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The sending-or-not-sending (SNS) protocol of the twin-field quantum key distribution can tolerate large
misalignment error and its key rate can exceed the linear bound of repeaterless quantum key distribution.
But the original SNS protocol requires the two users to use the same source parameters. Here we propose an
SNS protocol with asymmetric source parameters and give the security proof of this protocol. Our asymmetric
protocol has a much better performance than that of the original SNS protocol when the channel is asymmetric.
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I. INTRODUCTION

Quantum key distribution (QKD) provides a method for
unconditionally secure communication [1–9] between two
parties, Alice and Bob. Combined with the decoy-state
method [10–15] and the measurement-device-independent
QKD (MDIQKD) protocol [16,17], QKD can overcome the
security loophole from the nonideal single-photon sources
[18–20] and imperfect detection devices [21,22] and has
developed rapidly, both in theory [23–40] and experiment
[41–63]. The maximum distance of decoy-state MDIQKD has
been experimentally increased to 404 kilometers [64]. But the
key rate of the BB84, MDIQKD protocol, or any modified
version of these protocols cannot exceed the linear bounds
of repeaterless QKD, such as the TGW (Takeoka, Guha,
and Wilde) bound [65] and the PLOB (Pirandola, Laurenza,
Ottaviani, and Banchi) bound [66].

Recently, a new protocol named the twin-field quantum key
distribution (TFQKD) was proposed [67] whose key rate de-
pendence on the channel transmittance η is R ∼ O(

√
η). Fol-

lowing this protocol, many variants of TFQKD were proposed
[68–79] and some experiments of TFQKD were demonstrated
[80–83]. Among those protocols, one efficient protocol named
the sending-or-not-sending (SNS) protocol [68] has the ad-
vantages of unconditional security under coherent attacks and
it can tolerate large misalignment error, and the SNS protocol
with finite data size has been studied [84,85]. However, the
security proof of the SNS protocol requires the condition that
the two users, Alice and Bob, use the same source parameters,
such as the intensities of signal and decoy states and the
probability for sending coherent pulses in Z-windows.
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Here we propose a SNS protocol where Alice and Bob are
not required to use the same source parameters. We give a
security proof for this protocol. Then we apply our asymmet-
ric protocol to the case with asymmetric channels, i.e., the
channel between Alice and Charlie (we will call it “Alice’s
channel” for simplicity in this paper) and that between Bob
and Charlie (we will call it “Bob’s channel” for simplicity in
this paper) are not the same. The numerical results show that
in this case the key rate of our asymmetric protocol is much
higher than that of the original SNS protocol.

This paper is arranged as follows. In Sec. II, we present the
procedures of our SNS protocol with asymmetric source pa-
rameters. In Sec. III, we give a security proof of our protocol
through three virtual protocols and their reductions. We show
the results of numerical simulation of the asymmetric SNS
protocol compared with the original SNS protocol in Sec. IV.
The article ends with some concluding remarks in Sec. V. We
give the formulas for key rate calculation in the Appendix.

II. SNS PROTOCOL WITH ASYMMETRIC
SOURCE PARAMETERS

A schematic of the asymmetric SNS protocol is shown in
Fig. 1. The two legitimate users, Alice and Bob, independently
send coherent pulses and vacuum pulses to an untrusted
third party (UTP), Charlie. Charlie takes compensation to
the pulses, measures them, and announces the measurement
results. Then Alice and Bob distill the final key from a set of
the pulses according to the announced data. The details of the
protocol are shown as follows.

Step 1. In each time window i, they (Alice and Bob)
independently decide whether this is a decoy window or a
signal window. In her (his) decoy window, she (he) randomly
chooses one of a few states ρAk (ρBk), for k = 0, 1, 2, . . . , to
send out a decoy pulse to Charlie where ρA0 = ρB0 = |0〉〈0|
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FIG. 1. A schematic of the setup for the asymmetric SNS pro-
tocol. IM: intensity modulator; PM: phase modulator; BS: beam
splitter; DL & DR: single-photon detector in the measurement station
of Charlie.

are the vacuum states and ρAk (ρBk), k > 0, are coherent states
|√μAkeiδAi+iγAi〉 (|√μBkeiδBi+iγBi〉). (In this paper, we denote
the imaginary unit as i.) In her (his) signal window, she (he)
decides to send out to Charlie a signal pulse in the state
|√μ′

AeiδAi+iγAi〉 (|√μ′
BeiδBi+iγBi〉) and puts down a bit value 1

(0) with a probability of εA (εB), or decides not to send it out,
and puts down a bit value 0 (1) with a probability of 1 − εA

(1 − εB). Here, δAi, δBi, γAi, and γBi are random phases. The
global phases γAi and γBi can be any reference phase and
known by anyone. The private phase δAi (δBi) is a random
phase taken by Alice (Bob) secretly. Besides, we request the
following mathematical constraint for source parameters:

μAk

μBk
= εA(1 − εB)μ′

Ae−μ′
A

εB(1 − εA)μ′
Be−μ′

B
(1)

for each k > 0.
Definition. We define a Z-window when both of them de-

termine signal windows and an X -window when both of them
determine decoy windows. Among X -windows, we define
X (k)-windows when Alice chooses the intensity μAk and Bob
chooses the intensity μBk .

As the major result of this work, this constraint guarantees
the security of the asymmetric SNS protocol. The real proto-
col here is actually the same as that in Ref. [68] except for this
mathematical constraint, and the virtual protocols for security
proof will use different types of entangled states.

Intuitively, the constraint in Eq. (1) guarantees that the
density matrix of the untagged state (two-mode single-photon
state) in X -windows is the same as that of the untagged state in
Z-windows so that they can use the error rate in X -windows to
estimate the phase-flip error rate in Z-windows. In MDIQKD,
no matter what asymmetric source parameters are chosen, the

states of single-photon pairs are always identical in X basis
and Z basis, and hence the virtual protocol of entanglement
swapping and purification always holds [25,32,33].

For ease of presentation, we will omit the subscript i if it
does not cause any confusion. But keep in mind that all δA, δB,
γA, and γB are chosen differently in different time windows.

Note: The sufficient condition for security is that all decoy
pulses satisfy Eq. (1). But in a specific decoy-state method,
e.g., our four-intensity decoy-state method in the Appendix,
not all μAm and μBm are required to satisfy Eq. (1). Some
details can be found in the Appendix.

Step 2. Charlie is supposed to measure all twin fields with
a beam splitter after taking phase compensation and announce
the measurement outcome.

Note: Charlie is expected to remove phases γA and γB by
phase compensation. His action affects only the key rate and
has no influence on the security of the protocol.

Definition. We define an effective event when one and
only one of Charlie’s detector clicks, and the corresponding
window is called an effective window.

Step 3. They announce each one’s decoy windows and
signal windows. And they announce the intensities that they
choose in each decoy window and the private phases δA and
δB in each decoy window. The data of effective events is kept
for parameter estimation and key distillation.

Given that δA (δB) is randomized, whenever Alice (Bob)
sends a coherent state with intensity μ′

A (μ′
B), this coher-

ent state can be equivalently regarded as a state with the

density matrix
∑∞

k=0
e−μ′

A μ′k
A

k! |k〉〈k| (
∑∞

k=0
e−μ′

B μ′k
B

k! |k〉〈k|) in the
photon-number space, which is a classical mixture of different
photon-number states only. Hence among all Z-windows, we
can define a set of Z1-windows in which one and only one
of them decides to send and she (he) actually sends a single-
photon state. They do not know which time window is a
Z1-window, but they can calculate the number of Z1-windows
in an experiment.

Among all X -windows, we define a set of X̃ -windows in
which they choose the intensities μAk and μBk with the same
k and the phase shifts δA and δB satisfy the restriction

1 − | cos(δA − δB + �ϕ)| � |λ|. (2)

Here the values �ϕ and λ are some values determined by
Alice and Bob according to the result of channel testing and
calibration in the experiment to obtain a satisfactory key rate,
and the value of �ϕ can be different from time to time.
Similarly, among X (k)-windows, we define a set of X̃ (k) in
which the phase shifts δA and δB satisfy the restriction in
Eq. (2).

Step 4. They randomly choose some events from the ef-
fective Z-windows to do the error test. A bit-flip error occurs
when Alice’s bit value is different from Bob’s in a Z-window.
They discard the test bits, and the remaining events from
effective Z-windows will be distilled for the final key.

Step 5. Based on the measurement outcome in effective
X -windows, they calculate n1, the number of effective events
in Z1-windows. Based on the measurement outcome and the
announced values of δA and δB in effective X̃ -windows, they
calculate eph

1 , the phase-flip error rate of the states in effective
Z1-windows.
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Note: In effective X̃ -windows, an error occurs when
(1) the left detector clicks and cos(δA − δB) < 0 or
(2) the right detector clicks and cos(δA − δB) > 0.
Given this definition, they can observe the error rates in X̃ -

windows for each intensity of input light. With this, they can
estimate eph

1 through the decoy-state analysis which requests
them to observe the counting rates of various intensities of
input light. As proved in Ref. [68], the decoy-state method
can applied to our protocol as if the phases δA and δB were not
announced. In the asymptotic case that there are decoy states
with infinite different intensities, they can obtain the exact
value of eph

1 . In the case that there are decoy states with finite
different intensities, they can obtain the upper bound of eph

1 .
Note: The Appendix shows the four-intensity method of

this protocol. In this case, the formulas for n1 and eph
1 are given

in Eqs. (A2)–(A5).
Step 6. They perform the postprocessing and obtain the final

key with length

Nf = n1
[
1 − H

(
eph

1

)] − f nt H (EZ ), (3)

where f is the correction efficiency, nt is the number of
effective Z-windows, and EZ is the bit-flip error rate in
effective Z-windows, which can be obtained directly in the
error test in step 4. If in the error test Alice and Bob choose
ntest effective events and there are nerror bit-flip error events,
then EZ = nerror/ntest . Details for calculating the length of the
final key (or the key rate) with the four-intensity decoy-state
method are presented in the Appendix.

Note: If we set εA = εB and μ′
A = μ′

B, this protocol is
actually the same as the original SNS protocol in Ref. [68].

III. SECURITY PROOF WITH VIRTUAL
PROTOCOLS AND REDUCTION

A. Introduction of the ancillary photons and the extended states

Similarly to the security proof in Ref. [68], we use the idea
of entanglement distillation with ancillary photons to prove
the security of our protocol. Image that in a Z-window, if Alice
(Bob) decides to send a coherent state ρA (ρB) to Charlie, she
(he) puts down a local ancillary qubit in the state |1〉 (|0〉),
and if Alice (Bob) decides not to send, she (he) puts down a
local ancillary qubit in state |0〉 (|1〉). To Alice (Bob), state |1〉
corresponds to the bit value 1 (0), and state |0〉 corresponds to
bit value 0 (1). We define subspace T for the subspace of the
sent-out states and An for the subspace of the local ancillary
states. Therefore, the extended state in the complex space T ⊗
An in the Z-window can be written as


 = εAεB(ρA⊗̃ρB) ⊗ |11〉〈11|
+ εA(1 − εB)(ρA⊗̃|0〉〈0|) ⊗ |10〉〈10|
+ (1 − εA)εB(|0〉〈0|⊗̃ρB) ⊗ |01〉〈01|
+ (1 − εA)(1 − εB)(|0〉〈0|⊗̃|0〉〈0|) ⊗ |00〉〈00|. (4)

Here both symbols ⊗ and ⊗̃ are for a tensor product, and ⊗̃
is the tensor product inside T , and ⊗ is the tensor product
between T and An. The states on the left side of ⊗ are in
T and we name them real-photon states. The states on the
right side of ⊗ are in An and we name them ancillary-photon

states. Since the private phases δA and δB in Z-windows
are kept secret all the time, the coherent states ρA and ρB

are actually phase-randomized coherent states whose density
matrices are

ρk =
∞∑

n=0

e−μ′
k μ′n

k

n!
|n〉〈n| = μ′

ke−μ′
k |1〉〈1| + (1 − μ′

ke−μ′
k )ρ̄k,

(5)
with k = A, B and

ρ̄k = 1

1 − μ′
ke−μ′

k

∑
n 	=1

e−μ′
k μ′n

k

n!
|n〉〈n|. (6)

So the extended state in the Z-window can be written in
another form:


 =
4∑

r=1

qr
r (7)

and


1 = C1[εA(1 − εB)μ′
Ae−μ′

A |10〉〈10| ⊗ |10〉〈10|
+ εB(1 − εA)μ′

Be−μ′
B |01〉〈01| ⊗ |01〉〈01|]


2 = C2[εA(1 − εB)(1 − μ′
Ae−μ′

A )(ρ̄A⊗̃|0〉〈0|) ⊗ |10〉〈10|
+ εB(1 − εA)(1 − μ′

Be−μ′
B )(|0〉〈0|⊗̃ρ̄B) ⊗ |01〉〈01|]


3 = |00〉〈00| ⊗ |00〉〈00|

4 = (ρA⊗̃ρB) ⊗ |11〉〈11|, (8)

where C1 and C2 are some normalization factors. With the
condition in Eq. (1), 
1, the target state we used to prove the
security can be written as


1 = C2(μA1|10〉〈10| ⊗ |10〉〈10| + μB1|01〉〈01| ⊗ |01〉〈01|),
(9)

with

C = 1/
√

μA1 + μB1. (10)

In X (k)-windows, the two-mode states sent by them are

ρX (k) = |βk〉〈βk|, (11)

where

|βk〉 = |√μAkeiδA+iγA〉|√μBkeiδB+iγB〉. (12)

In our protocol, the states in the Z-windows are actually
classical mixtures of 
1, 
2, 
3, and 
4. In the security
proof, we first show the security of the protocol with only state

1 and then show the security of the protocol with 
 by the
tagged model [10,11].

B. Virtual Protocol 1

Definition. We have defined an effective event in the
protocol—an event when one and only one of Charlie’s detec-
tor clicks. An effective ancillary photon is an ancillary photon
corresponding to an effective event.

1. Preparation stage

For each time window i, they preshare the classical infor-
mation about whether this time window is an X -window or
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Z-window. They preshare an extended state


0 = |�〉〈�|, (13)

where

|�〉 = C(
√

μA1eiγA |10〉 ⊗ |10〉 + √
μB1eiγB |01〉 ⊗ |01〉)

(14)
and γA and γB are announced publicly. (Remember that γA and
γB vary in different time windows).

In the time window i which is a Z-window, through discus-
sion by a secret channel, Alice chooses a random phase δA and
Bob chooses a random phase δB, which satisfy the restriction
in Eq. (2). Then they take phase shifts δA and δB on their own
real photons, respectively. In the time window i which is a
X -window, they take random and independent phase shifts δA

and δB on their own real photons, respectively. After the phase
shifts, the extended state changes into


Z = |� ′〉〈� ′|, 
X = |� ′〉〈� ′| (15)

and

|� ′〉 = C(
√

μA1eiγA+iδA |10〉 ⊗ |10〉
+√

μB1eiγB+iδB |01〉 ⊗ |01〉). (16)

Among all X -windows, we define a set of X̃ -windows
in which the phase shifts δA and δB satisfy the restriction
Eq. (2). The states in Z-windows are not identical to those
in X -windows, but they are identical to those in X̃ -windows.

Besides, we define real-photon states |χ0〉 and |χ1〉 for any
time window:

|χ0〉 = C(
√

μA1eiγA+iδA |10〉 + √
μB1eiγB+iδB |01〉)

|χ1〉 = C(
√

μA1eiγA+iδA |10〉 − √
μB1eiγB+iδB |01〉)

if cos(δA − δB) � 0 (17)

or

|χ0〉 = C(
√

μA1eiγA+iδA |10〉 − √
μB1eiγB+iδB |01〉)

|χ1〉 = C(
√

μA1eiγA+iδA |10〉 + √
μB1eiγB+iδB |01〉)

if cos(δA − δB) < 0. (18)

2. Protocol

V1-1: In any Z-window (X -window), they send the real
photons of 
Z (
X ) defined in Eq. (15) to Charlie and keep
the ancillary photons locally.

V1-2: Charlie measures the real photons from Alice and
Bob with a beam splitter after taking phase compensation
according to the strong reference lights with phases γA and
γB. He announces his measurement outcome and then they
announce the values of δA and δB of all X -windows. With the
preshared information of X - and Z-windows, the measure-
ment outcome, and the announced values of δA and δB, they
can obtain effective Z-windows and effective X̃ -windows. The
data of other time windows will be discarded.

Definition. After step V1-2, the remaining effective events
can be divided into eight subsets according to the window
information (Z-window or X -window), the clicking detector
(the left L or the right R), and the sign of cos(δA − δB)
(positive + or negative −). These subsets are labeled as �(a,d ),
where � = X̃ , Z , a = +,−, and d = L, R. For example, the

subset Z(−,R) is the set of effective Z-windows when the right
detector clicks and cos(δA − δB) < 0. Correspondingly, the
effective ancillary photons can be divide into eight subsets
labeled as A�(a,d ) .

V1-3: They check the phase-flip error rate E(a,d ) of the set
AX̃(a,d )

, where a = +,− and d = L, R. Since the effective Z-
windows are identical to the effective X̃ -windows, the phase-
flip error rate of AX̃(a,d )

should be the same as that of AZ(a,d )

(asymptotically).
Note: The state |� ′〉 in Eq. (16) can be written in another

form:

|� ′〉 = 1√
2

(|χ0〉 ⊗ |�0〉 + |χ1〉 ⊗ |�1〉), if a = + (19)

or

|� ′〉 = 1√
2

(|χ1〉 ⊗ |�0〉 + |χ0〉 ⊗ |�1〉), if a = −, (20)

where |�k〉, k = 0, 1, are two-mode states of ancillary
photons:

|�0〉 = 1√
2

(|10〉 + |01〉), |�1〉 = 1√
2

(|10〉 − |01〉). (21)

To obtain the phase-flip error rate E(a,d ) of the set AX̃(a,d )
,

each ancillary photon of this set is measured in the basis
{|�0〉, |�1〉} and there are n(0)

(a,d ) outcomes of |�0〉〈�0| and

n(1)
(a,d ) outcomes of |�1〉〈�1|. The phase-flip error rate E(a,d ) of

AX̃(a,d )
is defined as

E(a,d ) = min
(
n(0)

(a,d ), n(1)
(a,d )

)
n(a,d )

, (22)

where n(a,d ) = n(0)
(a,d ) + n(1)

(a,d ) is the number of the ancillary
photons in AX̃(a,d )

.
V1-4: With the estimated value of E(a,d ), they can

purify the ancillary photons in AZ(a,d ) with (a, d ) =
(+, R), (+, L), (−, R), (−, L) separately. After purification,
they obtain ancillary photons in (almost 100%) pure single-
photon entangled states |�0〉 (or |�1〉). Then they perform
local measurement on their own ancillary photons and obtain
the final key. Alice (Bob) puts down a bit value 0 (1) or 1 (0)
when her (his) measurement outcome is |0〉〈0| or |1〉〈1|.

Note 1—Security. The security of the final key is based
on the faithfulness of the purification. If they estimate the
error rate E(a,d ) of a set of ancillary photons exactly, they can
purify these ancillary photons to get pure entangled photons.
Although Charlie measured the real photons and they selected
the set of ancillary photons based on his announced measure-
ment outcomes, they check the phase-flip error rate of these
photons by themselves. Since the extended states of effective
X̃ -windows are identical to those of effective Z-windows, the
phase-flip error rate of AX̃(a,d )

is exactly the same as that of
AZ(a,d ) statistically. They can obtain the phase-flip error rate
in AZ(a,d ) by testing the ancillary photon in AX̃(a,d )

and then
perform the purification to AZ(a,d ) . As a result, the security of
the key does not rely on Charlie’s honesty.

Note 2—Estimation of the phase-flip error rate. According
to the definition of E(a,d ) in Eq. (22), they have to measure the
ancillary photons in the basis {|�0〉, |�1〉}. It’s easy to prove
that they can perform local measurement in the basis {|±x〉 =
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(|0〉±|1〉)/
√

2} and check the parity of the outcome instead
of measuring in the basis {|�0〉, |�1〉}. Explicitly, their out-
come with even parity (|x+〉|x+〉 or |x−〉|x−〉) corresponds
to the outcome |�0〉 and that with odd parity (|x+〉|x−〉 or
|x−〉|x+〉) corresponds to the outcome |�1〉.

Note 3—Reduction of the preshare states in X-windows.
Since measurement in the basis {| ± x〉} is a local operation
on the ancillary photons, it makes no difference whether they
measure their ancillary photons after sending the real photons
or before that. So they can measure the ancillary photons
before the protocol starts and label this time window an X0-
window if the outcome is even parity, or label it an X1-window
if the outcome is odd parity. Then they prepare and send the
real photon in the state

|χ+〉 = C(
√

μA1eiγA+iδA |10〉 + √
μB1eiγB+iδB |01〉) (23)

in an X0-window or prepare and send that in the state

|χ−〉 = C(
√

μA1eiγA+iδA |10〉 − √
μB1eiγB+iδB |01〉) (24)

in an X1-window.
Alternatively, they can start with the information of X0-

windows and X1-windows and the states in Eqs. (23) and (24).
They prepare and send real photons in the state |χ+〉 in X0-
windows or in the state |χ−〉 in X1-windows. In this way, the
ancillary photons in X -windows in the above virtual protocol
are not necessary, and the formula of phase-flip error rate
should be changed correspondingly. We introduce a symbol
X̃(a,b,d ) for the set of effective time windows, which satisfies
the restriction in Eq. (2), with joint events a, b, d where

Event a (a = +,−): the sign of cos(δA − δB).
Event b (b = 0, 1): this times window is an Xb-window.
Event d (d = L, R): the d-detector clicks and the other

does not click.
And we also introduce nX̃(a,b,d )

for the number of time
windows in the set X̃(a,b,d ). Therefore, we have

n(b)
(a,d ) = NX̃(a,b,d )

(25)

and

E(a,d ) = min
(
NX̃(a,0,d )

, NX̃(a,1,d )

)
n(a,d )

. (26)

This reduction of X -windows leads to the Virtual Protocol 2.

C. Virtual Protocol 2

1. Preparation stage

For each time window i, they preshare the classical infor-
mation about whether this time window is an X0-window, an
X1-window, or a Z-window. They preshare an extended state

Z in Eq. (15) for Z-windows, a real-photon state |χ+〉 for
X0-windows, or a real state |χ−〉 for X1-windows.

2. Protocol

V2-1: In any Z-window, they send out the real photons of

Z to Charlie and keep the ancillary photons locally. In any
X0-window (X1-window), they send |χ+〉 (|χ−〉) to Charlie.

V2-2: Charlie measures the real photons from Alice and
Bob with a beam splitter after taking phase compensation
according to the strong reference lights with phases γA and

γB. He announces his measurement outcome and then they
announce the values of δA and δB of all X -windows.

V2-3: They check the phase-flip error rate E(a,d ) by the set
X̃(a,0,d ) and X̃(a,1,d ), where a = +,− and d = L, R.

V2-4: They purify the ancillary photons in AZ(a,d ) with
(a, d ) = (+, R), (+, L), (−, R), (−, L) separately with the
estimated value of E(a,d ). Then they perform local measure-
ment on their own ancillary photons and obtain the final key.

Note: Reduction of preshared states in X-windows
Reduction 1. The real-photon states with a = + (a = −) in

X0-windows are actually identical to those with a = − (a =
+) in X1-windows, e.g.,

ρ(+,0) = ρ(−,1), ρ(−,0) = ρ(+,1). (27)

So we can conclude that NX̃(a,0,d )
= NX̃(ā,1,d )

, where ā stands
for the opposite sign of a. This means that all the values
NX̃(a,1,d )

in the phase-flip error rate in Eq. (26) can be replaced
by NX̃(ā,0,d )

so that X1-windows are not necessary. They can
just use the data from X0-windows to estimate the phase-flip
error rate, and no one else will find any difference. Therefore,
they use only X0-windows and send only the state |χ+〉 in
X -windows. The number of effective events from the state
|χ+〉 and the joint events a, d (with a = +,−; d = L, R) is
denoted as nX̃(a,d )

. The formula of the phase-flip error rate
should be changed into

E(a,d ) = min
(
nX̃(a,d )

, nX̃(ā,d )

)
n(a,d )

, (28)

where the formula for n(a,d ) should be changed into n(a,d ) =
nX̃(a,d )

+ nX̃(ā,d )
.

Reduction 2. All the effective ancillary photons in Z-
windows can be purified in one batch. The phase-flip error
rate is

E ph =
∑

a,d min
(
nX̃(a,d )

, nX̃(ā,d )

)
∑

a,d n(a,d )

= 2
∑

d min
(
nX̃(+,d )

, nX̃(−,d )

)
2n1

, (29)

where n1 = nX̃(+,L)
+ nX̃(+,R)

+ nX̃(−,L)
+ nX̃(−,R)

is the total num-
ber of effective events in X̃ -windows. Using the relations that
nX̃(−,L)

� min(nX̃(+,L)
, nX̃(−,L)

) and nX̃(+,R)
� min(nX̃(+,R)

, nX̃(−,R)
),

the phase-flip error rate can be bounded by

E ph �
nX̃(−,L)

+ nX̃(+,R)

n1
. (30)

In this formula for the phase-flip error rate, we only need the
total number of effective events in X̃ -windows and the number
of these two kinds of effective events:

(1) The left detector clicks and cos(δA − δB) < 0;
(2) The right detector clicks and cos(δA − δB) � 0.
Therefore, we can define these two kinds of effective

events as error events and the corresponding time windows
are defined as error windows. If they set the value of λ small
enough and Charlie perform the compensation honestly, they
may get few error events so that the phase-flip error rate will
be quite low and the key rate will be high.

Reduction 3. The density matrix in Eq. (11) with random-
ized δA and δB can be written as the classical mixture of a set
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of states {|ψ (k)
l 〉}:

ρX (k) =
∑

l

p(k)
l

∣∣ψ (k)
l

〉〈
ψ

(k)
l

∣∣ (31)

with

|ψ (k)
l 〉 = D(k)

l

l∑
n=0

(
√

μAkeiδA+iγA )n

√
n!

(
√

μBkeiδB+iγB )l−n

√
(l − n)!

|n, l − n〉, (32)

where D(k)
l are some normalization factors and |ψ (k)

1 〉 is ex-
actly |χ+〉 when the condition in Eq. (1) is satisfied. So they do
not need to preshare the state |χ+〉. They can send the phase-
randomized coherent state |√μAkeiδA+iγA〉 and |√μBkeiδB+iγB〉
to Charlie in X -windows and then use the decoy-state method
to estimate the bound of the phase-flip error rate of |χ+〉, eph

1 .

D. Virtual Protocol 3

1. Preparation stage

For each time window i, they preshare the classical infor-
mation about whether this time window is an X window or a
Z-window. They preshare an extended state 
Z in Eq. (15) for
Z-windows.

2. Protocol

V3-1: In any Z-window, they send out the real photons of

Z to Charlie and keep the ancillary photons locally. In any
X -window, Alice (Bob) sends a coherent state |√μAkeiδA+iγA〉
(|√μBkeiδB+iγB〉) with random δA and γA (δB and γB) to Charlie.

V3-2: Charlie measures the real photons from Alice and
Bob with a beam splitter after taking phase compensation
according to the strong reference lights with phases γA and
γB. He announces his measurement outcome, and then they
announce the values of δA and δB of all X -windows.

V3-3: They apply decoy-state method with the data of the
effective X̃ -windows to estimate the phase-flip error rate eph

1 .
V3-4: They purify the ancillary photons in the effective Z-

windows with the estimated value of eph
1 . Then they perform

local measurement on their own ancillary photons and obtain
the final key.

Note 1: Reduction of preshared states in Z-windows
Reduction 1. The state 
Z with the restriction Eq. (2) is

identical to 
Z without the restriction Eq. (2). If we regard
all Z-windows as a whole, the condition in Eq. (2) can be
loosened, which means that the phase shifts δA and δB to
the real photons can be randomized in the range [0, 2π )
independently. In this way, they do not need any mutual
information about the phase shifts δA and δB.

Reduction 2. The process that they purify the effective
ancillary photons in Z-windows and then perform local mea-
surement on them is equivalent to the process that they mea-
sure these ancillary photons in the photon-number basis and
then do classical distillation to the classical data, which is
called quasipurification [3]. In the latter process, the state in
Z-window is


′
Z = C2(μA1|10〉〈10| ⊗ |10〉〈10|+ μB1|01〉〈01| ⊗ |01〉〈01|),

(33)

which is equivalent to the state 
1 in Eq. (9). This means that
the protocol can just start with state 
 and apply the tagged
model to distill the final key from the effective events using
state 
1. The length of the final key should be

n f = n1
[
1 − H

(
eph

1

)] − nt H (EZ ), (34)

where n1 is the number of effective events with state 
1

estimated by the decoy-state method, nt is the number of
effective events in Z-windows, and EZ is the bit-flip error rate
of nt . A bit-flip error occurs when Alice’s bit value is different
from Bob’s in a Z-window.

Note 2: Reduction of preshared information of time windows
Alice (Bob) determines a signal window with a probability

of pZ
A (pZ

B) and determines a decoy window with intensity μAk

(μBk) with a probability of pX
Ak (pX

Bk), where pZ
A + ∑

k pX
Ak = 1

(pZ
B + ∑

k pX
Bk = 1). A Z-window is defined when both of

them determine signal windows, and an X -window is defined
when both of them determine decoy windows. Other time
windows are regarded as mismatch windows and they will
be discarded. In this way, they do not need to preshare any
information of time windows, and the states in Z-windows and
X -windows are 
 and ρX (k) , respectively. With the reductions
above, the virtual protocol is equivalent to our asymmetric
SNS protocol.

IV. NUMERICAL SIMULATION WITH
ASYMMETRIC CHANNELS

With the constraint in Eq. (1), we can do the optimization
of the SNS protocol with asymmetric channels. Some recent
research also studies the asymmetric TFQKD [78,86,87].

Here we present the results of numerical simulation of
different SNS protocols in the case that the channels are asym-
metric, i.e., Alice’ channel and Bob’s channel are different,
e.g., they have different channel losses.

The original SNS with the asymmetric channels can be
modified a little to fit the asymmetric channels, which we
call “the modified SNS protocol” in the following. Consider
the case that the original SNS protocol is applied to the
asymmetric channels, when they use the same source, the
intensities of the pulses interfering at the beam-splitter will
differ a lot due to different channel transmittances, which will
cause a high error rate in X -windows and therefore enhance
the phase-flip error rate of a single photon, eph

1 . In the modified
SNS protocol, they still use the same source parameters, but
Charlie adds an extra loss to one of the channels to make
the transmittances of two channels the same. Explicitly, if
the transmittance of Alice’s channel, ηA, is larger than that

TABLE I. Devices’ parameters used in numerical simulations. Nt

is the total number of pulse pairs; ed is the misalignment error in the
X windows; d is the dark count rate of each detector at the UTP; ηd

is the detection efficiency of each detector at the UTP; fe is the error
correction inefficiency. ξ is the failure probability in the parameter
estimation, and α is the channel loss.

Nt ed d ηd fe ξ α

1013 5% 10−10 50% 1.1 10−10 0.2 dB/km
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FIG. 2. The optimized key rates (per pulse pair) vs transmis-
sion distance between Alice and Charlie with three different SNS
protocols. Here the difference in length between Alice’s and Bob’s
channels is fixed at 50 km.

of Bob’s channel, ηB, Charlie adds an extra loss 1 − ηB/ηA

to Alice’s channel to make the transmittances of these two
channels ηB. On the contrary, if ηA < ηB, Charlie adds an
extra loss 1 − ηA/ηB to Bob’s channel. Since Charlie’s action
does not affect the security, the security of the modified SNS
protocol is guaranteed automatically.

We show the numerical results of the optimal key rate of
the original, the modified, and the asymmetric SNS protocols
with the asymmetric channels. The effect of the finite data size
has been considered in our calculation. The device parameters
used in the simulation are listed in Table I. In Figs. 2 and 3,
we show the optimal key rates of three protocols with the
difference in length between the two channels (LB − LA) fixed
at 50 and 100 km, respectively. In the figures, we have also
compared our results with the linear bound of the repeaterless
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FIG. 3. The optimized key rates (per pulse pair) vs transmis-
sion distance between Alice and Charlie with three different SNS
protocols. Here the difference in length between Alice’s and Bob’s
channels is fixed at 100 km.

TABLE II. The optimal key rates with different SNS protocols.
The device parameters used in the simulation are listed in Table I.

LA (km) LB (km) Asymmetric SNS Modified SNS Original SNS

0 50 7.21 × 10−4 2.89 × 10−4 1.17 × 10−4

150 200 4.73 × 10−7 1.95 × 10−7 5.52 × 10−8

250 300 1.19 × 10−9 5.08 × 10−11 0
0 100 8.89 × 10−5 2.63 × 10−5 8.09 × 10−7

100 200 6.71 × 10−7 1.95 × 10−7 1.73 × 10−9

200 300 2.09 × 10−9 5.08 × 10−11 0

QKD. There are excellent theoretical linear bounds for the
key rate of a repeaterless QKD, such as the famous TGW
bound [65] and the PLOB bound [66]. Also, we show some
details of the optimal key rates with different SNS protocols
in Table II. It is easy to find that in the asymmetric channels,
the performance of the asymmetric SNS protocol is much
better than that of the other two protocols, especially when
the difference in length between Alice’s and Bob’s channels
is large.

V. CONCLUSION

In this paper, we propose an SNS protocol with asymmetric
source parameters and give a security proof of this protocol.
The intensities and the probabilities for sending at Alice’s and
Bob’s sides should satisfy the condition given in Eq. (1) to
guarantee the security in the asymmetric case. We present the
numerical results of different SNS protocols to show that our
asymmetric SNS protocol gives much higher key rate than
the other SNS protocols when Alice’s and Bob’s channels
are different. When the difference in length between Alice’s
and Bob’s channels is 100 km, the key rate of the asymmetric
SNS protocol is tens to hundreds of times higher than that of
the original SNS protocol. Our asymmetric SNS protocol can
be applied directly to the SNS experiments with asymmetric
channels.

If we use the method of two-way classical communication
[76] on our protocol, the key rate of our asymmetric protocol
can be improved further. We shall report this elsewhere.
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APPENDIX: FORMULAS FOR KEY RATE CALCULATION

1. Four-intensity decoy-state method and parameter estimation

In order to make our protocol easy to demonstrate in the
experiment, we give the four-intensity decoy-state method for
our protocol. “Four-intensity” means that Alice (Bob) uses
four different intensities, μ′

A (μ′
B) in signal windows and 0,

μA1 (μB1), μA2 (μB2) in decoy windows. All measurement
results in effective X -windows are used to estimate the bound
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of n1. Only measurement results in effective X̃ (1)-windows are
used to estimate the bound of eph

1 .
The sufficient condition for security is that all decoy pulses

satisfy Eq. (1). If all decoy pulses satisfy Eq. (1), the phase-flip
rate of single-photon states of Z-windows is equal to the
bit-flip rate of single-photon states from any X (i)-windows. In
our specific method in the numerical simulation, we estimate
the phase-flip rate of single-photon states of Z-windows by
the bit-flip rate of single-photon states from X (1)-windows
only. Therefore, we actually need only decoy pulses of X (1)-
windows to satisfy Eq. (1).

The formula for the length of the final key in Eq. (3) can be
written in the form of key rate per time window:

R = pZ
A pZ

B

{
[εA(1 − εB)μ′

Ae−μ′
A + εB(1 − εA)μ′

Be−μ′
B ]

× sZ
1

[
1 − H

(
eph

1

)] − f SZH (EZ )
}
, (A1)

where sZ
1 is the counting rate in Z1-windows, and SZ is the

counting rate of Z-windows. If there are m effective windows
in a set ζ of n time windows, the counting rate of ζ is defined
as Sζ = m/n.

So we need to estimate the bound of 〈sZ
1 〉 and 〈eph

1 〉 by
the four-intensity decoy-state method. Here 〈·〉 stands for the
expected value of a variable. Similarly to the methods in
Ref. [84], the lower bound of 〈sZ

1 〉 is given by

〈
sZ

1

〉
�

〈
sZ

1

〉 = μA1

μA1 + μB1

〈
sZ

10

〉 + μB1

μA1 + μB1

〈
sZ

01

〉
, (A2)

where 〈sZ
10〉 is lower bound of the expected value of the

counting rate of the state |10〉〈10| with

〈
sZ

10

〉= μ2
A2eμA1

〈
SμA10

〉−μ2
A1eμA2

〈
SμA20

〉−(
μ2

A2−μ2
A1

)〈S00〉
μA1μA2(μA2 − μA1)

,

(A3)
and 〈sZ

01〉 is lower bound of the expected value of the counting
rate of the state |01〉〈01| with

〈
sZ

01

〉= μ2
B2eμB1

〈
S0μB1

〉−μ2
B1eμB2

〈
S0μB2

〉−(
μ2

B2−μ2
B1

)〈S00〉
μB1μB2(μB2 − μB1)

.

(A4)
Here 〈Sαβ〉 is the expected value of the counting rate of the
time windows when Alice and Bob send the decoy pulses with
intensities α and β, respectively. If the data size is infinite,
these expected values are exactly the values observed in the
experiments. If the data size is finite, we should use the Cher-
noff bound introduced in the next section to estimate the
bound of the expected values from the observed values and
then substitute the worst cases, the bounds that make the key
rate lowest, of these expected values in the key rate formula.
The upper bound of 〈eph

1 〉 is given by

〈
eph

1

〉
�

〈
eph

1

〉 = 〈T�〉 − e−(μA1+μB1 )〈S00〉/2

e−(μA1+μB1 )(μA1 + μB1)
〈
sZ

1

〉 , (A5)

where 〈T�〉 is the expected value of the error counting rate of
X̃ (1)-windows. If there are m error windows in a set ζ of n time
windows, the error counting rate of ζ is defined as Tζ = m/n.

2. Chernoff bound

In the asymptotic case where the data size is infinite, the
observed values are the same as the expected values. But in the
nonasymptotic case where the data size is finite, the observed
values are different from the expected values. So we need the
Chernoff bound [88] to estimate the range of expected values
from the observed values and use the worst case to ensure that
the final key is secure.

Let X1, X2, . . . , Xn be n random variables whose observed
values are either 0 or 1, X be their sum X = ∑

i Xi, and φ

be the expected value of X . We have the lower and the upper
bound of φ:

φL(X ) = X

1 + δ1(X )
, (A6)

φU (X ) = X

1 − δ2(X )
, (A7)

where δ1(X ) and δ2(X ) are the solutions of the following
equations:

(
eδ1

(1 + δ1)1+δ1

) X
1+δ1 = ξ

2
, (A8)

(
e−δ2

(1 − δ2)1−δ2

) X
1−δ2 = ξ

2
, (A9)

where ξ is the failure probability. With the above equations,
we have

Nαβ〈Sαβ〉 = φL(NαβSαβ ), Nαβ〈Sαβ〉 = φU (NαβSαβ ). (A10)

Here Sαβ is the observed value of the counting rate.
Then in Eq. (A1) we need the real values of sZ

1 and eph
1 in

a specific experiment. So Eqs. (A6)–(A10) can be written in
another form to estimate the upper and the lower bound of real
values from expected values:

XU (φ) = [1 + δ′
1(φ)]φ, (A11)

X L(φ) = [1 − δ′
2(φ)]φ, (A12)

where δ′
1(φ) and δ′

2(φ) are the solutions of the following
equations: (

eδ′
1

(1 + δ′
1)1+δ′

1

)φ

= ξ

2
, (A13)

(
e−δ′

2

(1 − δ′
2)1−δ′

2

)φ

= ξ

2
. (A14)

With the above equations, we have

NZ
1 sZ

1 � X L
(
NZ

1

〈
sZ

1

〉)
,

(A15)
NZ

1

〈
sZ

1

〉
eph

1 � XU
(
NZ

1

〈
sZ

1

〉〈
eph

1

〉)
,

where NZ
1 = Nt pZ

A pZ
B[εA(1− εB)μ′

Ae−μ′
A + εB(1 − εA)μ′

Be−μ′
B ]

is the number of single-photon states in the Z windows when
one and only one of them decides to send and Nt is the total
number of time windows.
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3. Finite key size effect

Similarly to the analysis of the effect of the finite key size
in Ref. [85], we give the key rate formula with the effect of
the finite key size of our asymmetric SNS protocol in the
universally composable framework [89].

If the length of the final key satisfies

Nf = n1
[
1 − H

(
eph

1

)] − f nt H (EZ )

− log2
2

εcor
− 2 log2

1√
2εPAε̂

, (A16)

the protocol is εsec-secret with εsec = 2ε̂ + 4ε̄ + εPA + εn1 ,
and the total security coefficient of the protocol is εtot =
εcor + εsec. Here εcor is the probability that the error correction
fails, ε̄ is the probability that the real value of eph

1 is not
in the range that we estimate, εPA is the failure probability

of the privacy amplification, and εn1 is the probability that
the real value of n1 is not in the range that we estimate.
According to Eqs. (A2)–(A15), we have ε̄ = 3ξ and εn1 = 6ξ .
If we set εcor = ε̂ = εPA = ξ in our numerical simulation,
the total security coefficient of our protocol is εtot = 22ξ =
2.2 × 10−9.

Also, Eq. (A16) can be written in the form of key rate per
time window with some source parameters:

R = pZ
A pZ

B{[εA(1 − εB)μ′
Ae−μ′

A + εB(1 − εA)μ′
Be−μ′

B ]

× sZ
1

[
1 − H

(
eph

1

)] − f SZ H (EZ )}

− 1

Nt

(
log2

2

εcor
+ 2 log2

1√
2εPAε̂

)
. (A17)
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