Assume that there exists a quantum protocol trans-

forming k uses of a general d-dimensional unitary operation

Ũd into its inverse Ũ −1
d with a nonzero success probability

p. We can then exploit the single-use unitary transposition
protocol presented in Sec. VI A to obtain Ũ ∗

d with success
probability p/d2 > 0, which contradicts Lemma 1.

A. Parallel unitary inversion protocols

We start by showing that, similarly to universal parallel
transposition, any universal parallel unitary inversion protocol
can be made in a delayed input-state way.

Lemma 4. Any parallel probabilistic heralded parallel
protocol k uses of a general unitary Ũd into a single use of its

inverse Ũ −1
d with constant probability p can be conversed to a

delayed input-state parallel protocol with the same probability
p.

Proof. The proof follows the same steps as the one in
Theorem 2. The only difference is that for unitary trans-
position, the superinstrument element S can be chosen as
an operator that commutes with unitaries of the form AI0 ⊗
B∗⊗k

I ⊗ A∗⊗k

O ⊗ BO0 and for unitary inversion S can be chosen
as an operator which commutes with all unitaries of the form
of AI0 ⊗ B⊗k

I ⊗ A⊗k
O ⊗ BO0 .

We are now in condition to present a universal circuit for
parallel unitary inversion and also to obtain an upper bound
on the maximal success probability. Our protocol makes use
of the unitary complex conjugation and unitary transposition
and it is proven to be optimal for qubits.

Theorem 4 (Universal unitary inverse). There exists a par-
allel delayed input-state probabilistic quantum circuit that
transforms k uses of an arbitrary d-dimensional unitary op-

eration Ũd into a single use of its inverse Ũ −1
d with success

probability pS = 1 − d2−1
k′+d2−1 where k′ := � k

d−1� is the great-

est integer that is less than or equal to k
d−1 .

The maximal success probability transforming k uses of
an arbitrary d-dimensional unitary operation Ũd into a single

use of its inverse Ũ −1
d in a parallel quantum circuit is upper

bounded by pmax � 1 − d2−1
k(d−1)+d2−1 .

Proof. We construct our protocol by concatenating the
protocol for unitary complex conjugation of Ref. [25] with
the unitary transposition one presented in Sec. VI B. First we
divide the k uses of the input-operation Ũd into k′ = � k

d−1�
groups containing d − 1 uses of Ũd and discard possible
extra uses. We then exploit the unitary conjugation protocol
to obtain k′ uses of U ∗

d . After, we implement the unitary
transposition protocol of Sec. VI B on k′ uses of Ũ ∗

d to obtain

a single use of Ũ −1
d with probability of success given by

p = 1 − d2−1
k′+d2−1 .

Next, we prove the upper bound. Let pinv(d, k) be the suc-
cess probability of transforming k uses of an arbitrary unitary

input-operation Ũd into a single use of its inverse Ũ −1
d with a

parallel circuit. Suppose one has access to l = k(d − 1) uses
of an input-operation Ũd . One possible protocol to transform
these l uses of Ũd into its transpose with a parallel circuit is the
following, first we perform the deterministic parallel complex
conjugation protocol on l uses to obtain k uses of Ũ ∗

d . We
then perform the parallel unitary inversion on k uses of Ũ ∗

d

to obtain Ũ ∗−1

d = Ũ T
d with probability pinv(d, k). This parallel

unitary transposition protocol has then success probability
of qT(d, l ) = pinv(d, k). Theorem 2 states that any parallel
circuit that transforms l uses of an arbitrary unitary into its
transpose respects qT(d, l ) � 1 − d2−1

l+d2−1 , which implies

pinv(d, k) � 1 − d2 − 1

l + d2 − 1
= 1 − d2 − 1

k(d − 1) + d2 − 1
,

(65)

which completes the proof. �

B. Adaptive unitary inversion circuit

For completeness we now summarize the protocol for
adaptive unitary inversion presented in Ref. [29]. Our protocol

to obtain Ũ −1
d follows similar steps of the protocol to imple-

ment Ũ −1
d presented in the previous section goes as follow

(see Fig. 8).
(1) We start by making a d − 1 uses of the unitary Ud

to implement the probabilistic heralded transposition protocol
for unitary inverse used in Theorem 4 in the main text. When
the generalized Bell measurements return the outcomes i and
j, the operation Ud is transformed into V1 = U −1

d X i
d Z j

d , where
X i

d and Z j
d are the clock and shift operators, respectively [see

Eq. (39)].
(2) If both outcomes i and j correspond to the identity

operator, i.e., i = j = 0, we have V1 = U −1
d and we stop the
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FIG. 8. Flowchart illustrating the adaptive unitary inverse protocol.

protocol with success. If some other outcome is obtained, we

make a single use of Ũd to apply X i
d
−1Z j

d

−1
Ud into V1 and

invert the transformation of step 1 to obtain identity operator

[X i
d
−1Z j

d

−1
UdU −1

d Z j
d X i

d = Id ].
(3) Go to step 1.

We see that step 1 requires d − 1 uses and returns Ũ −1
d

with probability (1 − 1
d2 ). We need in total d uses of Ũd to

complete steps 1 and 2. Iteration of this protocol leads to a

success probability of p = 1 − (1 − 1
d2 )

� k+1
d �

.

C. Optimal protocols via SDP formulation and indefinite causal
order advantage

We now apply the SDP methods of Sec. III to the case
of unitary inversion and reproduce Table I of Ref. [29] in
Table II. For qubits (d = 2) we note that with the Pauli qubit
unitary operator Y , YU2Y = U ∗

2 for every U2 with determinant
one. Hence, any protocol for transforming a single use of a
qubit unitary operation into a single use of its transposition
can be converted into a qubit unitary inversion protocol and
vice versa. Hence, the results and conclusions for qubits are
equivalent to the ones presented in Sec. VI F.

For qutrits (d = 3), Theorem 3 ensures that circuits with
a single use necessarily have success probability equal zero.
For the case d = 3 and k = 2, parallel, adaptive, and indef-
inite causal order protocols have attained the same success

TABLE II. Maximum success probabilities for universally in-
verting k uses of Ud , by parallel quantum circuit, adaptive quantum
circuit, and protocols with indefinite causal orders. Values in bold are
analytical and the rest via numerical SDP optimization. This table is
extracted from Table I of Ref. [29].

d = 2 Parallel Adaptive Indefinite causal order

k = 1 1
4 = 0.25 1

4 = 0.25 1
4 = 0.25

k = 2 2
5 = 0.4 0.4286 ≈ 3

7 0.4444 ≈ 4
9

k = 3 1
2 = 0.5 0.7500 ≈ 3

4 0.9416

d = 3 Parallel Adaptive Indefinite causal order

k = 1 0 0 0

k = 2 0.1111 ≈ 1
9 0.1111 ≈ 1

9 0.1111 ≈ 1
9

probability, suggesting that our parallel unitary inversion pro-
tocol may be optimal when d = k − 1.

VIII. CONCLUSIONS

We have addressed the problem of designing probabilistic
heralded universal quantum protocols that transform k uses
of an arbitrary (possibly unknown) d-dimensional unitary
quantum operation Ũd to exactly implement a single use of
some other operation given by f (Ũd ). For the cases where
f is a linear supermap, we have provided an SDP algorithm
that can be used to analyze parallel, adaptive, and indefinite
causal order protocols. For the parallel and adaptive cases, our
algorithm finds a quantum circuit that universally implements
the desired transformation with the optimal probability of
success for any k and d . For the indefinite causal order case,
the algorithm finds a quantum process that obtains the desired
transformation with the optimal probability of success for any
k and d .

For the particular case of unitary complex conjugation,
i.e., f (Ũd ) = Ũ ∗

d , we have proved that when k < d − 1 the
success probability is necessarily zero, even when indefinite
causal order protocols are considered. Since a deterministic
parallel quantum circuit to transform k = d − 1 uses of a
general unitary operation Ũd into a single use of its complex
conjugation was presented in Ref. [25], we can argue that the
theoretical possibility of implementing universal exact unitary
complex conjugation is completely solved.

For the particular case of unitary transposition, i.e.,
f (Ũd ) = Ũ T

d , we have shown that the optimal success prob-

ability with parallel circuits is exactly p = 1 − d2−1
k+d2−1 . When

adaptive circuits are considered, we have presented an explicit

protocol that has success probability p = 1 − (1 − 1
d2 )

� k
d �

,
which has an exponential improvement over any parallel
protocol. We have also shown that indefinite causal order
protocols outperforms causally ordered ones by tackling the
cases d = 2, k � 3 and d = 3, k = 2 numerically.

For the particular case of unitary inversion, i.e.,

f (Ũd ) = Ũ −1
d , we have proved that when k < d − 1 the

success probability is necessarily zero, even when indefinite
causal order protocols are considered. When k � d − 1 we
have presented parallel and adaptive circuits to succeed
in this task and proved that the success probability of our
adaptive protocol presented in Ref. [29] has probability of

success given by p = 1 − (1 − 1
d2 )

� k+1
d �

and we prove it to be
exponentially higher than any success probability obtained by
parallel circuits.
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[57] M. Studziński, S. Strelchuk, M. Mozrzymas, and M. Horodecki,
Port-based teleportation in arbitrary dimension, Sci. Rep. 7,
10871 (2017).

[58] G. Chiribella, Perfect discrimination of no-signalling channels
via quantum superposition of causal structures, Phys. Rev. A
86, 040301 (2012).

062339-18

https://irdb.nii.ac.jp/en/00926/0004117630
http://cvxr.com/cvx.
https://www.mosek.com/
http://sedumi.ie.lehigh.edu/
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html
https://github.com/mtcq/unitary_inverse
https://opensource.org/licenses/MIT
http://qetlab.com
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.101.240501
https://doi.org/10.1103/PhysRevLett.101.240501
https://doi.org/10.1103/PhysRevLett.101.240501
https://doi.org/10.1103/PhysRevLett.101.240501
https://doi.org/10.1038/46503
https://doi.org/10.1038/46503
https://doi.org/10.1038/46503
https://doi.org/10.1038/46503
https://doi.org/10.1038/s41598-017-10051-4
https://doi.org/10.1038/s41598-017-10051-4
https://doi.org/10.1038/s41598-017-10051-4
https://doi.org/10.1038/s41598-017-10051-4
https://doi.org/10.1103/PhysRevA.86.040301
https://doi.org/10.1103/PhysRevA.86.040301
https://doi.org/10.1103/PhysRevA.86.040301
https://doi.org/10.1103/PhysRevA.86.040301

