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Bipartite and multipartite entangled states are of central interest in quantum information processing and
foundational studies. Efficient verification of these states, especially in the adversarial scenario, is a key to
various applications, including quantum computation, quantum simulation, and quantum networks. However,
little is known about this topic in the adversarial scenario. Here we initiate a systematic study of pure-state
verification in the adversarial scenario. In particular, we introduce a general method for determining the minimal
number of tests required by a given strategy to achieve a given precision. In the case of homogeneous strategies,
we can even derive an analytical formula. Furthermore, we propose a general recipe to verifying pure quantum
states in the adversarial scenario by virtue of protocols for the nonadversarial scenario. Thanks to this recipe, the
resource cost for verifying an arbitrary pure state in the adversarial scenario is comparable to the counterpart for
the nonadversarial scenario, and the overhead is at most three times for high-precision verification. Our recipe can
readily be applied to efficiently verify bipartite pure states, stabilizer states, hypergraph states, weighted graph
states, and Dicke states in the adversarial scenario, even if only local projective measurements are accessible.
This paper is an extended version of the companion paper Zhu and Hayashi, Phys. Rev. Lett. 123, 260504 (2019).
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I. INTRODUCTION

Quantum states encode all the information about a quan-
tum system and play a central role in quantum information
processing. For example, bipartite entangled states, espe-
cially maximally entangled states, are crucial to quantum
teleportation, dense coding, and quantum cryptography [1,2].
Multipartite entangled states, such as graph states [3] and
hypergraph states [4–8], are especially useful in (blind)
measurement-based quantum computation (MBQC) [9–19],
quantum error correction [20,21], quantum networks [22–24],
and foundational studies [25–28]. Another important class of
multipartite states, including Dicke states [29,30], are useful
in quantum metrology [31]. Furthermore, multipartite states,
such as tensor-network states, also have extensive applica-
tions in research areas beyond quantum information science,
including condensed matter physics [32,33].

To unleash the potential of multipartite quantum states
in quantum information processing, it is paramount to pre-
pare and verify these states with high precision using lim-
ited resources. To verify quantum states with traditional
tomography [34], however, the resource required increases
exponentially with the number of qubits. Although com-
pressed sensing [35] and direct fidelity estimation (DFE) [36]
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can improve the efficiency, the exponential scaling behavior
cannot be changed in general. As another alternative, self-
testing [15,37,38] is also quite resource consuming although
it is conceptually appealing from the perspective of device
independence.

Recently, a powerful approach known as quantum state ver-
ification (QSV) has attracted increasing attention [39–43]. It
is particularly effective in extracting the key information: the
fidelity with the target state. So far, efficient or even optimal
verification protocols based on local projective measurements
have been constructed for bipartite pure states [39,40,43–47],
Greenberger-Horne-Zeilinger (GHZ) states [48], stabilizer
states (including graph states) [13–15,24,43,49], hypergraph
states [49], weighted graph states [50], and Dicke states [51].
Moreover, the efficiency of this approach has been demon-
strated in experiments [52].

However, the situation is much more troublesome when
we turn to the adversarial scenario, in which the quantum
states of interest are controlled by an untrusted party, Eve.
Efficient QSV in such adversarial scenario is crucial to many
applications in quantum information processing that require
high-security conditions, including blind MBQC [12–16] and
quantum networks [22–24]. Unfortunately, no efficient ap-
proach is known for addressing such adversarial scenario
in general. For example, to verify the simplest nontrivial
hypergraph states (say of three qubits) already requires an as-
tronomical number of measurements [18,42]. What is worse,
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little is known about the resource cost of a given verification
strategy to achieve a given precision [42,53]. As a conse-
quence, no general guideline is known for constructing an
efficient verification strategy or for comparing the efficiencies
of different strategies.

In this paper we initiate a systematic study of pure-state
verification in the adversarial scenario. In particular, we intro-
duce a general method for determining the minimal number
of tests required by a given verification strategy to achieve
a given precision. We also introduce the concept of homoge-
neous strategies, which play a key role in QSV. Thanks to their
high symmetry, we can derive analytical formulas for most
figures of merit of practical interest. The conditions for single-
copy verification are also clarified. Furthermore, we provide a
general recipe to constructing efficient verification protocols
for the adversarial scenario from verification protocols for
the nonadversarial scenario. By virtue of this recipe, we can
verify pure quantum states in the adversarial scenario with
nearly the same efficiency as in the nonadversarial scenario.
For high-precision verification, the overhead in the number of
tests is at most three times. In this way, pure-state verification
in the adversarial scenario can be greatly simplified since it
suffices to focus on the nonadversarial scenario and then apply
our recipe. In addition, our study reveals that entangling mea-
surements are less helpful and often unnecessary in improving
the verification efficiency in the adversarial scenario, which is
counterintuitive at first sight.

Our work is especially helpful to the verification of bi-
partite pure states [39,40,43–47], GHZ states [48], stabilizer
states (including graph states) [43,49], hypergraph states [49],
weighted graph states [50], and Dicke states [51], for which
efficient verification protocols for the nonadversarial scenario
have been constructed recently. By virtue of our recipe,
all these states can be verified in the adversarial scenario
with much higher efficiencies than was possible previously;
moreover, only local projective measurements are required
to achieve high efficiencies. For bipartite pure states, GHZ
states, and qudit stabilizer states, even optimal protocols can
be constructed using local projective measurements [45,48];
see Sec. X.

This paper is an extended version of the companion pa-
per [54].1 The rest of this paper is organized as follows.
In Sec. II, we review the basic framework of QSV in the
nonadversarial scenario. In Sec. III, we clarify the limitation
of previous approaches to QSV and motivate the current study.
In Sec. IV, we formulate the general ideal of QSV in the
adversarial scenario and introduce the main figures of merit.
In Sec. V, we introduce a general method for computing the
main figures of merit in the adversarial scenario. In Sec. VI,
we discuss in detail QSV with homogeneous strategies. In
Sec. VII, we clarify the power of a single test in QSV. In

1This work was originally motivated by the verification of qubit
and qudit hypergraph states and is contained as a part of the
preprint arXiv:1806.05565 (cf. Ref. [49]). However, the general
framework of QSV in the adversarial scenario we developed applies
to all pure states, not only to hypergraph states. To discuss this
topic comprehensively, we finally decided to present these results
independently.

Sec. VIII, we determine the minimal number of tests required
by a general verification strategy to achieve a given precision.
In Sec. IX, we propose a general recipe to constructing
efficient verification protocols for the adversarial scenario
from protocols devised for the nonadversarial scenario. In
Sec. X, we demonstrate the power of our recipe via its ap-
plications to many important bipartite and multipartite quan-
tum states. In Sec. XI, we compare QSV with a number of
other approaches for estimating or verifying quantum states.
Section XII summarizes this paper. To streamline the presen-
tation, most technical proofs are relegated to the Appendices.
In these Appendices, we prove many results presented in
the main text, including Theorems 1–6, Lemmas 1–12, and
Proposition 3. We also present a simpler proof of Eq. (1),
which was originally proved in Ref. [43].

II. SETTING THE STAGE

In this section we first review the basic framework of QSV
in the nonadversarial scenario. The main results presented
here were established by Pallister, Linden, and Montanaro
(PLM) [43], but we have simplified the derivation. These
results will serve as a benchmark for understanding pure-state
verification in the adversarial scenario, which is the main
focus of this paper. Then we discuss the connection between
QSV and fidelity estimation.

A. Verification of pure states: Nonadversarial scenario

Consider a device that is supposed to produce the target
state |�〉 in the (generally multipartite) Hilbert space H. In
practice, the device may actually produce σ1, σ2, . . . , σN in N
runs. Following Ref. [43], we assume the fidelity 〈�|σ j |�〉
either equals 1 for all j or satisfies 〈�|σ j |�〉 � 1 − ε for all j
(the limitation of this assumption will be analyzed in Sec. III).
Now, the task is to determine which is the case.

To achieve this task, we can perform N tests and accept the
states produced if and only if (iff) all tests are passed. Each
test is specified by a two-outcome measurement {El , 1 − El}
chosen randomly from a set of accessible measurements. The
test operator El corresponds to passing the test and satisfies
the condition 0 � El � 1. We assume that the target state |�〉
can always pass the test, that is, El |�〉 = |�〉 for each El . A
verification strategy is characterized by all the tests El and the
probabilities μl for performing these tests.

To determine the maximal probability of failing to reject
the bad case, it is convenient to introduce the verification
operator � :=∑l μlEl . As we shall see later, most key
properties of a verification strategy are determined by the
verification operator �, irrespective of how the test operators
are constructed. Therefore, � is also referred to as a strategy
when there is no danger of confusion. By construction, the
target state |�〉 is an eigenstate of � with the largest eigen-
value 1. Denote by β(�) the second largest eigenvalue of
�, then β(�) is equal to the operator norm of � − |�〉〈�|,
that is, β(�) = ‖� − |�〉〈�|‖. Let ν(�) := 1 − β(�) be the
spectral gap from the largest eigenvalue. When 〈�|σ j |�〉 �
1 − ε, the maximum probability that σ j can pass a test on
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average is given by

max
〈�|σ |�〉�1−ε

tr(�σ ) = 1 − [1 − β(�)]ε = 1 − ν(�)ε, (1)

where the maximization in the left-hand side runs over
all quantum states σ that satisfy the fidelity constraint
〈�|σ |�〉 � 1 − ε. Equation (1) was originally derived by
PLM [43] for strategies composed of projective tests, but their
proof also applies to general strategies with nonprojective
tests; see Appendix A for a simpler proof.

After N runs, σ j in the bad case can pass all tests with
probability at most [1 − ν(�)ε]N . This is also the maximum
probability that the verification strategy fails to detect the bad
case. To achieve significance level δ (confidence level 1 − δ),
that is, [1 − ν(�)ε]N � δ, the minimum number of tests is
given by [43]

NNA(ε, δ,�) =
⌈

ln δ

ln[1 − ν(�)ε]

⌉
�
⌈

ln δ−1

ν(�)ε

⌉
, (2)

where NA in the subscript means nonadversarial. This number
is the main figure of merit of concern in QSV because to a
large extent it determines the resource costs of implementing
the verification strategy �. Note that a single test is sufficient
if

ν(�)ε + δ � 1. (3)

According to Eq. (2), the efficiency of the strategy � is
determined by the spectral gap ν(�). The optimal protocol
is obtained by maximizing the spectral gap ν(�). If there
is no restriction on the accessible measurements, then the
optimal protocol is composed of the projective measurement
{|�〉〈�|, 1 − |�〉〈�|}, in which case we have � = |�〉〈�|
and ν(�) = 1, so that

NNA(ε, δ,�) =
⌈

ln δ

ln(1 − ε)

⌉
�
⌈

ln δ−1

ε

⌉
. (4)

In addition, the requirement in Eq. (3) reduces to

ε + δ � 1. (5)

This efficiency cannot be improved further even if we can
perform collective measurements. In particular, the scaling
behaviors of ε−1 ln δ−1 with ε and δ are the best we can expect.

In practice, quite often the target state |�〉 is entangled, but
it is not easy to perform entangling measurements. It is there-
fore crucial to devise efficient verification protocols based on
local operations and classical communication (LOCC). Here,
by “efficient” we mean that the protocols can be applied
in practice with reasonable resource costs, which is a much
stronger requirement than what is usually understood in com-
puter science. Ideally, the inverse spectral gap 1/ν(�) should
be independent of the system size (the number of qubits say)
or grow no faster than a low-order polynomial. In addition,
the coefficients should be reasonably small. It turns out many
important quantum states in quantum information processing
can be verified efficiently with respect to these stringent
criteria. Aside from the total number N of tests determined by
ε, δ, and ν(�), the number of potential measurement settings
is also of concern if it is difficult to switch measurement
settings. Nevertheless, most of our results in Secs. II–IX are
independent of the specific details (including the number of

potential measurement settings) of a verification protocol once
the verification operator is fixed.

Here, we compare the approach presented above with
previous works [39,40]. In mathematical statistics, we often
discuss hypothesis testing in the framework of uniformly most
powerful test among a certain class of tests. In this case,
we fix a certain set of states S0, and impose to our test the
condition that the probability of erroneously rejecting states
in S0 is upper bounded by a certain value δ′ � 0. Under this
condition, we maximize the probability of detecting a state σ

in Sc, where Sc is the complement of S0 in the state space.
When a test maximizes the probability uniformly for every
state σ in Sc, it is called a uniformly most powerful (UMP)
test. However, since the detecting probability depends on the
state σ , such a test does not exist in general. In this paper,
S0 and δ′ are chosen to be {|�〉〈�|} and 0, respectively. We
consider the case in which the same strategy � is applied
N times. Since we support the state |�〉 only when all our
outcomes correspond to the pass eigenspace of �, our test is
UMP in this case.

When the set S0 is chosen as {σ | 〈�|σ |�〉 � 1 − ε′}, and
δ′ is a nonzero value, the problem is more complicated. Such
a setting arises when we allow a certain amount of error. To
resolve this problem, imposing a certain symmetric condition
to our tests, Refs. [39,40] discussed several optimization
problems and investigated their asymptotic behaviors when
|�〉 is a maximally entangled state.

B. Connection with fidelity estimation

When all states σ j produced by the device are identical to
σ , let F = 〈�|σ |�〉 be the fidelity between σ and the target
state |�〉; then we have

[1 − τ (�)]F + τ (�) � tr(�σ ) � ν(�)F + β(�), (6)

where τ (�) is the smallest eigenvalue of �. Therefore,

1 − tr(�σ )

1 − τ (�)
� 1 − F � 1 − tr(�σ )

ν(�)
. (7)

So the passing probability tr(�σ ) provides upper and lower
bounds for the infidelity (and fidelity). In general, Eqs. (6)
and (7) still hold if F and tr(�σ ) are replaced by their
averages over all σ j . Note that the inequalities in Eqs. (6)
and (7) are saturated when τ (�) = β(�); such a strategy � is
called homogeneous and is discussed in more detail in Sec. VI.
In this case, we have

1 − F = 1 − tr(�σ )

ν(�)
, F = tr(�σ ) − β(�)

ν(�)
. (8)

So, the fidelity with the target state can be estimated from the
passing probability. The standard deviation of this estimation
reads as


F =
√

p(1 − p)

ν
√

N
=
√

(1 − F )(F + ν−1 − 1)√
N

� 1

2ν
√

N
,

(9)

where p = tr(�σ ) = νF + β � F and N is the number of
tests performed. Note that this standard deviation decreases
monotonically with ν and N . This conclusion is related to the
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testing of binomial distributions discussed in Ref. [40]. When
F � 1/2, which is the case of most interest, we also have


F =
√

p(1 − p)

ν
√

N
�

√
F (1 − F )

ν
√

N
(10)

given that p � F .

III. VERIFICATION OF PURE STATES: A CRITICAL
REEXAMINATION

In this section we reexamine the framework of QSV pro-
posed by PLM [43] as summarized in Sec. II A above and
clarify the limitation of this framework. In addition, we show
that the limitation can be eliminated when states prepared in
different runs are independent. The situation is much more
complicated when these states are correlated, which motivates
the study of QSV in the adversarial scenario presented in the
rest of this paper.

A. What is verified in QSV?

Consider a device that is supposed to produce the target
state |�〉 in the Hilbert space H. In practice, the device may
actually produce σ1, σ2, . . . , σN in N runs. In the framework
of PLM, it is assumed that the fidelity 〈�|σ j |�〉 either equals
1 for all j or satisfies 〈�|σ j |�〉 � 1 − ε for all j [43]. In
the independent and identically distributed (i.i.d.) case, all σ j

are identical, so the PLM assumption is actually not neces-
sary (or automatically guaranteed) to derive the conclusions
presented in Sec. II A. If we drop the i.i.d. assumption, then
the assumption of PLM is quite unnatural and difficult to
guarantee. Moreover, the conclusion on QSV drawn based
on this assumption is much weaker than what the word
“verify” usually conveys. Suppose the test El is performed
with probability μl and � =∑l μlEl as in Sec. II A. After N
tests are passed, we can only conclude that the probability of
passing N tests is at most [1 − ν(�)ε]N if 〈�|σ j |�〉 � 1 − ε

for all j. In other words, passing these tests only confirms
that 〈�|σ j |�〉 > 1 − ε for at least one run j with significance
level [1 − ν(�)ε]N . Such a weak conclusion is usually far
from enough in practice. Note that the property of each run
on average is more relevant if we want to make sure that
the device works as expected most of the time rather than
occasionally.

B. Independent state preparation

Fortunately, we can drop the PLM assumption and draw
a stronger conclusion as long as all states σ j are prepared
independently of each other. Note that we do not need the
i.i.d. assumption. The variation in σ j over different runs
may be caused by inevitable imperfections of the device or
fluctuations in various relevant parameters, for example.

Proposition 1. Suppose the N states σ1, σ2, . . . , σN are
independent of each other. Then, the probability that they can
pass all N tests associated with the strategy � satisfies

N∏
j=1

tr(�σ j ) � [1 − ν(�)ε̄]N , (11)

where ε̄ =∑ j ε j/N with ε j = 1 − 〈�|σ j |�〉 is the average
infidelity.

This proposition guarantees that the average fidelity satis-
fies the inequality

∑
j〈�|σ j |�〉/N > 1 − ε with significance

level δ = [1 − ν(�)ε]N if N tests are passed. In addition, to
verify |�〉 within infidelity ε and significance level δ, which
means [1 − ν(�)ε]N � δ, the minimum number of tests reads
as

NNA(ε, δ,�) =
⌈

ln δ

ln[1 − ν(�)ε]

⌉
�
⌈

ln δ−1

ν(�)ε

⌉
. (12)

This formula is identical to the one in Eq. (2), but it does
not rely on the unnatural assumption imposed by PLM [43].
Accordingly, the meaning of “verification” is different. Here,
we can verify the average fidelity of the states σ1, σ2, . . . σN

prepared by the device rather than the maximal fidelity.
Nevertheless, our conclusion relies on the implicit assumption
that the average fidelity of states produced by the device after
the verification procedure is the same as the average during
the verification procedure. This assumption is reasonable
in the nonadversarial scenario and is often taken for granted in
practice. In case this assumption does not hold, then we have
to consider QSV in the adversarial scenario, which is a main
focus of this paper.

Proof of Proposition 1.

N∏
j=1

tr(�σ j ) �
N∏

j=1

[1 − ν(�)ε j] � [1 − ν(�)ε̄]N . (13)

Here, the first inequality follows from Eq. (1) and is saturated
iff each σ j is supported in the subspace associated with the
largest and second largest eigenvalues of �. The second
inequality follows from the familiar inequality between the
geometric mean and arithmetic mean and is saturated iff all
ε j are equal to ε̄; that is, all σ j have the same fidelity (and
infidelity) with the target state. Note that variation in σ j cannot
increase the passing probability once the average infidelity ε̄

is fixed. �

C. Correlated state preparation

Here, we show that the conclusion in Secs. II A and III B
will fail if the states σ1, σ2, . . . , σN are correlated. As a special
example, suppose the device produces the ideal target state
(|�〉〈�|)⊗N in N runs with probability 0 < a < 1 and the
alternative quantum state σ⊗N with probability 1 − a, where
〈�|σ |�〉 = 1 − ε′ < 1. The reduced state of each party reads
as a(|�〉〈�|) + (1 − a)σ and its infidelity with the target
state is ε = (1 − a)ε′. Note that the device can pass N tests
with probability at least a no matter how large N is. So,
it is impossible to verify the target state within infidelity
ε = (1 − a)ε′ and significance level δ < a using the approach
presented in Sec. II A or that in Sec. III B. This observation
further reveals the limitation of the PLM framework of QSV.
To overcome this difficulty, we need to consider a different
framework of QSV as formulated in the next section.

062335-4



GENERAL FRAMEWORK FOR VERIFYING PURE QUANTUM … PHYSICAL REVIEW A 100, 062335 (2019)

IV. QUANTUM STATE VERIFICATION IN THE
ADVERSARIAL SCENARIO

Now, we turn to the adversarial scenario in which the
device for generating quantum states is controlled by a
potentially malicious adversary. In this case, the device may
produce arbitrary correlated or even entangled states. Efficient
verification of quantum states in such adversarial scenario
is crucial to many tasks in quantum information processing
that entail high-security requirements, such as blind quan-
tum computation [12–16] and quantum networks [22–24].
However, little is known about this topic in the literature.
The approach of PLM does not apply as illustrated by the
example of correlated state preparation in Sec. III C. Most
other studies in the literature only focus on specific families
of states, such as graph states [13–15,24] and hypergraph
states [18,42]. In addition, known protocols are too resource
consuming to be applied in practice, especially for hypergraph
states, in which case the best protocol known in the literature
requires an astronomical number of tests already for three-
qubit hypergraph states. The difficulty in constructing efficient
verification protocols in the adversarial scenario is tied to the
fact that even for a given protocol, no efficient method is
available for determining the minimal resource cost necessary
to reach the target precision.

In this section we introduce a general framework of pure-
state verification in the adversarial scenario together with the
main figures of merit. The basic ideas presented here will
serve as a stepping stone for the following study.

A. Formulation

To establish a reliable and efficient framework for verifying
pure states in the adversarial scenario, first note that the
verification and application of a quantum state cannot be
completely separated in the adversarial scenario. Otherwise,
the device may produce ideal target states in the verification
stage and so can always pass the tests, but produce a garbage
state in the application stage. To resolve this problem, suppose
the device produces an arbitrary correlated or entangled state
ρ on the whole system H⊗(N+1). Our goal is to ensure that the
reduced state on one system (for application) has infidelity
less than ε by performing N tests on other systems. We can
randomly choose N systems and apply a verification strategy
� to each system chosen and accept the state on the remaining
system iff all N tests are passed. Since N systems are chosen
randomly, we may assume that ρ is permutation invariant
without loss of generality.

Suppose the strategy � is applied to the first N systems,
then the probability that ρ can pass N tests reads as

pρ = tr[(�⊗N ⊗ 1)ρ]. (14)

If N tests are passed, then the reduced state on system N + 1
(assuming pρ > 0) is given by

σ ′
N+1 = p−1

ρ tr1,2,...,N [(�⊗N ⊗ 1)ρ], (15)

where tr1,2,...,N means the partial trace over the systems
1, 2, . . . , N . The fidelity between σ ′

N+1 and the target state |�〉
reads as

Fρ = 〈�|σ ′
N+1|�〉 = p−1

ρ fρ, (16)

where

fρ = tr[(�⊗N ⊗ |�〉〈�|)ρ]. (17)

When ρ = σ⊗(N+1) is a tensor power of the state σ with
0 < ε′ = 1 − 〈�|σ |�〉 < 1, we have pρ � [1 − ν(�)ε′]N ,
σ ′

N+1 = σ , and Fρ = 1 − ε′. These conclusions coincide with
the counterpart for the nonadversarial scenario as expected.
The situation is different if ρ does not have this form. Suppose
ρ = a(|�〉〈�|)⊗(N+1) + (1 − a)σ⊗(N+1) with 0 < a < 1 for
example (cf. Sec. III C). If N tests are passed, then the reduced
state of party N + 1 reads as

σ ′
N+1 = a|�〉〈�| + bσ

a + b
, (18)

where b := (1 − a)[tr(�σ )]N satisfies

b � (1 − a)[1 − ν(�)ε′]N (19)

and decreases exponentially with N unless tr(�σ ) = 0.
Therefore, the infidelity 1 − 〈�|σ ′

N+1|�〉 approaches zero
exponentially with N even if a is arbitrarily small. If the
infidelity is bounded from below 1 − 〈�|σ ′

N+1|�〉 � ε for
0 < ε < 1, then a should approach zero as N increases;
accordingly, the passing probability will approach zero. This
observation indicates that we can verify the target state within
any infidelity 0 < ε < 1 and significance level 0 < δ < 1
even when the states prepared are correlated, which demon-
strates the advantage of the alternative approach presented
above over the PLM approach. In the rest of this paper we will
show that indeed it is possible to verify pure states efficiently
even if the device is controlled by the adversary and can
produce arbitrary correlated or even entangled states allowed
by quantum mechanics.

B. Main figures of merit

To characterize the performance of the strategy � adapted
to the adversarial scenario, here we introduce four figures of
merit. Define

ζ (N, δ,�) := min
ρ

{ fρ | pρ � δ}, 0 � δ � 1, (20a)

η(N, f ,�) := max
ρ

{pρ | fρ � f }, 0 � f � 1, (20b)

F (N, δ,�) := min
ρ

{
p−1

ρ fρ
∣∣pρ � δ

}
, 0 < δ � 1, (20c)

F (N, f ,�) := min
ρ

{
p−1

ρ fρ
∣∣ fρ � f

}
, 0 < f � 1, (20d)

where N � 1 is the number of tests performed and the mini-
mization or maximization is taken over permutation-invariant
quantum states ρ on H⊗(N+1). The four figures of merit are
closely related to each other, as we shall see later. In practice,
F (N, δ,�) is a main figure of merit of interest; it denotes
the minimum fidelity of the reduced state on the remaining
party (with the target state), assuming that ρ can pass N tests
with significance level at least δ. By definition, F (N, δ,�)
and ζ (N, δ,�) are nondecreasing in δ, while F (N, f ,�) and
η(N, f ,�) are nondecreasing in f . A simple upper bound for
F (N, δ,�) can be derived by considering quantum states ρ on
H⊗(N+1) that can be expressed as tensor powers in Eq. (20c),
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which yields

F (N, δ,�) � max

{
0, 1 − 1 − δ1/N

ν(�)

}
. (21)

The four figures of merit defined in Eq. (20) are tied
to the two-dimensional region RN,� composed of all the
points (pρ, fρ ) for permutation-invariant density matrices ρ

on H⊗(N+1), that is,

{(pρ, fρ )|ρ on H⊗(N+1) are permutation invariant}. (22)

This geometric picture will be very helpful to understanding
QSV in the adversarial scenario. By definition, the region
RN,� is convex since the state space is convex, and pρ, fρ are
both linear in ρ. What is not so obvious at the moment is that
the region RN,� is actually a convex polygon.

In addition to characterizing the verification precision that
is achievable for a given number N of tests, it is equally
important to determine the minimum number of tests required
to reach a given precision. To this end, for 0 < ε, δ < 1, we
define N (ε, δ,�) as the minimum value of the positive integer
N that satisfies the condition F (N, δ,�) � 1 − ε, namely,

N (ε, δ,�) := min{N � 1 | F (N, δ,�) � 1 − ε}. (23)

Then Eq. (21) implies that

N (ε, δ,�) �
⌈

ln δ

ln[1 − ν(�)ε]

⌉
= NNA(ε, δ,�) (24)

as expected since it is much more difficult to verify a quantum
state in the adversarial scenario than nonadversarial scenario.
How much overhead is required in the adversarial scenario?
Can we achieve the same scaling behaviors in ε and δ?

In general, it is very difficult to derive an analytical formula
for N (ε, δ,�) if not impossible. Therefore, it is nontrivial
to determine the efficiency limit of QSV in the adversarial
scenario even if there is no restriction on the accessible mea-
surements, or even if the target state belongs to a single party,
which is in sharp contrast with QSV in the nonadversarial
scenario. Indeed, it took a long time and a lot of efforts to
settle this issue.

V. COMPUTATION OF THE MAIN FIGURES OF MERIT

In this section we develop a general method for computing
the figures of merit defined in Eq. (20), which characterize the
verification precision in the adversarial scenario. We also clar-
ify the properties of these figures of merit in preparation for
later study. Both algebraic derivation and geometric pictures
will be helpful in our analysis.

A. Key observations

Suppose the verification operator � for the target state
|�〉 ∈ H has spectral decomposition � =∑D

j=1 λ j� j , where
λ j are the eigenvalues of � arranged in decreasing order 1 =
λ1 > λ2 � · · · � λD � 0, and � j are mutually orthogonal
rank-1 projectors with �1 = |�〉〈�|. Here, the second largest
eigenvalue β := λ2 and the smallest eigenvalue τ := λD de-
serve special attention because they determine the perfor-
mance of � to a large extent, as we shall see later. Suppose the
adversary produces the state ρ on the whole system H⊗(N+1),
which is permutation invariant (cf. Sec. IV). Without loss of

generality, we may assume that ρ is diagonal in the product
basis constructed from the eigenbasis of � (as determined by
the projectors � j) since pρ , fρ , and Fρ only depend on the
diagonal elements of ρ.

Let k = (k1, k2, . . . , kD) be a sequence of D non-negative
integers that sum up to N + 1, that is,

∑
j k j = N + 1. Let

SN be the set of all such sequences. For each k ∈ SN , we
can define a permutation-invariant diagonal density matrix ρk
on H⊗(N+1) as the uniform mixture of all permutations of
�

⊗k1
1 ⊗ �

⊗k2
2 ⊗ · · · ⊗ �

kD
D . Then, any permutation-invariant

diagonal density matrix ρ on H⊗(N+1) can be expressed as
ρ =∑k∈SN

ckρk, where ck form a probability distribution on
SN . Accordingly,

pρ =
∑

k∈SN

ckηk(λ), fρ =
∑

k∈SN

ckζk(λ), (25)

Fρ = fρ
pρ

=
∑

k∈SN
ckζk(λ)∑

k∈SN
ckηk(λ)

, (26)

where λ := (λ1, λ2, . . . , λD) and

ηk(λ) := pρk =
∑

i|ki>0

ki

(N + 1)
λ

ki−1
i

∏
j 	=i|k j>0

λ
k j

j ,

(27)

ζk(λ) := fρk = k1

N + 1

∏
i|ki>0

λ
ki
i .

Here, we set λ0
i = 1 even if λi = 0.

The assumption 1 = λ1 > λ2 � · · · � λD = τ � 0 im-
plies that ζk(λ) � ηk(λ) � 1; the second inequality is sat-
urated iff k = k0 := (N + 1, 0, . . . , 0), in which case both
inequalities are saturated, that is, ζk0 (λ) = ηk0 (λ) = 1. As an
implication, we have fρ � pρ � 1, and the second inequality
is saturated iff ρ = ρk0 = (|�〉〈�|)⊗(N+1), in which case we
have fρ = pρ = 1. This observation implies that

F (N, δ = 1,�) = ζ (N, δ = 1,�) = 1, (28)

F (N, f = 1,�) = η(N, f = 1,�) = 1. (29)

By contrast, ηk(λ) � τN , and the lower bound is saturated
when k = (0, . . . , 0, N + 1). Accordingly, pρ � τN , and the
lower bound is saturated when ρ = �

⊗(N+1)
D .

In view of the above discussion, the region RN,� defined in
Eq. (22) is the convex hull of (ηk(λ), ζk(λ)) for all k ∈ SN ,
which is a polygon, as illustrated in Fig. 1. It should be empha-
sized that RN,� only depends on the distinct eigenvalues of �,
but not on their degeneracies (although λ1 is not degenerate by
assumption). The same conclusion also applies to the figures
of merit F (N, δ,�), F (N, f ,�), ζ (N, δ,�), and η(N, f ,�)
defined in Eq. (20) given that they are completely determined
by the region RN,�. For example, ζ (N, δ,�) corresponds
to the lower boundary of the intersection of RN,� and the
vertical line pρ = δ as long as δ � τN (cf. Lemma 2 below).
This geometric picture is very helpful to understanding the
properties of F (N, δ,�), although in general it is not easy to
find an explicit analytical formula. As N increases, the region
RN,� concentrates more and more around the diagonal defined
by the equation f = p as illustrated in Fig. 1, which means
F (N, δ,�) approaches 1 as N increases.

Denote by σ (�) the set of distinct eigenvalues of �. If �′
is another verification operator for |�〉 with β(�′) < 1 and
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FIG. 1. The region RN,� composed of (pρ, fρ ) as defined in
Eq. (22). This region is the convex hull of points (ηk(λ), ζk(λ)) for
k ∈ SN , which are highlighted as red dots. Here, � has three distinct
eigenvalues, namely, 1, 0.4, and 0.2.

σ (�′) ⊂ σ (�), then RN,�′ ⊂ RN,� and �′ is equally efficient
or more efficient than � in the sense that

F (N, δ,�′) � F (N, δ,�), N (ε, δ,�′) � N (ε, δ,�).
(30)

This observation is instructive to constructing efficient verifi-
cation protocols, as we shall see in Sec. VI.

B. Computation of the verification precision

Here, we show that the four figures of merit ζ (N, δ,�),
η(N, f ,�), F (N, δ,�), and F (N, f ,�) can be computed by
linear programming. Lemmas 1 and 2 below are proved in
Appendix B. To start with, we first determine η(N, 0,�), the
maximum of pρ under the condition fρ = 0.

Lemma 1. η(N, 0,�) = δc, where

δc :=
{
βN , τ > 0,

max{βN , 1/(N + 1)}, τ = 0.
(31)

Lemma 1 has implications for the figures of merit
F (N, δ,�) and ζ (N, δ,�) as well:

F (N, δ,�) = ζ (N, δ,�) = 0, 0 < δ � δc (32)

F (N, δ,�) > 0, ζ (N, δ,�) > 0, δc < δ � 1. (33)

The equality ζ (N, δ,�) = 0 also holds when δ = 0.
Next, we introduce simple alternative definitions of the

figures of merit defined in Eq. (20). Define

ζ̃ (N, δ,�) :=
{

minρ{ fρ | pρ = δ}, δc � δ � 1,

0, 0 � δ � δc,
(34a)

η̃(N, f ,�) := max
ρ

{pρ | fρ = f }, 0 � f � 1, (34b)

F̃ (N, δ,�) := δ−1ζ̃ (N, δ,�), 0 < δ � 1, (34c)

F̃ (N, f ,�) := [η̃(N, f ,�)]−1 f , 0 < f � 1. (34d)

Here, δc in Eq. (34a) can be replaced by τN given that
minρ { fρ | pρ = δ} = 0 for τN � δ � δc.

Lemma 2. Suppose N is a positive integer and � is a
verification operator. Then

ζ (N, δ,�) = ζ̃ (N, δ,�), 0 � δ � 1, (35a)

η(N, f ,�) = η̃(N, f ,�), 0 � f � 1, (35b)

F (N, δ,�) = F̃ (N, δ,�), 0 < δ � 1, (35c)

F (N, f ,�) = F̃ (N, f ,�), 0 < f � 1. (35d)

For 0 < δ, f � 1, Lemma 2 implies that

F (N, δ,�) = δ−1ζ̃ (N, δ,�) = δ−1ζ (N, δ,�), (36a)

F (N, f ,�) = [η̃(N, f ,�)]−1 f = [η(N, f ,�)]−1 f . (36b)

To compute F (N, δ,�) and F (N, f ,�), it suffices to com-
pute ζ (N, δ,�) and η(N, f ,�). By virtue of Eq. (25) and
Lemma 2, ζ (N, δ,�) with δc � δ � 1 and η(N, f ,�) with
0 � f � 1 can be computed via linear programming,

ζ (N, δ,�) = min
{ck}

⎧⎨
⎩
∑

k∈SN

ckζk(λ)

∣∣∣∣∣∣
∑

k∈SN

ckηk(λ) = δ

⎫⎬
⎭ ,

(37a)

η(N, f ,�) = max
{ck}

⎧⎨
⎩
∑

k∈SN

ckηk(λ)

∣∣∣∣∣∣
∑

k∈SN

ckζk(λ) = f

⎫⎬
⎭ ,

(37b)

where ck form a probability distribution on SN . Here, the
minimum in Eq. (37a) can be attained at a distribution {ck}
that is supported on at most two points in SN ; a similar
conclusion holds for the maximum in Eq. (37b). These con-
clusions are tied to the geometric fact that any boundary point
of RN,� lies on a line segment that connects two extremal
points. This observation can greatly simplify the computation
of F (N, δ,�) and F (N, f ,�) as well as ζ (N, δ,�) and
η(N, f ,�). In addition to the computational value, Eq. (37)
implies that ζ (N, δ,�) and η(N, f ,�) are piecewise linear
functions, whose turning points correspond to the extremal
points of the region RN,� and have the form (ηk(λ), ζk(λ))
for some k ∈ SN (cf. Lemma 14 in Appendix B).

C. Properties of the main figures of merit

Next, we summarize the main properties of the five figures
of merit ζ (N, δ,�), η(N, f ,�), F (N, δ,�), F (N, f ,�), and
N (ε, δ,�); the proofs are relegated to Appendix B. These
properties are tied to the fact that the region RN,� is a convex
polygon.

Lemma 3. The following statements hold:
(1) ζ (N, δ,�) is convex and nondecreasing in δ for 0 �

δ � 1 and is strictly increasing for δc � δ � 1.
(2) η(N, f ,�) is concave and strictly increasing in f for

0 � f � 1.
(3) F (N, δ,�) is nondecreasing in δ for 0 < δ � 1 and is

strictly increasing for δc � δ � 1.
(4) F (N, f ,�) is strictly increasing in f for 0 < f � 1.
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Lemma 4. Suppose 0 � δ, f � 1. Then

η(N, ζ (N, δ,�),�) = max{δ, δc}, (38a)

ζ (N, η(N, f ,�),�) = f . (38b)

Lemma 5. Suppose N � 2 and 0 < δ, f � 1. Then

ζ (N, δ,�) � ζ (N − 1, δ,�), (39a)

F (N, δ,�) � F (N − 1, δ,�), (39b)

η(N, f ,�) � η(N − 1, f ,�), (39c)

F (N, f ,�) � F (N − 1, f ,�). (39d)

The first two inequalities are saturated iff δ � δc or δ = 1,
where δc is given in Eq. (31). The last two inequalities are
saturated iff f = 1.

Next, we turn to the figure of merit N (ε, δ,�) defined in
Eq. (23). As an implication of Lemma 3, N (ε, δ,�) increases
monotonically with 1/ε and 1/δ as expected. The follow-
ing lemma provides several equivalent ways for computing
N (ε, δ,�).

Lemma 6. Suppose 0 < ε, δ < 1. Then

N (ε, δ,�) = min{N | ζ (N, δ,�) � δ(1 − ε)} (40)

= min{N | η(N, δ(1 − ε),�) � δ} (41)

= min{N |F (N, δ(1 − ε),�) � (1 − ε)}. (42)

Finally, we present a lemma which is useful for comparing
the efficiencies of two verification operators. Let �̃ be another
verification operator for the same target state as �.

Lemma 7. Suppose ζk(λ) � ζ (N, δ = ηk(λ), �̃) for all
k ∈ SN . Then

ζ (N, δ,�) � ζ (N, δ, �̃), 0 � δ � 1, (43a)

F (N, δ,�) � F (N, δ, �̃), 0 < δ � 1, (43b)

N (ε, δ,�) � N (ε, δ, �̃), 0 < ε, δ < 1. (43c)

Lemma 7 is applicable in particular when the set of distinct
eigenvalues of � is contained in the counterpart of �̃, that is,
σ (�) ⊂ σ (�̃), assuming β(�) < 1 [cf. Eq. (30)].

VI. HOMOGENEOUS STRATEGIES

A strategy (or verification operator) � for |�〉 is homoge-
neous if it has the form

� = |�〉〈�| + λ(1 − |�〉〈�|), (44)

where 0 � λ < 1. In this case, all eigenvalues of � are equal
to λ except for the largest one, so we have β = τ = λ and
ν = 1 − λ. Incidentally, the homogeneous strategy � can
always be realized by performing the test P = |�〉〈�| with
probability 1 − λ and the trivial test with probability λ. By
“trivial test” we mean the test operator is equal to the identity
operator. For bipartite pure states [39,40,43–45] and stabilizer
states [43], the homogeneous strategy can also be realized by
virtue of local projective measurements when λ is sufficiently
large (see Sec. X).

In the nonadversarial scenario, a smaller λ achieves a better
performance among homogeneous strategies. Here, we clarify
what λ is optimal in the adversarial scenario, which turns out
to be very different from the nonadversarial scenario.

Given that the homogeneous strategy � in Eq. (44) is
determined by the parameter λ, it is more informative to
express the figures of merit defined in Eqs. (20) and (23) as
follows:

F (N, δ, λ) := F (N, δ,�), (45a)

F (N, f , λ) := F (N, f ,�), (45b)

ζ (N, δ, λ) := ζ (N, δ,�), (45c)

η(N, f , λ) := η(N, f ,�), (45d)

N (ε, δ, λ) := N (ε, δ,�). (45e)

Then Lemma 1 implies that

η(N, 0, λ) = δc =
{
λN , λ > 0,

1/(N + 1), λ = 0.
(46)

Suppose �̃ is an arbitrary verification operator with eigen-
values 1 = λ̃1 > λ̃2 � · · · � λ̃D � 0. Then we have the in-
equality F (N, δ, λ̃ j ) � F (N, δ, �̃) for 2 � j � D according
to Eq. (30). Therefore, the optimal performance can always be
achieved by a homogeneous strategy if there is no restriction
on the accessible measurements. This observation reveals
the importance of homogeneous strategies to QSV in the
adversarial scenario.

In preparation for the following discussions, we need to
introduce a few more notations. Denote by Z and Z�0 the set
of integers and the set of non-negative integers, respectively.
For k ∈ Z�0, define

ηk (λ) := (N + 1 − k)λk + kλk−1

N + 1
,

(47)

ζk (λ) := (N + 1 − k)λk

N + 1
.

We take the convention that λ0 = η0(λ) = ζ0(λ) = 1 even if
λ = 0. Note that

ηk (λ) = ηk(λ), ζk (λ) = ζk(λ) (48)

when k ∈ {0, 1, . . . , N + 1}, where k = (N + 1 − k, k), λ =
(1, λ), and ηk(λ), ζk(λ) are defined in Eq. (27). The extension
of the definitions of ηk (λ) and ζk (λ) over k to the set Z�0

will be useful in proving several important results on homo-
geneous strategies.

A. Singular homogeneous strategy

When λ = 0, the verification operator � = |�〉〈�| is sin-
gular (has a zero eigenvalue), and Eq. (47) reduces to

ηk (λ) =
⎧⎨
⎩

1, k = 0,

(N + 1)−1, k = 1,

0, k � 2,

ζk (λ) =
{

1, k = 0,

0, k � 1.

(49)
By Lemma 2, we have F (N, δ, λ = 0) = ζ (N, δ, λ = 0)/δ for
0 < δ � 1, where

ζ (N, δ, λ = 0) = max

{
0,

(N + 1)δ − 1

N

}

=
{

0, 0 � δ � (N + 1)−1,
(N+1)δ−1

N , (N + 1)−1 � δ � 1.
(50)
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Given 0 < ε, δ < 1, the minimum number of tests required to
verify the pure state |�〉 within infidelity ε and significance
level δ reads as

N (ε, δ, λ = 0) =
⌈

1 − δ

εδ

⌉
. (51)

Here, the scaling with 1/δ is not satisfactory although the
strategy is optimal in the nonadversarial scenario according
to Eqs. (2) and (12). Fortunately, nonsingular homogeneous
strategies can achieve a better scaling behavior, as we shall
see shortly.

B. Nonsingular homogeneous strategies

1. Verification precision

Here, we assume 0 < λ < 1, so the homogeneous strategy
defined in Eq. (44) is nonsingular (which means the verifica-
tion operator is positive definite). In this case, ηk (λ) decreases
strictly monotonically with k and ηk (λ) > 0 for k ∈ Z�0; by
contrast, ζk (λ) decreases strictly monotonically with k and
ζk (λ) � 0 for k ∈ {0, 1, . . . , N + 1}, while ζk (λ) < 0 for all
k > N + 1. Define

ck (δ, λ) := δ − ηk+1(λ)

ηk (λ) − ηk+1(λ)
, (52)

ζ (N, δ, λ, k) := ck (δ, λ)ζk (λ) + [1 − ck (δ, λ)]ζk+1(λ)

= λ{δ[1 + (N − k)ν] − λk}
ν(kν + Nλ)

, (53)

where ν = 1 − λ. The main properties of ζ (N, δ, λ, k) are
summarized in Lemmas 18 and 19 in Appendix C. The
following theorem determines the fidelity that can be achieved
by a given number of tests for a given significance level (see
Appendix C 2 for a proof).

Theorem 1. Suppose 0 < λ < 1 and 0 < δ � 1. Then we
have F (N, δ, λ) = ζ (N, δ, λ)/δ with

ζ (N, δ, λ) =
{

0, δ � λN ,

ζ (N, δ, λ, k∗), δ > λN ,
(54)

where k∗ is the largest integer k that satisfies ηk (λ) � δ, that
is, (N + 1 − k)λk + kλk−1 � (N + 1)δ.

The choice of the parameter k∗ in Theorem 1 guarantees
that 0 < ck∗ (δ, λ) � 1. Define

k+ :=�logλ δ
, k− := �logλ δ�. (55)

If λN < δ � 1, then 0 � k+ � N and 0 � k− � N − 1.
Meanwhile, we have ηk−(λ) � δ and ηk++1(λ) < δ by
Eq. (47), so k∗ is equal to either k+ or k−. In addition, when
k ∈ {0, 1, . . . , N}, Theorem 1 implies that

F (N, δ = λk, λ) = (N − k)λ

k + (N − k)λ
, (56)

which decreases monotonically with k. In particular, we have
F (N, δ = 1, λ) = 1 as expected [cf. Eq. (28)]. Furthermore,
when δ = ηk (λ) with k ∈ {0, 1, . . . , N + 1}, we have

F (N, δ = ηk (λ), λ) = ζk (λ)

ηk (λ)
= (N + 1 − k)λ

k + (N + 1 − k)λ
, (57)

which also decreases monotonically with k. The dependencies
of ζ (N, δ, λ) and F (N, δ, λ) on δ and λ are illustrated in Fig. 2.
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FIG. 2. Variations of ζ (N, δ, λ) and F (N, δ, λ) with δ and λ for
N = 2 (left plots) and N = 10 (right plots).

Corollary 1. Suppose 0 < λ < 1 and 0 < δ � 1. Then

ζ (N, δ, λ) = max

{
0, max

k∈Z�0
ζ (N, δ, λ, k)

}
(58)

= max{0, ζ (N, δ, λ, k+), ζ (N, δ, λ, k−)} (59)

= max

{
0, max

k∈{0,1,...,N}
ζ (N, δ, λ, k)

}
. (60)

Corollary 1 follows from Theorem 1 above and Lemma 19
in Appendix C. Equation (58) provides a family of lower
bounds for ζ (N, δ, λ), namely,

ζ (N, δ, λ) � ζ (N, δ, λ, k) ∀ k ∈ Z�0. (61)

Corollary 2. Suppose 0 � λ < 1. Then F (N, δ, λ) is non-
decreasing in δ for 0 < δ � 1 and in N for N � 1.

Corollary 3. Suppose 0 < λ < 1 and λN � δ � 1. Then

(N − k+)λ

k+ + (N − k+)λ
� F (N, δ, λ) � (N − k−)λ

k− + (N − k−)λ
. (62)

When λ = 0, Corollary 2 follows from Eq. (50). When
0 < λ < 1, Corollary 2 follows from Theorem 1 (cf. Corol-
lary 1 above and Lemma 18 in the Appendix); alternatively,
it is an implication of Lemmas 3 and 5. Corollary 3 is an
immediate consequence of Corollary 2 and Eq. (56) given that
λk+ � δ � λk− .

2. Number of required tests

Now, we are ready to determine the minimum number of
tests required to verify the pure state |�〉 within infidelity
ε and significance level δ in the adversarial scenario. Theo-
rems 2 and 3 below are proved in Appendix C 2. The results
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FIG. 3. Minimum numbers of tests required to verify a pure
state with five different homogeneous strategies. Here, ε = 0.01 in
the upper plot and ε = 0.1 in the lower plot. In each plot, the red
curve represents the approximate formula (1 − δ)/(εδ) when λ = 0
[cf. Eq. (51)]. The four lines represent the approximate formula
(F + λε) log10 δ/(λε log10 λ) [cf. Eq. (76)].

are illustrated in Figs. 3 and 4. Define

Ñ (ε, δ, λ, k) := kν2δF + λk+1 + λδ(kν − 1)

λνδε
, (63)

Ñ±(ε, δ, λ) := Ñ (ε, δ, λ, k±), (64)
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FIG. 4. Variation of N (ε, δ, λ) with λ and δ. Here, ε = 0.01 in
the upper plot and ε = 0.1 in the lower plot. The four curves in each
plot represent the approximate formula ln δ/(λε ln λ) [cf. Eqs. (78)
and (80)].

where F = 1 − ε, ν = 1 − λ, and k± are given in Eq. (55).
The main properties of Ñ (ε, δ, λ, k) are summarized in
Lemma 20. In particular, Ñ (ε, δ, λ, k) � Ñ (ε, δ, λ, k − 1) iff
δ � λk/(F + λε), assuming that 0 < ε, δ, λ < 1 and k is a
positive integer.

Theorem 2. Suppose 0 < ε, δ, λ < 1. Then we have

N (ε, δ, λ) =
⌈

min
k∈Z�0

Ñ (ε, δ, λ, k)

⌉
= �Ñ (ε, δ, λ, k∗)
 (65)

= �min{Ñ+(ε, δ, λ), Ñ−(ε, δ, λ)}
 (66)

=
{�Ñ−(ε, δ, λ)
, δ � λk+

F+λε
,

�Ñ+(ε, δ, λ)
, δ � λk+
F+λε

,
(67)

where k∗ is the largest integer k that satisfies the inequality
δ � λk/(Fν + λ) = λk/(F + λε) and it is equal to either k+
or k−.

Corollary 4. Suppose 0 < ε, δ, λ < 1. Then

N (ε, δ, λ) � �Ñ (ε, δ, λ, k)
 ∀ k ∈ Z�0, (68)

where the upper bound for a given k is saturated when
λk+1/(F + λε) � δ � λk/(F + λε).

Corollary 4 is an easy consequence of Theorem 2. The two
cases k = 0, 1 are of special interest:

N (ε, δ, λ) � �Ñ (ε, δ, λ, 0)
 =
⌈

1 − δ

νεδ

⌉
, (69)

N (ε, δ, λ) � �Ñ (ε, δ, λ, 1)
 =
⌈

ν2δF + λ2 − λ2δ

λνδε

⌉
. (70)

If λ/(F + λε) � δ < 1, then Eq. (69) is saturated, so we have

N (ε, δ, λ) =
⌈

1 − δ

νεδ

⌉
. (71)

This result also holds when λ = 0 (as long as 0 < ε, δ < 1)
according to Eq. (51). If λ2/(F + λε) � δ � λ/(F + λε),
then Eq. (70) is saturated, so we have

N (ε, δ, λ) =
⌈

ν2δF + λ2 − λ2δ

λνδε

⌉
� 2

√
(1 − δ)F

ε
√

δ
, (72)

where the lower bound is proved in Appendix C 2. Equa-
tions (71) and (72) indicate that homogeneous strategies with
small λ, say λ � 0.1, are not efficient for high-precision QSV
(say ε, δ � 0.1), as reflected in Fig. 4.

The following theorem provides informative bounds for
N (ε, δ, λ), which complement the analytical formulas in The-
orem 2.

Theorem 3. Suppose 0 < ε, δ, λ < 1. Then we have

k− +
⌈

k−F

λε

⌉
� N (ε, δ, λ) � k+ +

⌈
k+F

λε

⌉
, (73)

N (ε, δ, λ) �
⌈

logλ δ

λε
− νk−

λ

⌉
=
⌈

ln δ

λε ln λ
− νk−

λ

⌉
. (74)

All three bounds in Eqs. (73) and (74) are saturated when
logλ δ is an integer.

When δ � λ � 1/2, we have k− � 1 and νk−/λ � 1, so
Eq. (74) implies that

N (ε, δ, λ) <
ln δ

λε ln λ
. (75)
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On the other hand, by virtue of Eq. (73), we can derive

lim
δ→0

N (ε, δ, λ)

ln δ−1
= F + λε

λε ln λ−1
, (76)

k−
λ

� lim
ε→0

εN (ε, δ, λ) � k+
λ

, (77)

lim
ε,δ→0

εN (ε, δ, λ)

ln δ−1
= 1

λ ln λ−1
. (78)

The exact value of limε→0 εN (ε, δ, λ) can be derived by virtue
of Eq. (67), with the result

lim
ε→0

εN (ε, δ, λ) = lim
ε→0

εÑ−(ε, δ, λ) = k−
λ

+ λk− − δ

νδ
. (79)

Note that the inequality δ � λk+/(F + λε) is always satisfied
in the limit ε → 0 if logλ δ is not an integer, while k+ = k−
and Ñ+(ε, δ, λ) = Ñ−(ε, δ, λ) if logλ δ is an integer.

C. Optimal homogeneous strategies

1. Optimal strategies in the high-precision limit ε, δ → 0

In the adversarial scenario, the optimal performance can
always be achieved by a homogeneous strategy if there is
no restriction on the measurements. However, the value of λ

that minimizes N (ε, δ, λ) depends on the target precision, as
characterized by ε and δ. We cannot find a homogeneous strat-
egy that is optimal for all ε and δ, unlike the nonadversarial
scenario. Here, we are mostly interested in the high-precision
limit, which means ε, δ → 0.

According to Eq. (78), in the high-precision limit, the
minimum number of tests can be approximated as follows:

N (ε, δ, λ) ≈ (λε)−1 logλ δ = (λε ln λ)−1 ln δ. (80)

To understand the condition of this approximation, note
that k± ≈ logλ δ if δ � λ, which is usually the case in
high-precision verification. If in addition ε � 1, then the
ratio of the lower bound over the upper bound in Eq. (73) is
close to 1, so that the two bounds are nearly tight with respect
to the relative deviation. In this case, Eq. (80) is a good
approximation. Furthermore, numerical calculation shows
that Eq. (80) is quite accurate for most parameter ranges of in-
terest, as illustrated in Figs. 3 and 4. When λ is very small, the
approximation in Eq. (80) is not so good. Such homogeneous
strategies are not efficient when ε, δ � 0.1 as illustrated in
Fig. 4 [see also Eqs. (71) and (72)]; in addition, they are not
so important due to the reasons explained in Sec. IX later.

Thanks to Theorems 2 and 3, the number of tests required
by any nonsingular homogeneous strategy can achieve the
same scaling behaviors with ε and δ as the counterpart in
the nonadversarial scenario for high-precision QSV. In the
limit ε, δ → 0, the efficiency is characterized by the function
(λ ln λ−1)−1. Analysis shows that the function (λ ln λ−1)−1

is convex for 0 < λ < 1 and attains the minimum e when
λ = 1/e, with e being the base of the natural logarithm. It
is strictly decreasing in λ when 0 < λ � 1/e and strictly
increasing when 1/e � λ < 1 (cf. Fig. 4). Therefore, the
homogeneous strategy with λ = 1/e, that is, ν = 1 − (1/e), is
optimal in the high-precision limit ε, δ → 0 if there is no re-
striction on the accessible measurements. In this case we have

N (ε, δ, λ = e−1) ≈ eε−1 ln δ−1. (81)

Compared with the counterpart ε−1 ln δ−1 for the
nonadversarial scenario, the overhead is only e times.

Although we cannot find a value of λ that is optimal for
all ε and δ, the optimal value usually lies in a neighborhood,
say [0.32, 0.38], of 1/e for the values of ε and δ that are of
practical interest, say ε, δ � 0.1. In addition, N (ε, δ, λ) varies
quite slowly with λ in this neighborhood, as illustrated in
Fig. 4. So, the choice λ = 1/e is usually nearly optimal even
if it is not optimal.

The above analysis shows that the optimal strategies for the
adversarial scenario are very different from the counterpart
for the nonadversarial scenario. As a consequence, entangling
measurements are less helpful and often unnecessary for
constructing the optimal strategies for bipartite and multipar-
tite systems. In the case of bipartite pure states and GHZ
states, for example, the optimal strategies for high-precision
verification can be realized using only local projective mea-
surements [39,40,44,45,48] (cf. Sec. X).

2. Optimal strategies in the limit δ → 0

Here, we discuss briefly the scenario in which δ → 0, but
ε is not necessarily so small, which is relevant to entangle-
ment detection [44]. According to Eq. (76), in this case, the
performance of the homogeneous strategy � is characterized
by

N (ε, λ) := lim
δ→0

N (ε, δ, λ)

ln δ−1
= F + λε

λε ln λ−1
, (82)

where F = 1 − ε. The partial derivative of N (ε, λ) over λ

reads as

∂N (ε, λ)

∂λ
= F + λε + F ln λ

λ2ε(ln λ)2
. (83)

For a given ε, denote by N∗(ε) the minimum of N (ε, λ) over
λ. This minimum is attained when λ = λ∗(ε), where λ∗(ε) is
the unique solution of the equation

F + λε + F ln λ = 0, (84)

which amounts to the equality

F = λ

ln λ−1 + λ − 1
. (85)

It is not difficult to verify that λ∗(ε) = 0 when ε = 1 (F = 0)
and λ∗(ε) = 1/e when ε = 0 (F = 1); in addition, λ∗(ε) de-
creases monotonically with ε and is concave in ε, as illustrated
in Fig. 5. Therefore, λ∗(ε) satisfies the equation

e−1F � λ∗(ε) � e−1. (86)

Next, we study the dependence of the efficiency on the
parameter λ. As a benchmark, we choose the homogeneous
strategy with λ = 1/e in which case we have the result
N (ε, λ = e−1) = (eF + ε)/ε. Define

N̄ (ε, λ) := N (ε, λ)

N (ε, e−1)
= F + λε

(eF + ε)λ ln λ−1
, (87)

N̄∗(ε) := N∗(ε)

N (ε, e−1)
= F + λ∗(ε)ε

(eF + ε)λ∗(ε) ln λ∗(ε)−1
. (88)
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FIG. 5. Optimal homogeneous strategy in the limit δ → 0. Here
λ∗(ε) denotes the value of λ that minimizes N (ε, λ) defined in
Eq. (82), which determines the number of required tests. N̄∗(ε)
denotes the number of required tests normalized with respect to the
benchmark, as defined in Eq. (88).

When λ < 1/e, N̄ (ε, λ) decreases monotonically with ε, so
we have

1

ln λ−1
� N̄ (ε, λ) � 1

eλ ln λ−1
. (89)

The lower bound approaches zero in the limit λ → 0. Ac-
cordingly, a homogeneous strategy � with a small value of
λ could be significantly more efficient than the benchmark
when ε is large. When λ > 1/e, by contrast, N̄ (ε, λ) increases
monotonically with ε, so we have

1 <
1

eλ ln λ−1
� N̄ (ε, λ) � 1

ln λ−1
. (90)

Such a homogeneous strategy is less efficient than the bench-
mark.

Finally, by virtue of Eqs. (85) and (88) we can derive the
equality

N̄∗(ε) := 1

eλ∗(ε) − ln λ∗(ε) − 1
. (91)

Given that λ∗(ε) � e−1 and λ∗(ε) decreases monotonically
with ε, we can deduce that N̄∗(ε) decreases monotonically
with ε; it approaches 1 in the limit ε → 0, while it ap-
proaches 0 (quite slowly) in the limit ε → 1, as illustrated
in Fig. 5. Although N̄∗(ε) could be arbitrarily small when
ε is large, it is close to 1 when ε is not too large. For
example, N̄∗(ε) � 0.965 when ε � 0.5 and N̄∗(ε) � 0.999
when ε � 0.1. Therefore, the homogeneous strategy � with
β(�) = 1/e is nearly optimal for most parameter ranges of
practical interest, as pointed out earlier.

VII. SINGLE-COPY VERIFICATION

In this section we analyze the possibility of QSV in the
adversarial scenario using a single test. This problem is of in-
trinsic interest to single-copy entanglement detection [44,55].
Given a verification strategy �, the state |�〉 can be verified

within infidelity 0 < ε < 1 and significance level 0 < δ < 1
using a single test iff

F (N = 1, δ,�) � 1 − ε. (92)

Since F (N, δ,�) = ζ (N, δ,�)/δ according to Eq. (36a), the
above equation is equivalent to

ζ (N = 1, δ,�) � δ(1 − ε). (93)

So, our main task here is to determine the expression of
ζ (N, δ, λ) in the case N = 1. In the rest of this section
we assume N = 1 except when stated otherwise. Note that
ζ (N, δ = 0,�) = 0 and that the range of δ of practical interest
usually satisfies 0 < δ � 1/2.

A. Single-copy verification with homogeneous strategies

First, let us consider the homogeneous strategy � defined
in Eq. (44).

Proposition 2. Suppose N = 1 and 0 � λ < 1; then

ζ (N, δ, λ) = max

{
0,

λ(δ − λ)

1 − λ
,
δ(2 − λ) − 1

1 − λ

}

=

⎧⎪⎨
⎪⎩

0, 0 � δ � λ,
λ(δ−λ)

1−λ
, λ � δ � 1+λ

2 ,
δ(2−λ)−1

1−λ
, 1+λ

2 � δ � 1.

(94)

Proposition 2 follows from Eq. (50) when λ = 0 and
follows from Theorem 1 and Corollary 1 when 0 < λ < 1.
As an implication, we can derive

max
λ

ζ (N, δ, λ) = max{2 − 2
√

1 − δ − δ, 2δ − 1}

=
{

2 − 2
√

1 − δ − δ, 0 � δ � 5
9 ,

2δ − 1, 5
9 � δ � 1.

(95)

Here, the maximum is attained at

λ =
{

1 − √
1 − δ, 0 � δ � 5

9 ,

0, 5
9 � δ � 1.

(96)

In addition, the optimal solution λ is unique for 0 < δ < 1
except when δ = 5

9 , in which case there are two optimal
solutions, namely, λ = 0 and λ = 1

3 . This observation implies
the following corollary given that the optimal strategy can
always be chosen to be homogeneous if there is no restriction
on the measurements.

Corollary 5. The target state can be verified within in-
fidelity 0 < ε < 1 and significance level 0 < δ < 1 in the
adversarial scenario using a single test iff δ and ε satisfy the
condition

δ(1 − ε) � max{2 − 2
√

1 − δ − δ, 2δ − 1} (97)

or, equivalently, the condition

δ � min

{
4(1 − ε)

(2 − ε)2
,

1

1 + ε

}
=
{

1
1+ε

, 0 < ε � 4
5 ,

4(1−ε)
(2−ε)2 ,

4
5 � ε < 1.

(98)

The parameter range of single-copy verification character-
ized by Corollary 5 is illustrated in Fig. 6 in contrast with
the counterpart for the nonadversarial scenario in Eq. (5).
Equation (98) determines the smallest significance level that
can be achieved by a single test to verify the target state
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FIG. 6. Single-copy verification in the adversarial scenario and
nonadversarial scenario. The target state can be verified within
infidelity ε and significance level δ in the adversarial (nonadversarial)
scenario using a single test if the value of δ lies above the blue solid
curve (red dashed line) [cf. Eqs. (98) and (5)].

within infidelity ε. Note that the lower bound is monotonically
decreasing in ε for 0 < ε < 1 as expected. To achieve signif-
icance level δ � 1/2, the infidelity must satisfy the condition
ε � 2(

√
2 − 1). When the bound in Eq. (97) or that in Eq. (98)

is saturated, the target state can be verified within infidelity
0 < ε < 1 and significance level 0 < δ < 1 by a strategy �

iff � is homogeneous and β(�) is given by Eq. (96) with
0 < δ < 1 or, equivalently,

β(�) = λ =
{

0, 0 < ε � 4
5 ,

2−2ε
2−ε

, 4
5 � ε < 1.

(99)

When δ 	= 5/9 (that is, ε 	= 4/5), the optimal strategy � is
unique as shown Eqs. (96) and (99). When δ = 5/9 (ε = 4/5),
by contrast, there are two optimal strategies, both of which
are homogeneous, and β(�) can take on two possible values,
namely, β(�) = 0 and β(�) = 1/3 (cf. Theorem 4 below).

Corollary 6. Given a homogeneous verification strategy
� with β(�) = λ, the target state can be verified within
infidelity 0 < ε < 1 and significance level 0 < δ � 1/2 in the
adversarial scenario using a single test iff

λ(δ − λ)

1 − λ
� δ(1 − ε). (100)

This requirement is equivalent to the following conditions:

δ � 4(1 − ε)

(2 − ε)2
, (101)

λ− � λ � λ+, (102)

where

λ± := (2 − ε)δ ±
√

(2 − ε)2δ2 − 4(1 − ε)δ

2
. (103)

Equation (100) implies that 0 < λ < δ. So, any homo-
geneous verification strategy � with β(�) = 0 or β(�) �
1/2 cannot verify the target state within infidelity 0 < ε < 1
and significance level 0 < δ � 1/2 using a single test. This
conclusion actually applies to an arbitrary strategy, not nec-
essarily homogeneous; see Corollary 7 below. Thanks to the
inequality 4(1 − ε)δ > 4(1 − ε)δ2, λ± defined in Eq. (103)

satisfy the equation

(1 − ε)δ < λ− � λ+ < δ. (104)

By computing the derivatives over δ and ε, it is easy to verify
that λ+ (λ−) increases (decreases) monotonically with δ and ε

as expected. If δ � 1/2, then we have

2 − ε − √
ε2 + 4ε − 4

4
�λ−�λ+� 2 − ε + √

ε2 + 4ε − 4

4
.

(105)

B. Single-copy verification with general strategies

Next, we generalize Proposition 2 to an arbitrary veri-
fication operator �. The following theorem shows that the
efficiency of � is determined by β and τ , where β and
τ denote the second largest and smallest eigenvalues of �,
respectively. See Appendix D for a proof.

Theorem 4. Suppose N = 1. If β � 1/2, then

ζ (N, δ,�) =

⎧⎪⎨
⎪⎩

0, 0 � δ � β,
β(δ−β )

1−β
, β � δ � 1+β

2 ,
δ(2−β )−1

1−β
,

1+β

2 � δ � 1.

(106)

If β < 1/2, then

ζ (N, δ,�) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, 0 � δ � β,
τ (δ−β )

1+τ−2β
, β � δ � 1+τ

2 ,

δ − 1
2 , 1+τ

2 � δ � 1+β

2 ,
δ(2−β )−1

1−β
,

1+β

2 � δ � 1.

(107)

Corollary 7. The target state can be verified by the verifi-
cation strategy � within infidelity 0 < ε < 1 and significance
level 0 < δ � 1/2 using a single test iff

0 < β < δ,
τ (δ − β )

1 + τ − 2β
� δ(1 − ε). (108)

Note that the target state cannot be verified within infidelity
0 < ε < 1 and significance level 0 < δ � 1/2 using a single
test if β = 0 or β � 1/2. In contrast, when 0 < β < 1/2 and
β � δ � (1 + τ )/2, we have

τ (δ − β )

1 + τ − 2β
� min

{
β(δ − β )

1 − β
,
τ (δ − τ )

1 − τ

}
. (109)

So, Eq. (108) implies Eq. (100) with λ = β or λ = τ , which
in turn implies Eq. (101) and the sequence of inequalities
λ− � τ � β � λ+, where λ± are defined in Eq. (103). This
conclusion is expected given that ζ (N, δ,�) � ζ (N, δ, β ) and
ζ (N, δ,�) � ζ (N, δ, τ ).

VIII. EFFICIENCIES OF GENERAL
VERIFICATION STRATEGIES

In this section we present our main results on the effi-
ciencies of general verification strategies. As we shall see
shortly, the efficiency of a general verification operator � of
a pure state |�〉 is mainly determined by its second largest
eigenvalue β (or, equivalently, ν = 1 − β) and the smallest
eigenvalue τ .

062335-13



HUANGJUN ZHU AND MASAHITO HAYASHI PHYSICAL REVIEW A 100, 062335 (2019)

A. Singular verification strategies

The efficiency of a singular verification strategy is charac-
terized by Lemma 8 and Theorem 5 below, which are proved
in Appendix E. Note that Eqs. (112) and (113) in Theorem 5
actually apply to all verification strategies, although these
bounds could be quite loose for nonsingular strategies. Define

δ∗ := 1 + Nβ

N + 1
= 1 + N (1 − ν)

N + 1
. (110)

Lemma 8. Suppose � is a singular verification operator
and 1/(N + 1) � δ � δ∗. Then

F (N, δ,�) � 1 − 1

(N + 1)δ
. (111)

Theorem 5. Suppose 0 < δ � 1 and 0 < ν � 1. Then

F (N, δ,�) � 1 − 1 − δ

Nνδ
, (112)

and the inequality is saturated when δ∗ � δ � 1. If in addition
ν � 1/2, then

F (N, δ,�) � 1 − 1

(N + 1)δ
, (113)

and the inequality is saturated when � is singular and δ

satisfies 1/(N + 1) � δ � δ∗.
The bound in Eq. (112) is positive and thus nontrivial if

δ > 1/(Nν + 1), while the one in Eq. (113) is positive if
δ > 1/(N + 1). The first bound is saturated and thus optimal
when δ � δ∗, while the second bound is better when δ <

δ∗. The two bounds coincide when δ = δ∗. The bound in
Eq. (113) under the condition ν � 1/2 was also given in
Ref. [13] under a slightly different situation. According to
Lemma 8 and Theorem 5, if � is singular, then

F (N, δ,�) � max

{
0, 1 − 1 − δ

Nνδ
, 1 − 1

(N + 1)δ

}
. (114)

If ν � 1/2, by contrast, then the above inequality is reversed:

F (N, δ,�) � max

{
0, 1 − 1 − δ

Nνδ
, 1 − 1

(N + 1)δ

}
. (115)

If � is singular and meanwhile ν � 1/2, then the inequalities
in Eqs. (114) and (115) are saturated.

Corollary 8. Suppose 0 < ε, δ < 1 and 0 < ν � 1. Then

N (ε, δ,�) �
⌈

1 − δ

νδε

⌉
. (116)

If � is singular, then

N (ε, δ,�) � min

{⌈
1 − δ

νδε

⌉
,

⌈
1

δε
− 1

⌉}
. (117)

If ν � 1/2, then

N (ε, δ,�) � min

{⌈
1 − δ

νδε

⌉
,

⌈
1

δε
− 1

⌉}
. (118)

Corollary 8 is an easy consequence of Theorem 5 and
Eqs. (114) and (115). If � is singular and ν � 1/2, then the
inequalities in Eqs. (117) and (118) are saturated, so we have

N (ε, δ,�) = min

{⌈
1 − δ

νδε

⌉
,

⌈
1

δε
− 1

⌉}
, (119)

which generalizes Eq. (51). The number of tests characterized
by the upper bound in Eq. (116) is much smaller than what
can be achieved by previous approaches that are based on the
quantum de Finetti theorem [18,42]. Nevertheless, the scaling
with 1/δ is still not satisfactory compared with the counterpart
for the nonadversarial scenario.

B. Nonsingular verification strategies

Next, we provide an even better bound on the number of
tests when � is nonsingular. Lemma 9 and Theorem 6 below
are proved in Appendix F.

Lemma 9. Suppose 0 < δ, f � 1 and � is a positive-
definite verification operator with 0 < τ � β < 1. Then

F (N, δ,�) � N + 1 − (ln β )−1 ln(τδ)

N + 1 − (ln β )−1 ln(τδ) − h ln(τδ)
, (120)

F (N, f ,�) � N + 1 − (ln β )−1 ln f

N + 1 − (ln β )−1 ln f − h ln f
, (121)

where

h = h(�) := max
j�2

(
λ j ln λ−1

j

)−1

= [min{β ln β−1, τ ln τ−1}]−1. (122)

Define

β̃ :=
{
β, β ln β−1 � τ ln τ−1,

τ, β ln β−1 > τ ln τ−1.
(123)

Then we have h = (β̃ ln β̃−1)−1. Note that h > 1/| ln β| and
−h ln(τδ) > (ln β )−1 ln(τδ), so the denominator in Eq. (120)
is positive, and so is the denominator in Eq. (121). In addition,
the lower bounds in Eqs. (120) and (121) increase monotoni-
cally with N , which is expected in view of Lemma 5.

By virtue of Lemma 9 we can derive upper bounds for
N (ε, δ,�) which are tight in the high-precision limit. Mean-
while, we can derive lower bounds for N (ε, δ,�) based
on the fact that N (ε, δ,�) � N (ε, δ, λ j ) for j = 2, 3, . . . , D,
where λ j are the eigenvalues of � arranged in decreasing
order 1 = λ1 > λ2 � λ3 � · · · � λD > 0. The main results
are summarized in the following theorem.

Theorem 6. Suppose 0 < ε, δ < 1 and � is a positive-
definite verification operator with 0 < τ � β < 1. Then

N (ε, δ,�) � N (ε, δ, λ j ) � k−(λ j ) +
⌈

k−(λ j )F

λ jε

⌉
, j = 2, 3, . . . , D, (124)

k−(β̃ ) +
⌈

k−(β̃ )F

β̃ε

⌉
� N (ε, δ,�) �

⌈
hF ln(Fδ)−1

ε
+ ln(Fδ)

ln β
−1

⌉
<

h ln(Fδ)−1

ε
, (125)
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N (ε, δ,�) �
⌈

hF ln(τδ)−1

ε
+ ln(τδ)

ln β
− 1

⌉
<

h ln(τδ)−1

ε
, (126)

where we have F = 1 − ε, k−(λ j ) = �(ln δ)/ ln λ j�, and
k−(β̃ ) = �(ln δ)/ ln β̃�.

The upper bounds in Eq. (125) are worse than those in
Eq. (126) if F < τ = τ (�), while they are better if F > τ ,
which is usually the case for high-precision verification. Sup-
pose τ is bounded from below by a positive constant. Then,
the ratio of the lower bound over the upper bound in Eq. (125)
approaches 1 in the high-precision limit ε, δ → 0, so the
two bounds are nearly tight, as in the case of homogeneous
strategies. As a consequence, we have

lim
ε,δ→0

εN (ε, δ,�)

ln δ−1
= h = 1

β̃ ln β̃−1
. (127)

When ε, δ � 1, accordingly, N (ε, δ,�) can be approximated
as follows:

N (ε, δ,�) ≈ h ln δ−1

ε
= ln δ

εβ̃ ln β̃
. (128)

The number of tests has the same scaling behaviors with ε−1

and δ−1 as the counterpart for the nonadversarial scenario
presented in Eqs. (2) and (12), except for an overhead char-
acterized by νh. However, � is not efficient when τ is too
small according to Eq. (124) as well as Eqs. (71) and (72). In
addition, the scaling behavior with δ−1 would be worse if �

were singular according to Eq. (117).
The above analysis can be extended to the scenario in

which we want to verify whether the support of the resultant
state belongs to a certain subspace K. In this case, we need
to replace the projector |�〉〈�| by the projector P onto the
subspace K, impose the condition ElP = P, and redefine fρ
as tr[(�⊗N ⊗ P)ρ]. Such an extension is useful when we
want to verify whether the resultant state is correctable in a
fault-tolerant way [14].

IX. GENERAL RECIPE TO VERIFYING PURE STATES
IN THE ADVERSARIAL SCENARIO

According to Sec. VIII, the number N (ε, δ,�) of tests
required to verify a pure state in the adversarial scenario has
the same scaling behavior with ε−1 and δ−1 as the counterpart
for the nonadversarial scenario as long as the verification
operator � is nonsingular, and its smallest eigenvalue τ is
bounded from below by a positive constant. However, the
scaling behavior of N (ε, δ,�) with δ is suboptimal when �

is singular, that is, τ = 0. Similarly, the efficiency is limited
when τ is nonzero, but very small. To address this problem,
here we provide a simple recipe to reducing the number of
tests significantly, so that pure states can be verified in the
adversarial scenario with high precision and with nearly the
same efficiency as in the nonadversarial scenario. Surpris-
ingly, all we need to do is to perform the trivial test with a
suitable probability. By “trivial test” we mean the test whose
test operator E is equal to the identity operator, that is E = 1,
so that all the states can pass the test with certainty.

A. The recipe

Suppose � is a verification operator for the pure state |�〉.
Based on �, we can construct a new verification operator as
follows:

�p = (1 − p)� + p, 0 � p < 1, (129)

which means the trivial test is performed with probability p
and � is performed with probability 1 − p. Denote by βp and
τp the second largest eigenvalue and smallest eigenvalue of
�p, respectively. Then

βp = (1 − p)β + p = 1 − ν + pν, τp = (1 − p)τ + p,

(130)

where β and τ are the second largest eigenvalue and smallest
eigenvalue of �, which satisfy the inequality τ � β. Here we
view βp as a function of ν = 1 − β and p. The spectral gap of
�p reads as

νp = 1 − βp = (1 − p)ν. (131)

According to Secs. II and III, the trivial test can only
decrease the efficiency in the nonadversarial scenario. In high-
precision verification, for example, the number of tests re-
quired by �p is about 1/(1 − p) times the number required by
� according to Eqs. (2) and (12). In sharp contrast, the trivial
test can increase the efficiency in the adversarial scenario by
hedging the influence of small eigenvalues of �. Therefore,
�p is called a hedged verification operator of �.

Thanks to Eq. (125), to verify the target state |�〉 within
infidelity ε and significance level δ in the adversarial scenario,
the number of tests required by the strategy �p (assuming
τp > 0) is upper bounded as follows:

N (ε, δ,�p) <
h(p, ν, τ ) ln(Fδ)−1

ε
, (132)

where F = 1 − ε and

h(p, ν, τ ) = h(�p) = [min
{
βp ln β−1

p , τp ln τ−1
p

}]−1
. (133)

In comparison with the number in Eqs. (2) or (12) for the
nonadversarial scenario, the overhead satisfies

N (ε, δ,�p)

NNA(ε, δ,�)
< νh(p, ν, τ )

[ln(1 − νε)−1] ln(Fδ)

νε ln δ
. (134)

It is straightforward to verify that this bound decreases mono-
tonically with 1/ε and 1/δ. It turns out that the bound also
decreases monotonically with 1/ν according to Lemmas 10
and 11 below. When ε and δ approach zero, the bound in
Eq. (132) becomes tight (with respect to the relative deviation)
according to Eqs. (125) and (127), so we have

lim
ε,δ→0

N (ε, δ,�p)

NNA(ε, δ,�)
= νh(p, ν, τ ). (135)

This equation corroborates the significance of the function
νh(p, ν, τ ) for characterizing the overhead of high-precision
QSV in the adversarial scenario.
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FIG. 7. The optimal probability p∗(ν, τ ) for performing the
trivial test (upper plot), the prefactor h∗(ν, τ ) (middle plot), and
the overhead νh∗(ν, τ ) (lower plot) for high-precision QSV in the
adversarial scenario. In the legend, β = 1 − ν.

To construct an efficient hedged verification strategy, we
need to choose a suitable value of p so as to minimize
h(p, ν, τ ). To this end, it is instructive to recall that the
function x ln x−1 is concave in the interval 0 � x � 1 and is
strictly increasing in x when 0 � x � 1/e, while it is strictly
decreasing when 1/e � x � 1; it attains the maximum 1/e
when x = 1/e. Given the value of ν = 1 − β and τ with
ν + τ � 1, the minimum of h(p, ν, τ ) over p is denoted by
h∗(ν, τ ); the unique minimizer in p is denoted by p∗(ν, τ ) or
p∗ for simplicity (cf. Fig. 7). By definition we have

h∗(ν, τ ) := min
0�p<1

h(p, ν, τ ) = h(p∗, ν, τ ). (136)

In addition, it is straightforward to verify that

p∗ = min
{

p � 0|βp � e−1 and τp ln τ−1
p � βp ln β−1

p

}
.

(137)
Here, the condition βp � e−1 is required when τ = β (so that
� is a homogeneous strategy), but is redundant when τ < β.
Equation (137) implies that βp∗ � 1/e; by contrast, τp∗ � 1/e
if τ � 1/e.

When the verification strategy � is homogeneous, that is,
when τ = β = 1 − ν, we have

p∗(ν, 1 − ν) =
{

0, 0 < ν � 1 − 1
e ,

eν−e+1
eν , 1 − 1

e � ν � 1;
(138)

h∗(ν, 1 − ν) =
{

(β ln β−1)−1, 0 < ν � 1 − 1
e ,

e, 1 − 1
e � ν � 1.

(139)

In this case �p is also homogeneous, so the results presented
in Sec. VI can be applied directly. In general, it is not easy

to derive an analytical formula for p∗, but it is very easy to
determine p∗ numerically.

B. Properties of hedged verification strategies

To determine the overhead of QSV in the adversarial sce-
nario, we need to clarify the properties of h(p, ν, τ ), h∗(ν, τ ),
and p∗(ν, τ ), which determine the performances of the hedged
verification strategies �p and �p∗ . By virtue of the properties
of the function x ln x−1 we can derive a tight lower bound for
h(p, ν, τ ), namely,

h(p, ν, τ ) � e, (140)

and the bound is saturated iff τp = βp = 1/e, that is,
τ = 1 − ν � 1/e and p = (eν − e + 1)/(eν) [cf. Eqs. (138)
and (139)].

Lemma 10. Suppose 0 < ν � 1. Then, p∗(ν, 1 − ν) is
nondecreasing in ν, h∗(ν, 1 − ν) is nonincreasing in ν,
and νh∗(ν, 1 − ν) is strictly increasing in ν. Meanwhile,
νh∗(ν, 1 − ν) > 1 and limν→0 νh∗(ν, 1 − ν) = 1. If in addi-
tion 0 � p < 1 and βp = 1 − ν + pν > 0, then the overhead
νh(p, ν, 1 − ν) is strictly increasing in ν.

Lemma 11. Suppose ν and τ satisfy the following condi-
tions 0 < ν � 1, 0 � τ < 1, and ν + τ � 1. Then

(1) p∗(ν, τ ) is nondecreasing in ν and nonincreasing in τ .
(2) h∗(ν, τ ) is nonincreasing in both ν and τ .
(3) νh∗(ν, τ ) > 1.
(4) limν→0 νh∗(ν, τ ) = 1.
(5) νh∗(ν, τ ) is strictly increasing in ν.
If in addition 0 � p < 1 and τp = (1 − p)τ + p > 0, then
(6) h(p, ν, τ ) is nonincreasing in both ν and τ .
(7) νh(p, ν, τ ) is strictly increasing in ν.
Lemmas 10 and 11 are proved in Appendix G. Lemma 10

is tailored to the scenario in which � is homogeneous. In
Lemma 11 we assume that ν and τ can vary independently,
which means the Hilbert space H on which � acts has
dimension at least 3. If H has dimension 2, then � is always
homogeneous and τ = 1 − ν, so Lemma 11 is redundant
given Lemma 10. Lemmas 10 and 11 summarize the main
properties of p∗(ν, τ ), h(p, ν, τ ), and h∗(ν, τ ) as illustrated in
Fig. 7, which are very instructive to understanding QSV in the
adversarial scenario. In particular, Lemma 11 reveals that the
overhead νh∗(ν, τ ) in the number of tests becomes negligible
when ν approaches 0. To be concrete, simple calculation
shows that νh∗(ν, τ ) � 1.09, 1.19, 1.31, 1.45, 1.61 when ν �
0.1, 0.2, 0.3, 0.4, 0.5, respectively.

When p∗(ν, τ ) � p � p∗(ν) := p∗(ν, 0), Lemma 11 im-
plies that

h∗(ν, 1 − ν)�h∗(ν, τ )�h(p, ν, τ )�h(p∗(ν), ν, τ )=h∗(ν),
(141)

where h∗(ν) := h∗(ν, 0). Note that h(p, ν, τ ) increases mono-
tonically with p when p � p∗(ν, τ ). Lemma 11 and Eq. (138)
together yield a lower bound and an upper bound for p∗(ν, τ ):

p∗(ν, 1 − ν) � p∗(ν, τ ) � p∗(1 − τ, τ ) � 1/e. (142)

Here, the third inequality is saturated iff τ = 0; in that case,
the second inequality is saturated iff ν = 1 (cf. Lemma 12
below). Therefore, p∗(ν, τ ) can attain the upper bound 1/e
iff ν = 1 and τ = 0, in which case the verification operator
is homogeneous and singular. As a corollary, we have the
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result 1/[1 − p∗(ν, τ )] � e/(e − 1) < 1.6, so the number of
tests required by �p∗ is at most 60% more than the number
required by � for high-precision verification in the nonadver-
sarial scenario although here we are mainly interested in the
adversarial scenario. By contrast, Lemma 11 and Eq. (139)
yield a lower bound for h∗(ν, τ ),

h∗(ν, τ ) �
{

(β ln β−1)−1, 0 < ν � 1 − 1
e ,

e, 1 − 1
e � ν � 1,

(143)

where β = 1 − ν.
When 0 < τ < β and τ ln τ−1 � β ln β−1, Eq. (137) im-

plies that

p∗(ν, τ ) = 0, h∗(ν, τ ) = (β ln β−1)−1. (144)

So, there is no need to perform the trivial test. When
τ ln τ−1 < β ln β−1(which implies that τ < 1/e, including
the case τ = 0), the probability p∗(ν, τ ) happens to be the
unique solution of the equation

βp ln βp = τp ln τp, 0 < p < 1. (145)

In this case, it is beneficial to perform the trivial test with
a suitable probability. The inequality τ ln τ−1 < β ln β−1 is
thus an indication that τ is too small.

In view of Lemma 11, a singular verification operator
� with τ = 0 is of special interest because the overhead
νh∗(ν, τ ) for a given ν is maximized when τ = 0. In this case,
τp = p and the optimal probability in Eq. (137) reduces to

p∗ = min{p > 0|βp � e−1 and p ln p = βp ln βp}. (146)

The requirement βp � e−1 is redundant when β > 0, in which
case p∗ is also the unique solution of the equation p ln p =
βp ln βp for 0 < p < 1. In general, we have the equality
h∗(ν) = (p∗ ln p−1

∗ )−1. Furthermore, p∗(ν) = p∗(ν, 0) can be
approximated by

p0 = p0(ν) = ν

e
= 1 − β

e
, (147)

which is exact when ν = 1, as illustrated in Fig. 8.
Let h(p, ν) := h(p, ν, 0); then h(p0(ν), ν) = h(e−1ν, ν) =
h(e−1ν, ν, 0).

Lemma 12. Suppose 0 < ν � 1. Then p∗(ν), νh∗(ν), and
νh(e−1ν, ν) are strictly increasing in ν, while h∗(ν) and
h(e−1ν, ν) are strictly decreasing in ν. In addition,

νh∗(ν) � νh(e−1ν, ν) � (1 − ν + e−1ν2)−1

� 1 + (e − 1)ν � e. (148)

FIG. 8. The optimal probability p∗(ν ) for performing the triv-
ial test in high-precision QSV and a pretty-good approximation
p0(ν ) = ν/e (upper plot). Variations of νh∗(ν ) and its upper bound
νh(p0(ν ), ν ) with ν (lower plot). The black solid curve in the lower
plot represents the first upper bound for νh(p0(ν ), ν ) presented in
Eq. (148).

Lemma 12 is proved in Appendix G. Calculation shows
that the difference between νh(e−1ν, ν) and νh∗(ν) is less than
2% (cf. Fig. 8); therefore, p0 = ν/e is indeed a good approxi-
mation of p∗(ν). When p∗(ν, τ ) � p � p∗(ν), Lemma 12 and
Eq. (141) imply that

νh∗(ν, τ ) � νh(p, ν, τ )�νh∗(ν) � νh(e−1ν, ν)

� (1 − ν + e−1ν2)−1 � 1 + eν − ν � e. (149)

In addition, we have h(e−1ν, ν, τ ) � h(e−1ν, ν) according to
Lemma 11. So Lemma 12 has implications for all verification
operators, not necessarily singular.

C. Overhead of QSV in the adversarial scenario

The overhead of QSV in the adversarial scenario compared
with the nonadversarial scenario is of fundamental interest.
The following theorem is a key to clarifying this issue. It
follows from Lemma 11 as well as Eqs. (132) and (149),

Theorem 7. Suppose � is a verification operator for |�〉,
ν = ν(�), and τ = τ (�). If p = ν/e, then

N (ε, δ,�p) <
h(e−1ν, ν, τ ) ln (Fδ)−1

ε
� h(e−1ν, ν) ln(Fδ)−1

ε
� ln(Fδ)−1

(1 − ν + e−1ν2)νε
� (1 + eν − ν) ln(Fδ)−1

νε
, (150)

where F = 1 − ε. If p∗(ν, τ ) � p � p∗(ν), then

N (ε, δ,�p) <
h(p, ν, τ ) ln(Fδ)−1

ε
� h∗(ν) ln(Fδ)−1

ε
� h(e−1ν, ν) ln(Fδ)−1

ε
� ln(Fδ)−1

(1 − ν + e−1ν2)νε
. (151)

In conjunction with Eq. (12) [see also Eqs. (134) and (149)], Theorem 7 sets a general upper bound on the overhead of QSV
in the adversarial scenario. If p = ν/e or p∗(ν, τ ) � p � p∗(ν), for example, then

N (ε, δ,�p)

NNA(ε, δ,�)
< νh(e−1ν, ν)

[ln(1 − νε)−1] ln(Fδ)

νε ln δ
� [ln(1 − νε)−1] ln(Fδ)

(1 − ν + e−1ν2)νε ln δ
� (1 + eν − ν)[ln(1 − νε)−1] ln(Fδ)

νε ln δ
. (152)

062335-17



HUANGJUN ZHU AND MASAHITO HAYASHI PHYSICAL REVIEW A 100, 062335 (2019)

0 0.1 0.2 0.3
1

2

3

4

5
ra

ti
o

ν = 1
ν = 1/2
ν = 1/4
ν = 1/8

FIG. 9. Upper bound on the ratio of N (ε, δ, �p) over
NNA(ε, δ, �) according to the first bound in Eq. (152) with δ = ε,
where p = ν/e or p∗(ν, τ ) � p � p∗(ν ). This ratio characterizes the
overhead of QSV in the adversarial scenario.

By virtue of Lemmas 10 and 11, it is easy to verify that
all three bounds in Eq. (152) decrease monotonically with
1/ε, 1/δ, and 1/ν, as illustrated in Figs. 7–9. Theorem 7 has
profound implications for QSV in the adversarial scenario.
With the help of the trivial test, the number of required tests
can achieve the same scaling behaviors with ε−1 and δ−1 as
the counterpart for the nonadversarial scenario presented in
Eqs. (2) and (12). The overhead is at most four times when
ε, δ � 1/4 and three times when ε, δ � 1/10; furthermore,
the overhead becomes negligible when ν, ε, δ approach zero.
It should be emphasized that our recipe for addressing the ad-
versarial scenario is independent of the specific construction
of the verification protocol once the verification operator is
fixed. This fact means that our general results can be applied in
various contexts with different constraints on measurements.
Moreover, the protocol for the adversarial scenario requires
the same measurement settings (except for the trivial test) as
employed for the nonadversarial scenario, which is the best
we can hope for. Therefore, pure states can be verified in
the adversarial scenario with nearly the same efficiency as in
the nonadversarial scenario with respect to not only the total
number of tests, but also the number of measurement settings.

Although the performance of � is very sensitive to the
smallest eigenvalue τ , surprisingly, the performance of �p∗
is not sensitive to τ at all. According to Lemma 11, the
difference between h∗(ν, τ1) and h∗(ν, τ2) for a given ν is
maximized when τ1 = 0 [in which case h∗(ν, τ1) = h∗(ν), cf.
Eq. (148)] and τ2 = 1 − ν [cf. Eq. (139)]. Calculation shows
that the difference between h∗(ν) and h∗(ν, 1 − ν) is less than
12%, and it is even smaller when ν is close to zero or close
to 1, as illustrated in Fig. 7. Therefore, the influence of τ on
the performance of �p∗ can be neglected to a large extent.
Moreover, the probability p for performing the trivial test
can be chosen without even knowing the value of τ , while
achieving nearly optimal performance. Actually, both the
choices p = p∗(ν) and p = p0(ν) = ν/e are nearly optimal.
These observations are very helpful to constructing efficient
verification protocols for the adversarial scenario because
we can focus on ν without worrying about the impact of τ

or even knowing the value of τ . Suppose � is a verification
operator with the largest possible ν (under given conditions),
then �p is guaranteed to be nearly optimal, where p can be
chosen to be p∗(ν, τ ), p∗(ν), or p0(ν) = ν/e. Without this
insight, it would be much more difficult to devise efficient
verification protocols.

X. APPLICATIONS

Our recipe presented in Sec. IX can be applied to veri-
fying any pure state in the adversarial scenario as long as
we can construct a verification strategy for the nonadver-
sarial scenario. In this section we discuss the applications
of this recipe to verifying many important quantum states,
some of which have already been published or appeared on
arXiv [44,45,48–50]. The main results are summarized in
Table I. All verification strategies considered here are based
on (adaptive) local projective measurements together with
classical communication, which are most convenient for prac-
tical applications, although our general recipe for the adver-
sarial scenario is independent of how the verification strategy

TABLE I. Verification of bipartite and multipartite quantum states using local projective measurements. The second column shows
spectral gaps of efficient verification strategies (not necessarily optimal) for the nonadversarial scenario. The third column indicates whether
homogeneous strategies with given spectral gaps can be constructed. The last two columns show the numbers of tests required to verify these
states within infidelity ε and significance level δ in the nonadversarial scenario (NNA) and adversarial scenario (N), respectively. Strategies for
the adversarial scenario can be constructed using the recipe presented in Sec. IX. Here, d is the local dimension, n is the number of parties,
and χ (G) is the chromatic number of the hypergraph or weighted graph G. For bipartite pure states and stabilizer states, the table only shows
the results in the worst case.

Quantum states ν(�) Homogeneous NNA N

Maximally entangled states d
d+1 yes � d+1

d ε−1 ln δ−1
 �eε−1 ln δ−1

Bipartite pure states 2

3 yes � 3
2 ε−1 ln δ−1
 �eε−1 ln δ−1


GHZ states d
d+1 yes � d+1

d ε−1 ln δ−1
 �eε−1 ln δ−1

Qubit stabilizer states 1

2 yes �2ε−1 ln δ−1
 �2(ln 2)−1ε−1 ln δ−1

Qudit stabilizer states (d odd prime) d−1

d yes � d
d−1 ε−1 ln δ−1
 �eε−1 ln δ−1


Hypergraph state |G〉 χ (G)−1 no �χ (G)ε−1 ln δ−1
 �[χ (G) + e − 1]ε−1 ln δ−1�
Weighted graph state |G〉 χ (G)−1 no �χ (G)ε−1 ln δ−1
 �[χ (G) + e − 1]ε−1 ln δ−1�
Dicke states (n = 3) 1

3 no �3ε−1 ln δ−1
 �4.1ε−1 ln δ−1�
Dicke states (n � 4) (n − 1)−1 no �(n − 1)ε−1 ln δ−1
 �(n + e − 2)ε−1 ln δ−1�
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is constructed. The results presented here are also very useful
to verifying quantum gates [56,57].

A. Minimum measurement settings for verifying
multipartite pure states

Before considering specific quantum states, it is instructive
to clarify the limitation of local measurements in general. As a
first step toward this goal, we determine the minimum number
of measurement settings for each party required to verify a
general multipartite pure state that is genuinely multipartite
entangled (GME). Recall that a multipartite pure state is GME
if it cannot be expressed as a tensor product of two pure
states [2]. The following proposition sets a fundamental lower
bound for the number of measurement settings required by
each party; see Appendix H for a proof.

Proposition 3. To verify a multipartite pure state with
adaptive local projective measurements, each party needs
at least two measurement settings, unless the party is not
entangled with other parties.

Here, we do not assume that the test operators are pro-
jectors. In general, many different test operators can be con-
structed from a given measurement setting using different
data-processing methods. If a party is not entangled with other
parties, then its reduced state is a pure state and the party
needs to perform only one projective measurement with the
pure state as a basis state.

As an implication of Proposition 3, each party needs at
least two measurement settings when the state is GME. It
turns out two measurement settings for each party are also
sufficient for verifying many important quantum states, such
as bipartite maximally entangled states [44], stabilizer states
(including graph states) [43,49], hypergraph states [49], and
Dicke states [51]. Nevertheless, more measurement settings
can often improve the efficiency with respect to the total
number of tests.

B. Maximally entangled states and GHZ states

First, consider bipartite maximally entangled states in di-
mension d × d , which have the form

|�〉 = 1√
d

d−1∑
j=0

| j j〉 (153)

up to some local unitary transformations. According to
Refs. [39,44], the maximum spectral gap of any verification
strategy � based on LOCC or separable measurements is

ν(�) = d

d + 1
. (154)

Thanks to Eq. (12), the minimum number of tests required to
verify |�〉 within infidelity ε and significance level δ in the
nonadversarial scenario reads as

NNA =
⌈

ln δ

ln[1 − d (d + 1)−1ε]

⌉
�
⌈

d + 1

dε
ln δ−1

⌉
. (155)

Here, the upper bound is nearly tight when ε is small, so we
will neglect such small difference in favor of a simpler expres-
sion in the following discussions. In addition, the verification
operator � is necessarily homogeneous when ν(�) attains

the upper bound d/(d + 1). So, the strategy can be employed
for fidelity estimation by Eq. (8). According to Eq. (9), the
standard deviation of this estimation reads as


F =
√

p(1 − p)

ν(�)
√

N
=
√

(1 − F )(F + d−1)√
N

, (156)

where p = tr(�σ ) = ν(�)F + β(�).
By adding the trivial test with a suitable probability, any

homogeneous strategy � with ν(�) � d/(d + 1) [that is,
β(�) � 1/(d + 1)] can be constructed using LOCC. In par-
ticular, we can construct a homogeneous strategy � with
β(�) = 1/e, which is optimal for high-precision verification
in the adversarial scenario according to Sec. VI. Then the
number of required tests satisfies

N � �eε−1 ln δ−1
 (157)

by Theorem 3. When δ � 1/e, the above bound can be
strengthened by Eq. (75), which yields N < eε−1 ln δ−1. This
bound is nearly tight in the high-precision limit.

Equations (154)–(157) above also apply to the n-qudit
GHZ state for n � 3 as shown in Ref. [48].

C. Bipartite pure states

Next, consider a general bipartite pure state of the
form |�〉 =∑d−1

j=0 s j | j j〉, where the Schmidt coefficients s j

are arranged in decreasing order and satisfy the condition∑d−1
j=0 s2

j = 1. When d = 2, by virtue of adaptive measure-
ments with two-way communication, one can construct a
verification operator � with spectral gap (1 + s0s1)−1, which
attains the maximum over separable measurements [46]. For a
general bipartite pure state, the spectral gap achievable so far
is [45,47]

ν(�) = 2

2 + s2
0 + s2

1

� 2

3
. (158)

With this strategy, the number of tests required for the nonad-
versarial scenario reads as

NNA =
⌈

2 + s2
0 + s2

1

2ε
ln δ−1

⌉
�
⌈

3

2ε
ln δ−1

⌉
. (159)

Moreover, this strategy can be turned into a homogeneous
strategy with the same spectral gap [45], which is useful for
fidelity estimation by Eqs. (8) and (9). The standard deviation
of this estimation satisfies


F =
√

p(1 − p)

ν(�)
√

N
�
√

(1 − F )(F + 2−1)√
N

, (160)

where p = tr(�σ ) = ν(�)F + β(�) and the inequality fol-
lows from the inequality ν(�) � 2/3, given that the standard
deviation decreases monotonically with ν(�).

By adding the trivial test with a suitable probability, any
homogeneous strategy � with ν(�) � 2/(2 + s2

0 + s2
1) can be

constructed using LOCC [45]. In particular, we can construct
a homogeneous strategy � with β(�) = 1/e [that is, ν(�) =
1 − (1/e)], which is optimal for high-precision verification in
the adversarial scenario, so Eq. (157) also applies to general
bipartite pure states. Despite the simplicity of bipartite pure
states, we are not aware of any other protocol for verifying
them in the adversarial scenario that does not rely on our
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result. Note that self-testing can only verify a pure state up to
some local isometry [37,38,58], which is different from what
we consider here.

D. Stabilizer states

For stabilizer states, which are equivalent to graph states
under local Clifford transformations [59,60], several verifica-
tion protocols are known in the literature [13–15,24,43]. If
the total number of tests is the main figure of merit, then the
protocol introduced by PLM [43] is an ideal choice. Recall
that each n-qubit stabilizer state |G〉 is uniquely determined by
n commuting stabilizer generators in the Pauli group, which
generate the stabilizer group of order 2n. The PLM protocol
is composed of 2n − 1 projective tests associated with 2n − 1
nontrivial stabilizer operators of |G〉. The corresponding veri-
fication operator reads as [43]

�PLM = |G〉〈G| + 2n−1 − 1

2n − 1
(1 − |G〉〈G|), (161)

which is homogeneous with

β(�PLM) = 2n−1 − 1

2n − 1
� 1

2
, ν(�PLM) = 2n−1

2n − 1
� 1

2
.

(162)

To verify |G〉 within infidelity ε and significance level δ, the
number of tests required by this protocol is

�21−n(2n − 1)ε−1 ln δ−1
 � �2ε−1 ln δ−1
, (163)

which is almost independent of the number n of qubits es-
pecially when n is large. Since the strategy in Eq. (161) is
homogeneous, it can also be applied for fidelity estimation
by virtue of Eqs. (8) and (9). The standard deviation of this
estimation satisfies


F =
√

p(1 − p)

ν
√

N
�

√
1 − F 2

√
N

, (164)

where p = tr(�σ ) = νF + β, ν = ν(�PLM) � 1/2, and β =
β(�PLM) � 1/2.

When adapted to the adversarial scenario, the strategy in
Eq. (161) is nearly optimal thanks to Theorem 3 and Eq. (78);
the number of required tests satisfies

N �
⌈

ln δ

(β ln β )ε

⌉
�
⌈

2 ln δ−1

(ln 2)ε

⌉
<

⌈
2.89 ln δ−1

ε

⌉
. (165)

Here, the latter two upper bounds are independent of the
number of qubits and the specific stabilizer state (or graph
state). Moreover, the scaling behaviors in ε and δ are both
optimal. Previously, the best protocol for the adversarial
scenario (without using our recipe) required �m3/(δε)
 tests
(�n3/(δε)
 tests in the worst case) when |G〉 is a graph state
whose underlying graph G is m-colorable [15,49].

E. Qudit stabilizer states

Here, we introduce an efficient protocol for verifying qudit
stabilizer states (including qudit graph states), assuming that
the local dimension d is a prime. Our protocol reduces to
the PLM protocol [43] for qubit stabilizer states (d = 2). Let
|G〉 be a stabilizer state of n-qudits. The stabilizer group S

of |G〉 is composed of all qudit Pauli operators that stabilize
|G〉 and is isomorphic to the group Zn

d , where Zd is the field
of integers modulo d . Note that Zn

d is also an n-dimensional
vector space over Zd . The stabilizer group can be generated
by n commuting Pauli operators, say, K1, K2, . . . , Kn, which
satisfy Kd

r = 1 for r = 1, 2, . . . , n. Each stabilizer operator in
S has the form

∏n
r=1 Kkr

r with k := (k1, k2, . . . , kn) ∈ Zn
d . If

k = (0, 0, . . . , 0), then this stabilizer operator is equal to the
identity operator; otherwise, it has d distinct eigenvalues ω j

for j = 0, 1, . . . , d − 1, where ω = e2π i/d is a primitive dth
root of unity.

For each nonzero element k in Zn
d we can construct a test

for |G〉 by measuring the stabilizer operator
∏n

r=1 Kkr
r : each

party performs a Pauli measurement determined by the de-
composition of

∏n
r=1 Kkr

r in terms of local Pauli operators. The
test is passed if the outcome corresponds to the eigenspace of∏n

r=1 Kkr
r with eigenvalue 1. The corresponding test projector

reads as

Pk = 1

d

d−1∑
j=0

(
n∏

r=1

Kkr
r

) j

. (166)

Note that jk for j ∈ Zd will lead to the same measurement
and test operator. Moreover, Pk′ = Pk iff k′ = jk for some j ∈
Zd with j 	= 0 (this conclusion may fail if d is not a prime, that
is why we assume that d is a prime). So, each test corresponds
to a line in Zn

d that passes through the origin, and vice versa.
In total (dn − 1)/(d − 1) distinct tests can be constructed in
this way.

A verification protocol for |G〉 can be constructed by
performing all distinct tests Pk randomly each with probability
(d − 1)/(dn − 1). The resulting verification operator reads as

� = 1

dn − 1

∑
k∈Zn

d , k 	=(0,0,...,0)

Pk

= |G〉〈G| + dn−1 − 1

dn − 1
(1 − |G〉〈G|), (167)

which is homogeneous with

β(�) = dn−1 − 1

dn − 1
� 1

d
, ν(�) = dn − dn−1

dn − 1
� d − 1

d
.

(168)
The number of tests required by this protocol is⌈

dn − 1

dn − dn−1
ε−1 ln δ−1

⌉
�
⌈

d

d − 1
ε−1 ln δ−1

⌉
, (169)

which decreases monotonically with the local dimension d .
Surprisingly, qudit stabilizer states with d > 2 (assuming d is
a prime) can be verified more efficiently than qubit stabilizer
states.

Similar to the qubit case, the above protocol can be applied
for fidelity estimation. According to Eq. (9), the standard
deviation of this estimation satisfies


F =
√

p(1 − p)

ν
√

N
�
√

(1 − F )[F + (d − 1)−1]√
N

(170)

given that ν � (d − 1)/d , where p = tr(�σ ) = νF + β.
By adding the trivial test with a suitable probability we

can construct any homogeneous verification operator � for
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|G〉 with dn−1−1
dn−1 � β(�) < 1 using LOCC. When d is an odd

prime, we can construct a homogeneous verification operator
� with β(�) = 1/e, which is optimal for the adversarial
scenario in the high-precision limit. Then the number of
required tests satisfies N � �eε−1 ln δ−1
 as in Eq. (157).

The verification protocol presented above is also highly ef-
ficient for certifying GME. Suppose |G〉 is a qudit graph state
associated with a connected graph, where the local dimension
d is a prime. Then |G〉 is GME; in addition, ρ is GME if its
fidelity with |G〉 is larger than 1/d . In general, to certify the
GME of the graph state |G〉 with significance level δ, we need
to guarantee 〈G|ρ|G〉 > 1/d with significance level δ. Given
a verification strategy �, then it suffices to perform

N =
⌈

ln δ

ln[1 − (d − 1)ν(�)/d]

⌉
(171)

tests according to Eq. (12) with ε = (d − 1)/d . For the strat-
egy in Eq. (167), we have ν(�) � (d − 1)/d , so the minimum
number of tests satisfy

N �
⌈

ln δ

ln[1 − (d − 1)2/d2]

⌉
=
⌈

ln δ

ln[(2d − 1)/d2]

⌉
. (172)

Surprisingly, only one test is required to certify the GME of
|G〉 when δ � (2d − 1)/d2, that is, d � (1 + √

1 − δ)/δ.
In the adversarial scenario, we can construct a homoge-

neous strategy � with β(�) = 2/(d + 1) using local projec-
tive measurements according to the above analysis. Thanks to
Corollary 6 with ε = (d − 1)/d , then the GME of |G〉 can be
certified using only one test as long as the significance level
satisfies δ � 4d/(d + 1)2, that is, d � (2 + 2

√
1 − δ − δ)/δ

(cf. Theorem 3 in Ref. [44]). According to Corollary 5, the
lower bound for δ cannot be decreased if d � 5 and if we can
perform only one test. Therefore, the GME of a connected
graph state can be certified with any given significance level
using only one test as long as the local dimension d is large
enough, assuming d is a prime. Previously, a similar result
was known only for GHZ states [48].

F. Hypergraph states

A hypergraph G = (V, E ) is characterized by a set V of
vertices and a set E of hyperedges [5,6]. For each hypergraph
G, one can construct a hypergraph state by preparing the state
|+〉 = (|0〉 + |1〉)/

√
2 for each vertex of G and then applying

the generalized controlled-Z operation on the vertices of each
hyperedge e ∈ E [5,6,49]. As a generalization of graph states,
hypergraph states are very useful to quantum computation and
foundational studies.

Recently, the authors proposed an efficient protocol, the
cover protocol, for verifying general hypergraph states, which
requires only Pauli X and Z measurements for each party [49].
As a special case, a coloring protocol can be constructed for
each coloring of the hypergraph G. Suppose G has chromatic
number χ (G); then the optimal coloring protocol requires
only χ (G) distinct measurement settings and can achieve a
spectral gap of

ν(�) = χ (G)−1 � [
(G) + 1]−1 � n−1, (173)

where 
(G) is the degree of G and n is the number of qubits.
Accordingly, the number of required tests reads as

NNA = �χ (G)ε−1 ln δ−1
 � �nε−1 ln δ−1
. (174)

This performance is nearly optimal if the chromatic number
χ (G) is small. For example, Union Jack states [17] can be
verified with a very high efficiency since the chromatic num-
ber of the underlying Union Jack lattice is only 3. These states
are particularly interesting because they can realize universal
quantum computation under Pauli measurements [17].

By virtue of the general recipe presented in Sec. IX, we can
construct a hedged coloring protocol as characterized by the
verification operator �p with p = ν/e [49]. In the adversarial
scenario, the number of tests required by �p satisfies

N � [χ (G) + e − 1] ln(Fδ)−1

ε
� (n + e − 1) ln(Fδ)−1

ε
,

(175)

where F = 1 − ε. The bound is comparable to the counterpart
for the nonadversarial scenario especially when n is large. The
hedged coloring protocol is dramatically more efficient than
previous protocols for verifying hypergraph states as proposed
in Refs. [18,42]. For example, the protocol of Ref. [42] (which
improves over Ref. [18]) requires more than (2 ln 2)n3ε−18

tests when δ = ε and 4nε � 1 (the number of required tests
was derived only for a restricted parameter range) [49]. This
number is astronomical even when n = 3 and ε = δ = 0.05.
In addition, the protocol of Ref. [42] requires adaptive sta-
bilizer tests with n measurement settings. By contrast, the
hedged coloring protocol requires at most 
(G) + 1 settings
without adaption [the number of settings can be reduced
to χ (G) if an optimal coloring can be found]. The hedged
coloring protocol is instrumental to realizing verifiable blind
MBQC and quantum supremacy. Its high efficiency demon-
strates the power of our general recipe to constructing efficient
verification protocols for the adversarial scenario.

Incidentally, the above results also apply to qudit hyper-
graph states, including qudit graph states in particular [49].
For graph states, the hedged coloring protocol is less effi-
cient than the PLM protocol [43] adapted for the adversarial
scenario as discussed in Sec. X D and its generalization in
Sec. X E, but requires much fewer measurement settings.

G. Weighted graph states

Next, consider weighted graph states [61]. Recently,
Hayashi and Takeuchi introduced several efficient protocols
for verifying the weighted graph state |G〉 associated with any
weighted graph G [50]. One of their protocols is based on
a coloring of G and adaptive local projective measurements.
It can achieve the same spectral gap as in Eq. (173), that
is, ν(�) = χ (G)−1 � n−1, where χ (G) now refers to the
chromatic number of the weighted graph G. As in the case
of hypergraph states, we can construct a hedged coloring
protocol characterized by the verification operator �p with
p = ν/e. Then the number of tests required by �p to verify
|G〉 in the adversarial scenario satisfies

N � [χ (G) + e − 1] ln(Fδ)−1

ε
� (n + e − 1) ln(Fδ)−1

ε
(176)
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as in Eq. (175). So, weighted graph states can be verified with
the same efficiency as hypergraph states.

It should be pointed out that the original protocol in
Ref. [50] is based on an earlier version of this paper for
dealing with the adversarial scenario (see arXiv:1806.05565),
so the scaling behavior of N with the significance level is sub-
optimal. The latest results developed in our study as presented
in Sec. IX are required to achieve the optimal scaling behavior
shown in Eq. (176). We are not aware of any other protocol for
verifying weighted graph states in the adversarial scenario.

H. Dicke states

Dicke states are another important class of multipartite
quantum states which are useful for quantum metrology. The
n-qubit Dicke state with k excitations reads as

∣∣Dk
n

〉 = (n

k

)−1/2 ∑
x∈Bn,k

|x〉, (177)

where Bn,k denotes the set of strings in {0, 1}n with Hamming
weight k. To avoid trivial cases, here we assume that n � 3
and 1 � k � n − 1. The Dicke state reduces to a W state when
k = 1. Recently, Liu et al. [51] proposed an efficient protocol
for verifying the Dicke state, which can achieve a spectral gap
of

ν(�) =
{ 1

3 , n = 3,
1

n−1 , n � 4.
(178)

To verify the Dicke state within infidelity ε and significance
level δ, the number of required tests reads as

NNA =
{�3ε−1 ln δ−1
, n = 3,

�(n − 1)ε−1 ln δ−1
, n � 4.
(179)

In the adversarial scenario, we can construct a hedged
verification strategy �p with p = ν/e according to the recipe
in Sec. IX. Thanks to Theorem 7, the number of tests required
by �p satisfies

N �
{

4.1ε−1 ln δ−1, n = 3,

(n + e − 2)ε−1 ln δ−1, n � 4.
(180)

This number is comparable to the counterpart for the nonad-
versarial scenario. To the best of our knowledge, no protocol
is known previously for verifying general Dicke states in
the adversarial scenario, although there are several works on
self-testing Dicke states [62,63].

To summarize the above discussions, by virtue of our
recipe presented in Sec. IX, optimal verification protocols
for the adversarial scenario can be constructed using local
projective measurements for all bipartite pure states, GHZ
states, and qudit stabilizer states whose local dimension is an
odd prime. Nearly optimal protocols can be constructed for
qubit stabilizer states and those hypergraph states with small
chromatic numbers, including Union Jack states. For general
hypergraph states, weighted graph states, and Dicke states, the
number of required tests is only about nε−1 ln δ−1 as shown in
Table I, which is dramatically smaller than what is required
by previous verification protocols (whenever such protocols
are available).

FIG. 10. Qualitative comparison among various approaches for
estimating or verifying quantum states with respect to the efficiency
and the strength of assumptions. Thanks to the recipe proposed in
Sec. IX, QSV in the adversarial scenario can achieve nearly the
same efficiency as QSV in the nonadversarial scenario, although the
underlying assumptions are much weaker.

XI. COMPARISON WITH OTHER APPROACHES

Before concluding this paper, it is instructive to com-
pare QSV with other approaches for estimating or verifying
quantum states, such as (traditional) quantum state tomogra-
phy [34], compressed sensing [35], direct fidelity estimation
(DFE) [36], and self-testing [37,38]. In this way we hope
to put QSV in a wide context, but we do not intend to be
exhaustive. Here, we are mainly interested in the efficiencies
of these approaches with respect to the total number of tests,
measurements, or copies of the state required to reach a given
precision. Before such a comparison, it should be pointed out
that different approaches rely on different assumptions and
address different problems. So, it is impossible to make a
completely fair comparison.

In quantum state tomography, compressed sensing, and
DFE, we usually assume that the states prepared in different
runs are independent and identical and that the measurement
devices are trustworthy. In addition, many protocols only
require local projective measurements or even Pauli mea-
surements, which are usually much easier to implement than
other more complicated operations. In QSV, the measurement
devices are still trustworthy, but the states for different runs
may be different as long as they are independent (cf. Sec. III).
In the adversarial scenario, arbitrary correlated or entangled
state preparation is allowed. In self-testing, even the measure-
ment devices are not trusted [37,38]. The different strengths
of assumptions underlying these approaches are illustrated in
Fig. 10.

In addition, different approaches address different ques-
tions. Quantum state tomography aims to address the fol-
lowing question: What is the state? To answer this question
amounts to reconstructing the density matrix, so the number
of parameters to be determined increases exponentially with
the number of qubits (here we assume that each subsystem
is a qubit for simplicity; the general situation is similar).
That is why the resource overhead of tomography increases
exponentially with the number of qubits. Compressed sensing
addresses a similar question, and so cannot avoid the expo-
nential scaling of resource costs. Nevertheless, it can reduce
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the resource overhead significantly by exploiting the structure
of quantum states of low ranks [35].

DFE, QSV, and self-testing address a different type of
question: Is the state identical to the target state, or how close
is it? Here, the target state is usually a pure state, and the close-
ness is usually quantified by fidelity or infidelity. Quite often
answering these questions is sufficient for many applications
in quantum information processing, so it is of fundamental
interest to extract such key information efficiently without full
tomography. DFE aims to determine the fidelity (infidelity)
between the state prepared and the target state [36]. QSV tries
to decide whether the fidelity (infidelity) is larger (smaller)
than a given threshold, which is usually easier than fidelity
estimation [39,40,43]. Self-testing can only provide a lower
bound for the fidelity up to some local isometry because the
measurement devices are not trustworthy, and the conclusion
is solely based on the observed probabilities [37,38].

Suppose we can optimize measurement settings and data-
processing procedures, then the efficiency of an approach is
mainly determined by the strength of the underlying assump-
tions and the amount of information it extracts. However, in
general it is very difficult to determine the efficiency limit of
a given approach because it is very difficult to perform such
optimization. In addition, it is highly nontrivial to determine
the impacts of various assumptions.

Although DFE is much more efficient than quantum state
tomography, the resource cost still increases exponentially
with the number of qubits, except for some special families of
states, such as stabilizer states. The DFE protocol originally
proposed in Ref. [36] only requires Pauli measurements; it
is not clear whether we can avoid the exponential scaling
behavior if more general local measurements are taken into
account. In the case of self-testing, there are already numerous
research works (see the review paper [38]); however, little
is known about the resource cost to reach a given precision,
especially in the multipartite setting. A few known protocols
for self-testing multipartite states are highly resource consum-
ing and hardly practical for systems of more than 10 qubits.
For example, the resource required to self-test Dicke states
increases exponentially with the number of qubits [62,63].
It is still not clear whether this inefficiency is fundamentally
inevitable or is due to our lack of imagination.

In QSV in the nonadversarial scenario, we have shown
in Sec. III B that the variation in states prepared in different
runs does not incur any resource overhead as long as these
states are independent of each other. In other words, as far
as the efficiency is concerned, we can assume that these
states are identical and independent as assumed in quantum
state tomography, compressed sensing, and DFE. Moreover,
thanks to our recipe presented in Sec. IX, pure states can
be verified in the adversarial scenario with nearly the same
efficiency as in the nonadversarial scenario. In many cases,
we can even construct optimal protocols, which are quite rare
for other approaches. Therefore, we can expect that QSV
even in the adversarial scenario is more efficient than DFE
and self-testing, as illustrated in Fig. 10. This is indeed the
case for all states for which verification protocols have been
found, such as bipartite pure states, GHZ states, stabilizer
states (including graph states), hypergraph states, weighted
graph states, and Dicke states. For example, Dicke states,

hypergraph states, and weighted graph states can be verified
efficiently in the adversarial scenario, although no efficient
DFE or self-testing protocols are available. In the case of
general hypergraph states and weighted graph states, actually,
no self-testing protocols are known at all.

As pointed out earlier, it would be unfair to compare QSV
with self-testing directly, but so far the former is the only
practical choice for intermediate and large quantum systems
especially in the adversarial scenario. Although self-testing
has been studied more intensively in the literature [38], it is
still very difficult to construct efficient self-testing protocols
for multipartite states because the measurement devices are
not trustworthy. Insight from QSV may be helpful to studying
self-testing, and vice versa. The relations between QSV and
self-testing are worth further exploration in the future. In
particular, it would be desirable to combine the merits of the
two approaches. We hope that our work can stimulate further
progresses along this direction.

XII. SUMMARY

We presented a comprehensive study of pure-state verifi-
cation in the adversarial scenario. Notably, we introduced a
general method for computing the main figures of merit per-
tinent to QSV in the adversarial scenario, such as the fidelity
and the number of required tests. In addition, we introduced
homogeneous strategies and derived analytical formulas for
the main figures of merit of practical interest. The condi-
tions for single-copy verification are also clarified, which are
instructive to understanding single-copy entanglement detec-
tion. Moreover, we proposed a simple, but powerful recipe to
constructing efficient verification protocols for the adversarial
scenario from the counterpart for the nonadversarial scenario.
Thanks to this recipe, any pure state can be verified in the
adversarial scenario with nearly the same efficiency as in the
nonadversarial scenario. Therefore, to verify a pure quantum
state efficiently in the adversarial scenario, it remains to find
an efficient protocol for the nonadversarial scenario, which is
usually much easier.

Our recipe can readily be applied to the verification of
many important quantum states in quantum information pro-
cessing, including bipartite pure states, GHZ states, stabilizer
states, hypergraph states, weighted graph states, and Dicke
states. Recently, efficient protocols based on local projective
measurements have been constructed for verifying these states
in the nonadversarial scenario. By virtue of our recipe, all
these states can be verified efficiently in the adversarial sce-
nario using local projective measurements. These results are
instrumental to many applications in quantum information
processing that demand high-security requirements, such as
blind MBQC and quantum networks. The potential of our
study is to be unleashed further in the future.
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APPENDIX A: PROOF OF EQ. (1)

Here, we present a simpler proof of Eq. (1), which was
originally proved in Ref. [43].

Proof. Suppose the verification operator � has spectral
decomposition � =∑D

j=1 λ j� j , where D is the dimension of
the Hilbert space H, λ j are the eigenvalues of � arranged
in decreasing order 1 = λ1 > λ2 � · · · � λD, and � j are
mutually orthogonal rank-1 projectors with �1 = |�〉〈�|.
Without loss of generality, we may assume that σ is diagonal
in the eigenbasis of � because both tr(�σ ) and 〈�|σ |�〉 only
depend on the diagonal elements of σ in this basis. Suppose
σ =∑D

j=1 x j� j with x j � 0 and
∑

j x j = 1. Then

〈�|σ |�〉 = x1, tr(�σ ) =
∑

j

λ jx j . (A1)

Therefore,

max
〈�|σ |�〉�1−ε

tr(�σ ) = max
x j�0,

∑
j x j=1, x1�1−ε

∑
j

λ jx j

= max
0�x1�1−ε

x1 + λ2(1 − x1) = 1 − ν(�)ε, (A2)

where ν(�) := 1 − β(�) = 1 − λ2. The maximum can be
attained when σ = (1 − ε)(|�〉〈�|) + ε�2. �

APPENDIX B: PROOFS OF LEMMAS 1 TO 6

In this Appendix we prove Lemmas 1 to 6 in Sec. V.

1. Proofs of Lemmas 1 to 3

Proof of Lemma 1. Let ρ be an arbitrary permutation-
invariant diagonal density matrix on H⊗(N+1) with decom-
position ρ =∑k∈SN

ckρk, where ck form a probability dis-
tribution on SN . Recall that SN is the set of all sequences
k = (k1, k2, . . . , kD) of D non-negative integers that sum up
to N + 1, that is,

∑
j k j = N + 1. If fρ = 0, then ζk(λ) = 0

whenever ck > 0. Therefore,

η(N, 0,�) = max
k∈SN

{ηk(λ) | ζk(λ) = 0}. (B1)

To compute η(N, 0,�), we need to determine those k ∈
SN at which ζk(λ) = 0. By Eq. (27), this condition is satisfied
iff k1 = 0, or λi = 0 and ki � 1 for some 2 � i � D. In the
first case, we have ηk(λ) � βN , and the inequality is saturated
when k = (0, N + 1, 0, . . . , 0). In the second case, we have

ηk(λ) = kiλ
ki−1
i

N + 1

∏
j 	=i,k j>0

λ
k j

j � 1

N + 1
, (B2)

and the inequality is saturated when k = (N, 0, . . . , 0, 1).
If τ > 0, then only the first case can occur, so we have
η(N, 0,�) = βN . If τ = 0, then both cases can occur, so
η(N, 0,�) = max{βN , 1/(N + 1)}. In conclusion, we have
η(N, 0,�) = δc, which confirms Lemma 1. �

Next, consider the proofs of Lemmas 2 and 3. From the
definitions in Eqs. (20) and (34) together with the results in
Eqs. (32) and (33), we can deduce the following relations:

ζ (N, δ,�) = min
δ′�δ

ζ̃ (N, δ′,�) � ζ̃ (N, δ,�), (B3a)

η(N, f ,�) = max
f ′� f

η̃(N, f ′,�) � η̃(N, f ,�), (B3b)

F (N, δ,�) = min
δ′�δ

F̃ (N, δ′,�) � F̃ (N, δ,�), (B3c)

F (N, f ,�) = min
f ′� f

F̃ (N, f ′,�) � F̃ (N, f ,�). (B3d)

Therefore, Lemmas 2 and 3 are immediate consequences
of Lemma 13 below.

Lemma 13. The following statements hold:
(1) ζ̃ (N, δ,�) is convex and nondecreasing in δ for 0 �

δ � 1 and is strictly increasing for δc � δ � 1.
(2) η̃(N, f ,�) is concave and strictly increasing in f for

0 � f � 1.
(3) F̃ (N, δ,�) is nondecreasing in δ for 0 < δ � 1 and is

strictly increasing for δc � δ � 1.
(4) F̃ (N, f ,�) is strictly increasing in f for 0 < f � 1.
Here, δc is defined in Eq. (31). The convexity of ζ̃ (N, δ,�)

means

ζ̃ (N, δ,�) � (1 − s)ζ̃ (N, δ1,�) + sζ̃ (N, δ2,�) (B4)

for δ = (1 − s)δ1 + sδ2 and 0 � s, δ1, δ2 � 1. Note that this
inequality is trivial when δ1 = δ2 or s = 0, 1. The concavity
of η̃(N, f ,�) means

η̃(N, f ,�) � (1 − s)η̃(N, f1,�) + sη̃(N, f2,�) (B5)

for f = (1 − s) f1 + s f2 and 0 � s, f1, f2 � 1.
Proof of Lemma 13. The convexity of ζ̃ (N, δ,�) in δ can

be proved by virtue of the definition in Eq. (34). Suppose
0 � δ1 < δ2 � 1 and 0 < s < 1; let δ = (1 − s)δ1 + sδ2. If
δ1 > δc, then there exist two quantum states ρ1 and ρ2 that
satisfy

pρ1 = δ1, fρ1 = ζ̃ (N, δ1,�),
(B6)

pρ2 = δ2, fρ2 = ζ̃ (N, δ2,�).

Let ρ = (1 − s)ρ1 + sρ2; then

pρ = (1 − s)δ1 + sδ2 = δ, (B7)

so that

ζ̃ (N, δ,�) � fρ = (1 − s)ζ̃ (N, δ1,�) + sζ̃ (N, δ2,�),
(B8)

which confirms Eq. (B4). If δ1 � δc and δ � δc, then
ζ̃ (N, δ,�) = ζ̃ (N, δ1,�) = 0, while ζ̃ (N, δ2,�) � 0, so
Eq. (B4) holds.

If δ1 � δc and δ > δc, then ζ̃ (N, δ1,�) = 0. Let ρc be a
quantum state that satisfies pρc = δc and fρc = 0. Let s′ be the
solution of the equation δ = (1 − s′)δc + s′δ2, which satisfies
0 � s′ � s. Let ρ = (1 − s′)ρc + s′ρ2. Then pρ = δ, so that

ζ̃ (N, δ,�) � fρ = s′ζ̃ (N, δ2,�) � sζ̃ (N, δ2,�)

= (1 − s)ζ̃ (N, δ1,�) + sζ̃ (N, δ2,�), (B9)

which confirms Eq. (B4) again. Therefore, ζ̃ (N, δ,�) is con-
vex in δ for 0 � δ � 1.
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To prove the monotonicity of ζ̃ (N, δ,�) with δ, let δ1, δ2 be
real numbers that satisfy δc � δ1 < δ2 � 1. Then there exists
a quantum state ρ2 with pρ2 = δ2 and fρ2 = ζ̃ (N, δ2,�) > 0.
Let s be the solution to the equation δ1 = (1 − s)δc + sδ2; then
0 � s < 1. Let ρ = (1 − s)ρc + sρ2; then pρ = δ1, so that

ζ̃ (N, δ1,�) � fρ = sζ̃ (N, δ2,�) < ζ̃ (N, δ2,�). (B10)

Therefore, ζ̃ (N, δ,�) is strictly increasing in δ when
δc � δ� 1. As a corollary, ζ̃ (N, δ,�) is nondecreasing in δ

for 0� δ� 1 given that ζ̃ (N, δ,�) = 0 for 0 � δ � δc.
Next, consider statement 2 in Lemma 13. The concavity

of η̃(N, f ,�) follows from a similar reasoning that leads to
Eq. (B8).

To prove the monotonicity of η̃(N, f ,�) over f , choose
0 � f1 < f2 � 1. Then there exists a quantum state ρ1

such that fρ1 = f1 and pρ1 = η̃(N, f1,�) < 1. Choose � =
(|�〉〈�|)⊗(N+1); then f� = p� = 1. Let s be the solution to
the equation f2 = (1 − s) f1 + s; note that 0 < s � 1 because
of the assumption f1 < f2 � 1. Let ρ2 = (1 − s)ρ1 + s�; then
fρ2 = f2, so that

η̃(N, f2,�) � pρ2 = (1 − s)η̃(N, f1,�) + s > η̃(N, f1,�).
(B11)

Here, the second inequality follows from the facts that 0 <

s � 1 and that η̃(N, f1,�) < 1.
Next, consider statement 3 in Lemma 13. Suppose

δ1, δ2 are real numbers that satisfy δc � δ1 < δ2 � 1. Then
F̃ (N, δ2,�) � F (N, δ2,�) > 0 and there is a quantum state
ρ2 such that pρ2 = δ2 and fρ2 = δ2F̃ (N, δ2,�). By assump-
tion, δ1 can be expressed as a convex sum of δ2 and δc,
that is, δ1 = sδ2 + (1 − s)δc, where s satisfies 0 � s < 1. Let
ρ1 = sρ2 + (1 − s)ρc, then

pρ1 = sδ2 + (1 − s)δc = δ1, fρ1 = s fρ2 = sδ2F̃ (N, δ2,�),
(B12)

so that

F̃ (N, δ1,�) � fρ1

pρ1

= sδ2F̃ (N, δ2,�)

sδ2 + (1 − s)δc
< F̃ (N, δ2,�).

(B13)
Therefore, F̃ (N, δ,�) is strictly increasing in δ whenever δc �
δ � 1. As a corollary, F̃ (N, δ,�) is nondecreasing in δ for
0 < δ � 1 given that F̃ (N, δ,�) = 0 for 0 < δ � δc.

Finally, consider statement 4 in Lemma 13. Suppose f1 and
f2 are real numbers that satisfy 0 < f1 < f2 � 1 and let s =
f1/ f2. Then 0 < s < 1 and there exists a quantum state ρ2

such that fρ2 = f2 and pρ2 = f2/F̃ (N, f2,�). Let ρ1 = sρ2 +
(1 − s)ρc, where ρc is a quantum state that satisfies pρc = δc

and fρc = 0. Then we have

fρ1 = s f2 = f1, pρ1 = spρ2 + (1 − s)δc, (B14)

so that

F̃ (N, f1,�) � s f2

spρ2 + (1 − s)δc
<

f2

pρ2

= F̃ (N, f2,�).

(B15)
Therefore, F̃ (N, f ,�) increases strictly monotonically with
f for 0 < f � 1. �

2. Proofs of Lemmas 4 to 7

Proof of Lemma 4. To prove Eq. (38a) in the lemma,
let f1 = ζ (N, δ,�) and δ1 = η(N, f1,�). If δ satisfies the
condition 0 � δ � δc, then f1 = 0 and δ1 = δc according to
Lemma 1, which confirms Eq. (38a).

Now, suppose δc < δ � 1; then max{δ, δc} = δ. In addi-
tion, there exists a quantum state ρ on H⊗(N+1) such that
pρ = δ and fρ = f1, which implies that δ1 = η(N, f1,�) � δ.
Meanwhile, there exists a state ρ ′ such that fρ ′ = f1 and pρ ′ =
δ1, which implies that ζ (N, δ1,�) � f1 = ζ (N, δ,�). Since
ζ (N, δ,�) is strictly increasing in δ for δc � δ � 1 according
to Lemma 3, we conclude that δ1 � δ. This observation im-
plies that δ1 = δ and confirms Eq. (38a) given the opposite
inequality derived above.

Next, consider Eq. (38b). Let δ1 = η(N, f ,�) and f1 =
ζ (N, δ1,�). Then δ1 � δc and there exists a quantum state ρ

on H⊗(N+1) such that fρ = f and pρ = δ1, which implies that
f1 = ζ (N, δ1,�) � f . Meanwhile, there exists a state ρ ′ such
that pρ ′ = δ1 and fρ ′ = f1, which implies that η(N, f1,�) �
δ1 = η(N, f ,�). Since η(N, δ,�) is strictly increasing in
f for 0 � f � 1 according to Lemma 3, we conclude that
f1 � f . This observation implies that f1 = f and confirms
Eq. (38b) given the opposite inequality derived above. �

Proof of Lemma 5. Recall that ζ (N, δ,�) is convex and
nondecreasing in δ according to Lemma 3. In addition,
ζ (N, δ,�) is a piecewise-linear function of δ, and each turning
point is equal to ηk for some k ∈ SN at which we have
ζ (N, δ = ηk,�) = ζk (cf. Lemma 14 below). Here, ηk and
ζk are shorthand for ηk(λ) and ζk(λ), respectively, which are
defined in Eq. (27). To prove Eq. (39a), it suffices to prove the
inequality ζk � ζ (N − 1, ηk,�) for each turning point.

If k1 = 0, then ζk = 0, which implies that ηk � δc accord-
ing to Lemma 1, so that ζ (N − 1, ηk,�) = 0 � ζk. If k1 � 1,
let k′ = (k1 − 1, k2, . . . , kD). Then

ηk′,N−1 � ηk, ζk′,N−1 � ζk, (B16)

where ηk′,N−1 and ζk′,N−1 are given in Eq. (27) with N
replaced by N − 1 and k replaced by k′. In conjunction with
Lemma 3 we conclude that

ζ (N − 1, ηk,�) � ζ (N − 1, ηk′,N−1,�) � ζk′,N−1 � ζk,

(B17)

which implies Eq. (39a) as desired. If δ � δc, then we
have ζ (N, δ,�) = ζ (N − 1, δ,�) = 0. If δ = 1 by contrast,
then ζ (N, δ,�) = ζ (N − 1, δ,�) = 1. So the inequality in
Eq. (39a) is saturated in both cases.

If the upper bound in Eq. (B17) is saturated, then we
have ζk′,N−1 = ζk, which implies that ζk = 0 (which means
ηk � δc) or ζk = 1 (which means ηk = 1). So, the upper bound
in Eq. (B17) cannot be saturated whenever the turning point
satisfies δc < ηk < 1. In conjunction with Eqs. (32) and (33),
this observation implies that the inequality in Eq. (39a) is sat-
urated iff δ � δc or δ = 1. According to Lemma 2, Eqs. (39b)
and (39a) are equivalent, so the same conclusion also applies
to Eq. (39b).

Equation (39c) and the equality condition can be derived
using a similar reasoning as presented above. Equations (39d)
and (39c) are equivalent according to Lemma 2.
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Alternatively, Eq. (39c) can be derived from Lem-
mas 1, 3, 4, and Eq. (39a). To be specific, if f = 0, then we
have η(N, f ,�) < η(N − 1, f ,�) according to Lemma 1, so
Eq. (39c) holds with strict inequality. If f > 0, then

η(N, f ,�) > η(N, 0,�) = δc, (B18)

η(N − 1, f ,�) > η(N − 1, 0,�) > δc, (B19)

according to Lemmas 1 and 3, where δc is given in Eq. (31).
In addition, Eq. (39a) and Lemma 4 imply that

ζ (N, η(N − 1, f ,�),�) � ζ (N − 1, η(N − 1, f ,�),�)

= f = ζ (N, η(N, f ,�),�). (B20)

In conjunction with Lemma 3, this equation implies that

η(N, f ,�) � η(N − 1, f ,�) (B21)

and confirms Eq. (39c). If the inequality in Eq. (39c) is
saturated, then the inequality in Eq. (B20) is saturated, so
that η(N − 1, f ,�) � δc or η(N − 1, f ,�) = 1. The first
case cannot happen, while the second case holds iff f = 1.
Therefore, the inequality in Eq. (39c) is saturated iff
f = 1. �

Proof of Lemma 6. Lemma 6 follows from the definition
of N (ε, δ,�) in Eq. (23) and the fact that the following four
inequalities are equivalent:

F (N, δ,�) � 1 − ε, (B22)

ζ (N, δ,�) � δ(1 − ε), (B23)

η(N, δ(1 − ε),�) � δ, (B24)

F (N, δ(1 − ε),�) � (1 − ε). (B25)

Here, the equivalence of the first two inequalities is a corollary
of Lemma 2; so is the equivalence of the last two inequalities.
The equivalence of the middle two inequalities follows from
Lemmas 3 and 4; note that δ > δc if either inequality is
satisfied. �

Proof of Lemma 7. Equation (43b) is an immediate con-
sequence of Eqs. (36a) and (43a); Eq. (43c) is an immediate
consequence of Eqs. (23) and (43b). So, to prove Lemma 7, it
suffices to prove Eq. (43a).

By the definition in Eqs. (20a) and (25) we have

ζ (N, δ,�)

= min
{ck}

⎧⎨
⎩
∑

k∈SN

ckζk(λ)

∣∣∣∣∣∣
∑

k∈SN

ckηk(λ) � δ

⎫⎬
⎭

� min
{ck}

⎧⎨
⎩
∑

k∈SN

ckζ (N, δ = ηk(λ), �̃)

∣∣∣∣∣∣
∑

k∈SN

ckηk(λ) � δ

⎫⎬
⎭

� min
{ck}

⎧⎨
⎩ζ

⎛
⎝N,

∑
k∈SN

ckηk(λ), �̃

⎞
⎠
∣∣∣∣∣∣
∑

k∈SN

ckηk(λ) � δ

⎫⎬
⎭

= min
δ′�δ

ζ (N, δ′, �̃) = ζ (N, δ, �̃), (B26)

which confirms Eq. (43a). Here, {ck} is a probability dis-
tribution on SN ; the first inequality in Eq. (B26) follows
from the assumption that ζk(λ) � ζ (N, δ = ηk(λ), �̃) for all
k ∈ SN , and the second inequality follows from the convexity

of ζ (N, δ′, �̃) in δ′ (cf. Lemma 3); the last equality follows
from the monotonicity of ζ (N, δ′, �̃) in δ′. �

By Eq. (37) in the main text, ζ (N, δ,�) and η(N, f ,�) are
piecewise linear functions, whose turning points correspond
to the extremal points of the region RN,�, which have the
form (ηk(λ), ζk(λ)) for certain k ∈ SN . In conjunction with
the monotonicity and convexity (concavity) of ζ (N, δ,�)
[η(N, f ,�)] stated in Lemma 3 (see also Lemma 4), we
can deduce the following conclusion. Here, δc is defined in
Eq. (31).

Lemma 14. ζ (N, δ,�) for δc � δ � 1 and η(N, f ,�) for
0 � f � 1 can be expressed as follows:

ζ (N, δ,�) = a j+1 − δ

a j+1 − a j
b j + δ − a j

a j+1 − a j
b j+1, (B27)

η(N, f ,�) = bl+1 − f

bl+1 − bl
al + f − bl

bl+1 − bl
al+1, (B28)

where j and l are chosen so that a j � δ � a j+1 and bl � f �
bl+1. Here, a j = ηk( j) (λ) and b j = ζk( j) (λ) with k( j) ∈ SN for
j = 0, 1, . . . , m, which satisfy the following conditions:

δc = a0 < a1 < · · · < am−1 < am = 1, (B29)

0 = b0 < b1 < · · · < bm−1 < bm = 1, (B30)

0 = b0

a0
<

b1

a1
< · · · <

bm−1

am−1
<

bm

am
= 1. (B31)

Note that we can choose strict inequalities δ > aj and
f > bl in Lemma 14 if δ > δc and f > 0. If � is a nonsingular
homogeneous strategy defined in Eq. (44), for example, then
δc = λN , m = N + 1, a j = ηN+1− j (λ), and b j = ζN+1− j (λ);
cf. Theorem 1 in the main text.

Lemma 14 is very helpful to understanding the properties
of ζ (N, δ,�) and η(N, f ,�), although, in general, it is not
easy to determine the values of m, k( j), a j , and b j . Geometri-
cally, (a j, b j ) happen to be the extremal points of the region
RN,�. When δc = τN , which can happen iff τ = β > 0, RN,�

has no other extremal point; when δc > τN , RN,� has only
one additional extremal point, namely, (τN , 0), as illustrated
in Fig. 1. This conclusion is tied to Lemma 23 presented in
Appendix E.

APPENDIX C: HOMOGENEOUS STRATEGIES

1. Auxiliary results on homogeneous strategies

Before proving the results on homogeneous strategies pre-
sented in the main text, we need to introduce a few auxiliary
results. For j, k ∈ Z�0 and 0 < λ < 1, define

g jk (λ) = gk j (λ) := ζk (λ) − ζ j (λ)

ηk (λ) − η j (λ)
, j 	= k, (C1)

gk (λ) := gk(k+1)(λ) = ζk (λ) − ζk+1(λ)

ηk (λ) − ηk+1(λ)
, (C2)

where ηk (λ) and ζk (λ) are defined in Eq. (47), assuming that
N is a positive integer. To simplify the notations, we shall use
ηk , ζk , gk , gk j as shorthand for ηk (λ), ζk (λ), gk (λ), gk j (λ) if
there is no danger of confusions. Geometrically, gjk and gk j

denote the slope of the line passing through the two points
(η j, ζ j ) and (ηk, ζk ).
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Lemma 15. Suppose 0 < λ < 1 and j, k ∈ Z�0 with k <

j. Then gk (λ) decreases strictly monotonically with k, and
gk j (λ) decreases strictly monotonically with j, k.

Lemma 16. Let 0 � λ < 1 and k ∈ {1, 2, . . . , N + 1}.
Then

1

1 − λN
� 1 − ζk (λ)

1 − ηk (λ)
� 1 + N (1 − λ)

N (1 − λ)
= 1 + Nν

Nν
. (C3)

The first inequality is saturated iff k = N + 1, or k � 2 and
λ = 0; the second inequality is saturated iff k = 1.

When 0 � λ < 1 (and N is a positive integer), Lemma 16
implies that

1

1 − λN
<

1 + Nν

Nν
, λN <

1

Nν + 1
. (C4)

The two inequalities actually hold for a wider parameter range
according to Lemma 17 below.

Lemma 17. Suppose 0 < λ � 1, ν = 1 − λ, and a is a real
number. Then

λ−a − aν − 1 � 0 if a � 0 or a � −1, (C5)

λ−a − aν − 1 � 0 if − 1 � a � 0. (C6)

If a 	= −1, 0, then the inequality in Eq. (C5) is saturated iff
λ = 1; the same holds for the inequality in Eq. (C6).

Lemma 18. Let 0 < λ < 1, 0 � δ � 1, and k ∈ Z�0. Then
ζ (N, δ, λ, k) increases strictly monotonically with δ when k �
N + 1. Also, ζ (N, δ, λ, k) increases strictly monotonically
with N except when δ = 1 and k = 0.

Here, ζ (N, δ, λ, k) is defined in Eq. (53) in the main text.
Note that ζ (N, δ, λ, k) = 1 is independent of N and λ when
δ = 1 and k = 0.

Lemma 19. Suppose 0 < λ < 1 and 0 < δ � 1. Then

max
k∈Z�0

ζ (N, δ, λ, k) = ζ (N, δ, λ, k∗), (C7)

max{0, ζ (N, δ, λ, k∗)}

= max

{
0, max

k∈{0,1,...,N}
ζ (N, δ, λ, k)

}
= max{0, ζ (N, δ, λ, k+), ζ (N, δ, λ, k−)}, (C8)

where k∗ is the largest integer k that satisfies ηk � δ, k+ =
�logλ δ
, and k− = �logλ δ�. In addition,

ζ (N, δ, λ, k∗) � 0, 0 � δ � λN , (C9)

ζ (N, δ, λ, k∗) > 0, λN < δ � 1. (C10)

Lemma 20. Suppose 0 < ε, δ, λ < 1 and k ∈ Z�0. Then
Ñ (ε, δ, λ, k) > 0 and it decreases strictly monotonically with
ε and δ. If δ � λk/(F + λε), then Ñ (ε, δ, λ, k) > k − 1.
Given k � 1, then Ñ (ε, δ, λ, k) � Ñ (ε, δ, λ, k − 1) iff δ �
λk/(F + λε). In addition,

min
k∈Z�0

Ñ (ε, δ, λ, k) = Ñ (ε, δ, λ, k∗) (C11)

= min{Ñ+(ε, δ, λ), Ñ−(ε, δ, λ)} (C12)

=
{

Ñ−(ε, δ, λ), δ � λk+
F+λε

,

Ñ+(ε, δ, λ), δ � λk+
F+λε

,
(C13)

where k∗ is the largest integer k that satisfies the inequality
δ � λk/(F + λε) and Ñ±(ε, δ, λ) = Ñ (ε, δ, λ, k±) with k+ =
�logλ δ
 and k− = �logλ δ�.

Here, Ñ (ε, δ, λ, k) is defined in Eq. (63).
Lemma 21. Suppose 0 < ε, δ, λ < 1. Then

Ñ−(ε, δ, λ) � Fν + λ

λε
k− + logλ δ − k−

λε
= logλ δ

λε
− νk−

λ
,

(C14)

where F = 1 − ε, ν = 1 − λ, and k− = �logλ δ�. The in-
equality is saturated iff logλ δ is an integer.

Proof of Lemma 15. According to Eqs. (C1) and (C2) as
well as the definitions of ηk (λ) and ζk (λ) in Eq. (47), we have

gk (λ) = λ[1 + (N − k)ν]

ν(Nλ + kν)
, (C15)

gk (λ) − gk+1(λ) = (N + 1)λ

[Nλ + (k + 1)ν](Nλ + kν)
> 0, (C16)

where ν = 1 − λ. So, gk (λ) decreases strictly monotonically
with k for k ∈ Z�0.

Simple analysis shows that gk j (λ) can be expressed as
a weighted average of gm(λ) for m = k, k + 1, . . . , j − 1,
namely,

gk j (λ) =
j−1∑

m=k

ηm(λ) − ηm+1(λ)

ηk (λ) − η j (λ)
gm(λ). (C17)

Here, the weight for each gm(λ) is strictly positive given that
ηm(λ) decreases strictly monotonically with m for m ∈ Z�0.
So, g j (λ) < g j−1(λ) < gk j (λ) < gk (λ) when k + 1 < j. In
addition, gk( j+1)(λ) is a convex sum of gk j (λ) and g j (λ), that
is,

gk( j+1) = (ηk − η j )gk j + (η j − η j+1)g j

ηk − η j+1
, (C18)

which implies that gk( j+1)(λ) < gk j (λ); by the same token
we can prove g(k+1) j (λ) < gk j (λ) when k + 1 < j. Therefore,
gk j (λ) decreases strictly monotonically with k and j. �

Proof of Lemma 16. When 0 < λ < 1, Lemma 16 is an
immediate consequence of Lemma 15 given that

η0(λ) = ζ0(λ) = 1, ηN+1(λ) = λN , ζN+1(λ) = 0,

(C19)

η1(λ) = 1 + Nλ

N + 1
, ζ1(λ) = Nλ

N + 1
, (C20)

so that

g0k (λ) = 1 − ζk (λ)

1 − ηk (λ)
=
{

1+N (1−λ)
N (1−λ) , k = 1,
1

1−λN , k = N + 1.
(C21)

When λ = 0, we have ζ0 = η0 = 1, η1 = 1/(N + 1), ηk = 0
for k = 2, 3, . . . , N + 1, and ζk = 0 for k = 1, 2, . . . , N + 1,
in which case Lemma 16 can be verified explicitly. �

Proof of Lemma 17. Note that λ−a − aν − 1 = 0 if λ = 1,
or a = 0, or a = −1. The derivative of λ−a − aν − 1 over λ

reads as a(1 − λ−a−1), and it satisfies

a(1 − λ−a−1) � 0 if a � 0 or a � −1, (C22)

a(1 − λ−a−1) � 0 if − 1 � a � 0, (C23)
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which imply the inequalities in Eqs. (C5) and (C6) given
that λ−a − aν − 1 = 0 when λ = 1. If a 	= −1, 0, then the in-
equality in Eq. (C22) is saturated iff λ = 1, and the same holds
for the inequality in Eq. (C23). Therefore, both Eqs. (C5)
and (C6) are saturated iff λ = 1, which completes the proof
of Lemma 17. �

Proof of Lemma 18. The monotonicity of ζ (N, δ, λ, k) with
δ follows from the facts that ζ (N, δ, λ, k) is linear in δ and that
1 + (N − k)ν > 0 when k � N + 1.

According to the following equation

ζ (N + 1, δ, λ, k) − ζ (N, δ, λ, k)

= λ[λk+1 + δ(kν − λ)]

ν(Nλ + kν)[(N + 1)λ + kν]
, (C24)

to prove the monotonicity of ζ (N, δ, λ, k) with N , it suffices
to prove the inequality

λk+1 + δ(kν − λ) � 0, (C25)

which is saturated iff δ = 1 and k = 0. To this end, it suffices
to consider the two special cases δ = 0 and 1 since the left-
hand side in Eq. (C25) is linear in δ. In the first case, the
inequality is strict. In the second case, according to Lemma 17
with a = −(k + 1), we have

λk+1 + kν − λ � −(k + 1)ν + 1 + kν − λ = 0, (C26)

and the inequality is saturated iff k = 0. This observation con-
firms the inequality in Eq. (C25) and the saturation condition,
which in turn confirms Lemma 18. �

Proof of Lemma 19. When k − 1 ∈ Z�0, by the definition
of ζ (N, δ, λ, k) in Eq. (53), we can derive

ζ (N, δ, λ, k) − ζ (N, δ, λ, k − 1)

= λk[k + (N + 1 − k)λ] − (N + 1)λδ

(kν + Nλ)[(k − 1)ν + Nλ]
. (C27)

So ζ (N, δ, λ, k) � ζ (N, δ, λ, k − 1) iff δ � ηk and the in-
equality is saturated only when δ = ηk . Therefore, the max-
imum of ζ (N, δ, λ, k) over k ∈ Z�0 is attained when k is
the largest integer that satisfies ηk � δ, that is, k = k∗, which
confirms Eq. (C7).

Before proving Eq. (C8), we first prove Eqs. (C9)
and (C10). According to Eq. (53) in the main text and the
definition of k∗, ζ (N, δ, λ, k∗) is a convex sum of ζk∗ (λ)
and ζk∗+1(λ) in which the weight of ζk∗ (λ) is nonzero. If
0 < δ � λN , then we have k∗ � N + 1, which implies that
ζk∗ (λ) � 0 and ζk∗+1(λ) < 0. Therefore, ζ (N, δ, λ, k∗) � 0,
which confirms Eq. (C9). Conversely, if λN < δ � 1, then
k∗ � N , which implies that ζk∗ (λ) > 0 and ζk∗+1(λ) � 0. So
ζ (N, δ, λ, k∗) > 0, which confirms Eq. (C10).

Alternatively, to prove Eq. (C9), we can prove that
ζ (N, δ, λ, k) � 0 for k ∈ Z�0. Given that ζ (N, δ, λ, k) is a
linear function of δ, it suffices to prove the result when δ = 0
and λN . According to Eq. (53), we have

ζ (N, δ = 0, λ, k) = − λk+1

ν(kν + Nλ)
< 0, (C28)

ζ (N, δ = λN , λ, k) = λ{λN [1 + (N − k)ν] − λk}
ν(kν + Nλ)

� 0,

(C29)

which imply Eq. (C9). Here, ν = 1 − λ and the inequality in
Eq. (C29) follows from Lemma 17 with a = N − k.

Finally, we can prove Eq. (C8). If 0 < δ � λN , then
Eq. (C8) follows from Eq. (C7) and the fact that
ζ (N, δ, λ, k∗) � 0. If instead λN < δ � 1, then we have 0 �
k+ � N and 0 � k− � N − 1; in addition, ηk− (λ) � δ and
η1+k+ (λ) < δ. Therefore, k∗ ∈ {0, 1, . . . , N} and k∗ is equal
to either k+ or k−, which implies Eq. (C8) given Eq. (C7). �

Proof of Lemma 20, we first consider the monotonicity of
Ñ (ε, δ, λ, k) defined in Eq. (63) for 0 < ε, δ � 1, 0 < λ < 1,
and k ∈ Z�0. The partial derivative of Ñ (ε, δ, λ, k) over ε

reads as

∂Ñ (ε, δ, λ, k)

∂ε
= −λk+1 + δ(kν − λ)

λνδε2
� 0, (C30)

where the inequality is saturated iff k = 0 and δ = 1; cf.
Eq. (C25). Therefore, Ñ (ε, δ, λ, k) is strictly decreasing in ε

for 0 < ε � 1 except when k = 0 and δ = 1, in which case
Ñ (ε, δ, λ, k) = 0.

Next, the partial derivative of Ñ (ε, δ, λ, k) over δ reads as

∂Ñ (ε, δ, λ, k)

∂δ
= − λk

νδ2ε
< 0. (C31)

So, Ñ (ε, δ, λ, k) is strictly decreasing in δ for 0 < δ � 1.
According to the above analysis,

Ñ (ε, δ, λ, k) � Ñ (ε = 1, δ = 1, λ, k) = λk + kν − 1

ν
� 0.

(C32)

Here, the first inequality is saturated iff ε = δ = 1, or δ = 1
and k = 0; the second inequality is saturated iff k = 0, 1 (cf.
Lemma 17). So Ñ (ε, δ, λ, k) > 0, except when δ = 1 and
k = 0, or ε = δ = k = 1. Given the assumption 0 <ε, δ < 1,
then Ñ (ε, δ, λ, k) > 0 and Ñ (ε, δ, λ, k) decreases strictly
monotonically with ε and δ.

Next, suppose 0 < ε, δ < 1. If δ � λk/(F + λε) and k = 0,
then Ñ (ε, δ, λ, k) > k > k − 1 according to the first statement
in Lemma 20. If instead δ = λk/(F + λε) and k � 1, then

Ñ (ε, δ, λ, k) = k − 1 + kF

λε
> k − 1. (C33)

So, Ñ (ε, δ, λ, k) > k − 1 whenever δ � λk/(F + λε) given
that Ñ (ε, δ, λ, k) is monotonically deceasing in δ.

Next, if k � 1, then

Ñ (ε, δ, λ, k) − Ñ (ε, δ, λ, k − 1)

= νδ(Fν + λ) + λk+1 − λk

λνδε
= δ(F + λε) − λk

λδε
, (C34)

so Ñ (ε, δ, λ, k) � Ñ (ε, δ, λ, k − 1) iff δ � λk/(F + λε).
Consequently, the minimum of Ñ (ε, δ, λ, k) over k ∈ Z�0

is attained when k is the largest integer that satisfies the
inequality δ � λk/(F + λε), that is, k = k∗, which confirms
Eq. (C11).

In addition, we have

λk++1

F + λε
< λk+ � δ � λk− <

λk−

F + λε
, (C35)
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given that λ < F + λε < 1. So, k∗ in Eq. (C11) is equal to
either k+ or k−, which implies Eq. (C12). Finally, Eq. (C13)
is an easy consequence of Eq. (C34). �

Proof of Lemma 21. The equality in Eq. (C14) can be
verified by straightforward calculation given the equality
Fν + λ = 1 − νε. According to the definitions in Eqs. (63)
and (64), we have

Ñ−(ε, δ, λ) = k−ν2δF + λk−+1 + λδ(k−ν − 1)

λνδε

= Fν + λ

λε
k− + λk−+1 − λδ

λνδε

= Fν + λ

λε
k− + λk−−logλ δ+1 − λ

λνε
. (C36)

So, the inequality in Eq. (C14) is equivalent to the following
inequality:

λ1−b − λ − νb � 0, (C37)

where b = logλ δ − k− = logλ δ − �logλ δ�, which satisfies
0 � b < 1. Equation (C37) holds because λ1−b − λ − νb is
strictly convex in b (given the assumption 0 < λ < 1) and it is
equal to 0 when b = 0 and 1 (the function is well defined when
b = 1 although this value cannot be attained here). In addition,
the inequality in Eq. (C37) is saturated iff b = 0, which means
logλ δ is an integer. Alternatively, these conclusions follow
from Lemma 17 with a = b − 1. Therefore, the inequality in
Eq. (C14) is saturated iff logλ δ is an integer. �

2. Proofs of Theorems 1–3 and Eq. (72)

Proof of Theorem 1. According to Lemma 2, we have
F (N, δ, λ) = ζ (N, δ, λ)/δ. If δ � δc = λN , then we have
ζ (N, δ, λ) = 0 by Eq. (32). If δ > λN , then

ζ (N, δ, λ) = min
0�k< j�N+1

(c jζ j + ckζk ), (C38)

where ζ j, ζk are shorthand for ζ j (λ), ζk (λ), and the parameters
k, j are restricted by the requirements ηk � δ and η j < δ. The
coefficients c j, ck are determined by the conditions

c j + ck = 1, c jη j + ckηk = δ, (C39)

which yield

c j = ηk − δ

ηk − η j
, ck = δ − η j

ηk − η j
. (C40)

Therefore,

c jζ j + ckζk = ηk − δ

ηk − η j
ζ j + δ − η j

ηk − η j
ζk

= ζ j + gk j (δ − η j ) = ζk + gk j (δ − ηk ), (C41)

where gk j = gk j (λ) is defined in Eq. (C1).
If j > k + 1, then η j−1 < δ or ηk+1 � δ, so the value of

c jζ j + ckζk does not increase if we replace j with j − 1 or k
with k + 1 according to Lemma 15. Therefore, the minimum
in Eq. (C38) can be attained when j = k + 1 and ηk+1 < δ �
ηk , in which case k = k∗ is the largest integer that satisfies
the condition ηk � δ. In addition, we have ck = ck (δ, λ) and

c j = 1 − ck (δ, λ), so that

ζ (N, δ, λ) = c jζ j + ckζk = ζ (N, δ, λ, k∗), (C42)

which confirms Eq. (54). �
Proof of Theorem 2. By definition, N (ε, δ, λ) is the min-

imum value of the positive integer N under the condition
F (N, δ, λ) � F with F = 1 − ε, that is,

ζ (N, δ, λ) � Fδ, (C43)

where Fδ > 0. According to Corollary 1 in the main text,
Eq. (C43) is equivalent to

max
k∈Z�0

ζ (N, δ, λ, k) � Fδ. (C44)

Note that the maximum in the left-hand side can be attained
at a finite value of k.

From the definition of ζ (N, δ, λ, k) in Eq. (53) we can
deduce that the inequality ζ (N, δ, λ, k) � Fδ is satisfied iff

N � Ñ (ε, δ, λ, k) = kν2δF + λk+1 + λδ(kν − 1)

λνδε
. (C45)

So, Eq. (C43) is satisfied iff

N � min
k∈Z�0

Ñ (ε, δ, λ, k), (C46)

which implies Theorem 2 given Lemma 20. �
Proof of Eq. (72). The equality in Eq. (72) follows from

Theorem 2 and Corollary 4, note that

Ñ (ε, δ, λ, 1) = ν2δF + λ2 − λ2δ

λνδε
. (C47)

To prove the lower bound in Eq. (72), we first compute the
derivative of Ñ (ε, δ, λ, 1) over λ, with the result

∂Ñ (ε, δ, λ, 1)

∂λ
= (1 − δ)λ2 − δFν2

λ2ν2εδ
. (C48)

The minimum of Ñ (ε, δ, λ, 1) over the interval 0 < λ < 1 is
attained when λ/(1 − λ) = √

δF/(1 − δ), that is,

λ = λ∗ :=
√

δF√
1 − δ + √

δF
. (C49)

Therefore,

N (ε, δ, λ) � Ñ (ε, δ, λ, 1) � Ñ (ε, δ, λ∗, 1) = 2
√

(1 − δ)F

ε
√

δ
,

(C50)

which confirms the lower bound in Eq. (72). �
Proof of Theorem 3. Let N = k+ + � k+F

λε

. According to

Corollary 3, we have

F (N, δ, λ) � (N − k+)λ

k+ + (N − k+)λ
=

⌈ k+F
λε

⌉
λ

k+ + ⌈ k+F
λε

⌉
λ

�
k+F
ε

k+ + k+F
ε

= F = 1 − ε, (C51)

which implies that N (ε, δ, λ) � N and confirms the upper
bound in Eq. (73).

Next, let N = k− + � k−F
λε


. If k− = 0, then we have N =
0 < N (ε, δ, λ). If k− � 1, then N − 1 � k− � 1. By virtue of
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Corollary 3 we can deduce that

F (N − 1, δ, λ) � (N − 1 − k−)λ

k− + (N − 1 − k−)λ

=
(⌈ k−F

λε

⌉− 1
)
λ

k− + (⌈ k−F
λε

⌉− 1
)
λ

<

k−F
ε

k− + k−F
ε

= 1 − ε,

(C52)

which implies that N (ε, δ, λ) � N and confirms the lower
bound in Eq. (73).

If logλ δ is an integer, then k+ = k−, so the lower bound
and upper bound in Eq. (73) coincide, which means both of
them are saturated. Alternatively, this fact can be verified by
virtue of Theorem 2.

Finally, let us prove Eq. (74). Theorem 2 in the main text
and Lemma 21 imply that

N (ε, δ, λ) = �min{Ñ+(ε, δ, λ), Ñ−(ε, δ, λ)}


� �Ñ−(ε, δ, λ)
 �
⌈

logλ δ

λε
− νk−

λ

⌉
, (C53)

which confirms Eq. (74). If logλ δ is an integer, then both
inequalities are saturated, so the bound in Eq. (74) is
saturated. �

APPENDIX D: PROOF OF THEOREM 4

Proof. If the strategy � is homogeneous, then we have
ζ (N, δ,�) = ζ (N, δ, β ), and Theorem 4 follows from Propo-
sition 2. In general, Theorem 4 can be proved based on
Eq. (37) and the observation that ηk(λ) − ζk(λ) = 1/2 for all
k ∈ S1 with k1 = 1 given the assumption N = 1. Here, S1

is defined in the paragraph before Eq. (25) in the main text.
Geometrically, this fact means that all points (ηk(λ), ζk(λ))
for k ∈ S1 with k1 = 1 lie on a line segment.

To be specific, recall that ζ (N, δ,�) � ζ (N, δ, β ). When
β � 1/2, Eq. (106) holds because the opposite inequality
ζ (N, δ,�) � ζ (N, δ, β ) also holds. In view of Lemma 7, to
verify this claim, it suffices to prove that

ζk(λ) � ζ (N, δ = ηk(λ), β ) ∀ k ∈ S1. (D1)

The assumption k ∈ S1 means k j � 0 and
∑

j k j = 2. When
k1 = 2, we have ζk(λ) = ηk(λ) = 1, so Eq. (D1) holds. When
k1 = 0, we have ζk(λ) = 0, while ηk(λ) � β according to
Lemma 1, so that ζ (N, δ = ηk(λ), β ) = 0 (cf. Theorem 1) and
Eq. (D1) also holds. When k1 = 1, according to Eq. (27), we
have

ηk(λ) = 1 + λ j

2
, ζk(λ) = λ j

2
(D2)

for some 2 � j � D. If (1 + λ j )/2 � β, then we have
ζ (N, δ = ηk(λ), β ) = 0 according to Eq. (94), so Eq. (D1)
holds. If (1 + λ j )/2 � β (note that λ j � β), then

ζk(λ) − ζ (N, δ = ηk(λ), β ) = λ j

2
− β(1 + λ j − 2β )

2(1 − β )

= (2β − 1)(β − λ j )

2(1 − β )
� 0. (D3)

Therefore, Eq. (D1) holds for all k ∈ S1, which implies
that ζ (N, δ,�) � ζ (N, δ, β ). In conjunction with the opposite

inequality, we can deduce that ζ (N, δ,�) = ζ (N, δ, β ), which
confirms Eq. (106).

Next, consider the case β < 1/2. If τ = β, then Eq. (107)
follows from Proposition 2. If τ < β, let �̃ be a verification
operator with three distinct eigenvalues 1, β, τ (the eigenvalue
1 is nondegenerate); then we have ζ (N, δ,�) � ζ (N, δ, �̃).
In addition, it is straightforward to verify Eq. (107) if � is
replaced by �̃. To prove Eq. (107), it suffices to prove that
ζ (N, δ,�) � ζ (N, δ, �̃). Thanks to Lemma 7, this condition
can be simplified to

ζk(λ) � ζ (N, δ = ηk(λ), �̃) ∀ k ∈ S1. (D4)

When k1 = 2, we have ζk(λ) = ηk(λ) = 1, so Eq. (D4) holds.
When k1 = 0, we have ζk(λ) = 0 and ηk(λ) � β according to
Eq. (27), so

ζ (N, δ = ηk(λ), �̃) � ζ (N, δ = ηk(λ), β ) = 0, (D5)

and Eq. (D4) also holds. When k1 = 1, Eq. (D2) and the
inequality τ � λ j � β imply that

ζ (N, δ = ηk(λ), �̃) = λ j

2
= ζk(λ); (D6)

recall that Eq. (107) holds if � is replaced by �̃. This
observation confirms Eq. (D4) and implies the inequality
ζ (N, δ,�) � ζ (N, δ, �̃). In conjunction with the opposite
inequality, we conclude that ζ (N, δ,�) = ζ (N, δ, �̃), which
implies Eq. (107). �

APPENDIX E: PROOFS OF LEMMA 8 AND THEOREM 5

1. Main body of the proofs

Proof of Lemma 8. By the definition of F (N, δ,�) in
Eq. (20c), to prove the inequality in Eq. (111) in the lemma,
it suffices to find a permutation-invariant quantum state ρ on
H⊗(N+1) such that pρ = δ and

fρ = pρ − 1

N + 1
(E1)

for each δ in the interval 1/(N + 1) � δ � δ∗. Since pρ

and fρ are linear in ρ, it suffices to find such a state in
the two cases δ = 1/(N + 1) and δ = δ∗, respectively. When
δ = 1/(N + 1), we can choose the state ρ = ρk with k =
(N, 0, . . . , 0, 1), in which case pρ = 1/(N + 1) and fρ = 0 by
Eq. (27), so Eq. (E1) holds as desired; note that � is singular
by assumption, which means τ = λD = 0.

In the case δ = δ∗, we can choose the state ρ = ρk1 with
k1 := (N, 1, 0, . . . , 0). Then Eq. (27) [cf. Eq. (47)] yields

pρ = ηk1 (λ) = 1 + Nβ

N + 1
= 1 + N (1 − ν)

N + 1
= δ∗,

(E2)

fρ = ζk1 (λ) = Nβ

N + 1
= N (1 − ν)

N + 1
.

Therefore,

pρ − fρ = ηk1 (λ) − ζk1 (λ) = 1

N + 1
, (E3)

and Eq. (E1) holds again. This observation completes the
proof of Lemma 8. �

Proof of Theorem 5. To prove the inequality in Eq. (112)
in the theorem, let ρ =∑k∈SN

ckρk as in Eq. (25), where ck
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form a probability distribution on SN . If pρ = 1, then ck =
δk,k0 with k0 := (N + 1, 0, . . . , 0), in which case we have
Fρ = fρ = 1 and F (N, δ = 1,�) = 1, so Eq. (112) holds. If
0 < pρ < 1, then ck0 < 1 and

1 − pρ

1 − fρ
= 1 − ∑

k∈SN
ckηk(λ)

1 − ∑
k∈SN

ckζk(λ)

=
1 − ck0 − ∑

k∈S ∗
N

ckηk(λ)

1 − ck0 − ∑
k∈S ∗

N
ckζk(λ)

=
1 − ∑

k∈S ∗
N

c′
kηk(λ)

1 − ∑
k∈S ∗

N
c′

kζk(λ)

=
∑

k∈S ∗
N

c′
k[1 − ηk(λ)]∑

k∈S ∗
N

c′
k[1 − ζk(λ)]

, (E4)

where S ∗
N := SN \ {k0} is the subset of SN without the

vector k0 := (N + 1, 0, . . . , 0), and c′
k := ck/(1 − ck0 ) form

a probability distribution on S ∗
N . By virtue of Lemma 23

below, we can deduce that

1 − pρ

1 − fρ
� min

k∈S ∗
N

1 − ηk(λ)

1 − ζk(λ)
= Nν

Nν + 1
, (E5)

so that

fρ � pρ − 1 − pρ

Nν
(E6)

and

Fρ = fρ
pρ

� 1 − 1 − pρ

Nνpρ

. (E7)

Here, Eqs. (E6) and (E7) also hold when pρ = 1. By the
definition of F (N, δ,�) in Eq. (20c), we conclude that

F (N, δ,�) � 1 − 1 − δ

Nνδ
. (E8)

Incidentally, this bound is negative and thus trivial when δ <

1/(Nν + 1); in particular, it is negative when δ � βN since
βN < 1/(Nν + 1) according to Eq. (C4).

Now, we show that the inequality in Eq. (112) [same as
Eq. (E8)] is saturated when δ � δ∗. Since δ∗ = ηk1 (λ) with
k1 = (N, 1, 0, . . . , 0), it suffices to show that the inequality in
Eq. (E6) can be saturated whenever pρ � ηk1 (λ). When ck =
δk,k0 , that is, ρ = ρk0 = (|�〉〈�|)⊗(N+1), we have pρ = 1 and
fρ = 1, so Eq. (E6) is saturated. When ck = δk,k1 , that is, ρ =
ρk1 , we have pρ = ηk1 (λ) = δ∗ and fρ = ζk1 (λ) [cf. Eq. (E2)],
so Eq. (E6) is also saturated. Since both pρ and fρ are linear in
ρ, it follows that the inequality in Eq. (E6) can be saturated by
a convex combination of ρk0 and ρk1 whenever pρ � ηk1 (λ).

Next, we prove Eq. (113) in the case ν � 1/2, that is, β �
1/2. To this end, note that

pρ − fρ =
∑

k∈SN

ckηk(λ) −
∑

k∈SN

ckζk(λ)

=
∑

k∈SN

ck[ηk(λ) − ζk(λ)] � 1

N + 1
, (E9)

where the last inequality follows from Lemma 22 below.
Therefore,

Fρ � 1 − 1

(N + 1)pρ

(E10)

whenever pρ > 0, which implies that

F (N, δ,�) � 1 − 1

(N + 1)δ
(E11)

and confirms Eq. (113). If in addition � is singular and δ

satisfies 1/(N + 1) � δ � δ∗, then this bound is saturated
according to Lemma 8. �

2. Auxiliary lemmas

Here, we assume that λ j are the eigenvalues of a verifi-
cation operator � that are arranged in decreasing order 1 =
λ1 > λ2 � · · · � λD � 0. In addition, β = λ2 and τ = λD are
the second largest and the smallest eigenvalues; meanwhile,
ν = 1 − β.

Lemma 22. ηk(λ) − ζk(λ) � 1/(N + 1) for all k ∈ SN if
β � 1/2.

Proof. If k = k0, then ηk(λ) = ζk(λ) = 1, so we have
ηk(λ) − ζk(λ) = 0 � 1/(N + 1). If k 	= k0, then Eq. (27)
implies that

ηk(λ) − ζk(λ) =
∑

i�2|ki�1

ki

(N + 1)
λ

ki−1
i

∏
j 	=i|k j�1

λ
k j

j

� N + 1 − k1

N + 1
βN−k1

� N + 1 − k1

N + 1

(
1

2

)N−k1

� 1

N + 1
. (E12)

The first inequality follows from the facts that λ j � β for
all j � 2 and that 0 � N − k1 � N ; the second inequality
follows from the assumption β � 1/2. �

Define

ξk(λ) := 1 − ηk(λ)

1 − ζk(λ)
, k ∈ S ∗

N (E13)

where S ∗
N = SN \ {k0} is the subset of SN without the vector

k0 = (N + 1, 0, . . . , 0).
Lemma 23. For each k ∈ S ∗

N , we have

Nν

Nν + 1
� ξk(λ) � 1 − τN , (E14)

where ν = 1 − β with β = λ2 and τ = λD, assuming that
λ1 = 1 and λ j are arranged in decreasing order.

The lower bound in Eq. (E14) can be expressed as

Nν

Nν + 1
= 1 − ηk1 (λ)

1 − ζk1 (λ)
, (E15)

where k1 := (N, 1, 0, . . . , 0). According to Eq. (C4), we have

Nν

Nν + 1
< 1 − βN � 1 − τN . (E16)
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Lemma 23 implies that the region RN,� is contained in the
triangle determined by the following three lines:

f = 0,

1 − p = (1 − τN )(1 − f ), (E17)

1 − p = Nν

Nν + 1
(1 − f ).

The three vertices of the triangle are (1,1), (τN , 0), and
(1/(Nν + 1), 0); the first two vertices are the extremal points
of RN,�.

Proof of Lemma 23. The assumption k ∈ S ∗
N implies that∑

j k j = N + 1 and k1 � N . Thanks to Lemma 24 below, we
have

ξk(λ) � ξk(1, β, . . . , β ) = ξ(k1,N−k1+1)(1, β )

= 1 − ηN−k1+1(β )

1 − ζN−k1+1(β )
� Nν

Nν + 1
, (E18)

where the second inequality follows from Lemma 16 in Ap-
pendix C. Note that the definition of ξk(λ) [as well as that of
ηk(λ) and ζk(λ)] can be extended as long as k and λ have the
same number of components.

By the same token, we have

ξk(λ) � ξk(1, τ, . . . , τ ) = ξ(k1,N−k1+1)(1, τ )

= 1 − ηN−k1+1(τ )

1 − ζN−k1+1(τ )
� 1 − τN , (E19)

where the two inequalities follow from Lemma 24 and
Lemma 16, respectively. �

It is instructive to take a look at the special scenario in
which ζk(λ) = 0 (cf. the proof of Lemma 1 in Appendix B),
which means k1 = 0, or λi = 0 and ki � 1 for some 2 � i �
D. In the first case, we have τN � ηk(λ) � βN by Eq. (27), so
that

ξk(λ) = 1 − ηk(λ) � 1 − τN , (E20)

ξk(λ) � 1 − βN � Nν

Nν + 1
, (E21)

where the last inequality follows from Eq. (C4). In the second
case, we have τ = 0 and

ηk(λ) = kiλ
ki−1
i

N + 1

∏
j 	=i,k j>0

λ
k j

j � 1

N + 1
, (E22)

which implies that

ξk(λ) = 1 − ηk(λ) � 1 = 1 − τN , (E23)

ξk(λ) � N

N + 1
� Nν

Nν + 1
. (E24)

These results are compatible with Lemma 23 as expected.
Lemma 24. Suppose k = (k1, k2, . . . , km) is a sequence

of m � 2 non-negative integers that satisfies k1 � N and∑
j k j = N + 1, where N is a positive integer. Let u, v be

two m-component vectors that satisfy 0 � u � v � 1 and
u1 = v1 = 1. Then we have ξk(u) � ξk(v).

The inequality 0 � u � v � 1 in the above lemma means
0 � u j � v j � 1 for each j = 1, 2, . . . , m.

Proof. The assumption 0 � u � v � 1 and Eq. (27) imply
that ζk(u) � ζk(v) � k1/(N + 1) < 1, so ξk(u) is continuous
in u for 0 � u � 1 by the definition in Eq. (E13). Therefore,
it suffices to prove the lemma when 0 < u � v � 1, in which
case ηk(u) and ζk(u) can be expressed as follows:

ηk(u) = θ
∑

j

k j

u j
, ζk(u) = θk1, (E25)

where θ := (
∏

i uki
i )/(N + 1).

For j � 2, calculation shows that

∂ηk(u)

∂u j
= θ

(
k j

u j

∑
i

ki

ui
− k j

u2
j

)
,

(E26)
∂ζk(u)

∂u j
= θ

k1k j

u j
.

These derivatives have well-defined limits even when some
components ui approach zero; this fact would be clearer if we
insert the expression of θ . In addition,

∂ξk(u)

∂u j
= −θk ju j

∑
i>1

ki
ui

− θk j + θ2k1k j

(1 − θk1)2u2
j

= −θk j
[
u j
∑

i>1,i 	= j
ki
ui

+ (k j − 1) + θk1
]

(1 − θk1)2u2
j

� 0;

(E27)

note that 1 − θk1 � 1/(N + 1) > 0. The inequality in
Eq. (E27) is strict except when k j = 0, in which case ξk(u)
is independent of u j , and so are ηk(u) and ζk(u) [cf. Eq. (27)
in the main text]. Therefore, ξk(u) is nonincreasing in u j

for all j � 2, which means ξk(u) � ξk(v) whenever 0 < u �
v � 1 and u1 = v1 = 1. The condition 0 < u � v � 1 can be
relaxed to 0 � u � v � 1 by continuity. �

APPENDIX F: PROOFS OF LEMMA 9 AND THEOREM 6

1. Auxiliary lemmas

Before proving Lemma 9 and Theorem 6, wee need to
introduce a few auxiliary notations and results.

Denote by S̄N the convex hull of SN , then S̄N is
composed of real vectors k = (k1, k2, . . . , kD) that satisfy∑D

j=1 k j = N + 1 and k j � 0 for j = 1, 2, . . . D. When �

is positive definite, that is, τ (�) > 0, we can extend the
definition of ηk(λ) and ζk(λ) over k to S̄N [cf. Eq. (27)].
Since all eigenvalues λ j of � for j = 1, 2, . . . , D are positive,
we have ηk(λ) > 0 for all k ∈ S̄N . The following analogs of
ζ (N, δ,�) and η(N, f ,�) [cf. Eq. (37)] will play key roles in
proving Lemma 9 and Theorem 6. Define

ζ̄ (N, δ,�) :=
{

mink∈S̄N
{ζk(λ)|ηk(λ) = δ}, βN � δ � 1,

0, 0 � δ � βN ,

(F1)

η̄(N, f ,�) := max
k∈S̄N

{ηk(λ)|ζk(λ) = f }, 0 � f � 1, (F2)

where β is the second largest eigenvalue of �. Incidentally,
η(N, f = 0,�) = δc = βN since τ > 0; see Lemma 1.
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Lemma 25. Suppose 0 � δ, f � 1 and � is a positive-
definite verification operator; then

ζ (N, δ,�) � ζ̄ (N, δ,�), (F3)

η(N, f ,�) � η̄(N, f ,�). (F4)

Proof. When δ satisfies 0 � δ � βN , by definition we
have ζ̄ (N, δ,�) = 0 � ζ (N, δ,�), so Eq. (F3) holds. When
δ > βN , by Lemma 14 in Appendix B, we can find vec-
tors q0, q1 ∈ SN such that βN � η0 < η1 � 1, η0 < δ� η1,
0 � ζ0 < ζ1 � 1, and 0 � F0 < F1 � 1, where η j = ηq j (λ),
ζ j = ζq j (λ), and Fj = ζ j/η j for j = 0, 1. In addition,
ζ (N, δ,�) = c0ζ0 + c1ζ1, where c0 and c1 are non-negative
coefficients determined by the requirements c0 + c1 = 1 and
c0η0 + c1η1 = δ, that is,

c0 = η1 − δ

η1 − η0
, c1 = δ − η0

η1 − η0
. (F5)

If δ = η1, then ζ (N, δ,�) = ζ1 and Eq. (F3) holds because of
the relation SN ⊂ S̄N . So, it remains to consider the scenario
η0 < δ < η1, in which case we have 0 < c0, c1 < 1. Geomet-
rically, the point (δ, ζ (N, δ,�)) lies on the line segment that
connects the two end points (η0, ζ0) and (η1, ζ1), which has
slope (ζ1 − ζ0)/(η1 − η0).

For 0 � t � 1, let

k(t ) = q0(1 − t ) + q1t = q0 + (q1 − q0)t, (F6)

η(t ) = ηk(t )(λ), ζ (t ) = ζk(t )(λ). (F7)

Note that k(t ) ∈ S̄N for 0 � t � 1; in addition, η(0) = η0

and ζ (0) = ζ0, while η(1) = η1 and ζ (1) = ζ1. So Eq. (F7)
defines a parametric curve (η(t ), ζ (t )) that connects (η0, ζ0)
and (η1, ζ1). The explicit expressions of η(t ) and ζ (t ) can be
derived by virtue of Eq. (27), with the result

η(t ) = θ (t )
∑

j

k j (t )

λ j
, ζ (t ) = θ (t )k1(t ), (F8)

where

θ (t ) = 1

N + 1

∏
j

λ
k j (t )
j . (F9)

Let

F (t ) = ζ (t )

η(t )
= k1(t )∑

j
k j (t )
λ j

; (F10)

then F (0) = F0 and F (1) = F1.
Let tδ be the smallest value of t such that η(t ) = δ; then

ζ̄ (N, δ,�) � ζ (tδ ). So, Eq. (F3) would follow if we can prove
that ζ (tδ ) � ζ (N, δ,�).

To achieve our goal, we shall prove that the parametric
curve (η(t ), ζ (t )) for 0 � t � tδ lies below the line segment
passing through the two points (η0, ζ0) and (η1, ζ1). To this
end, we need to analyze the convexity (or concavity) property
of the curve, which depends on the second derivative

d2ζ (t )

dη(t )2
= ζ ′′(t )η′(t ) − η′′(t )ζ ′(t )

η′(t )3
. (F11)

Here, the derivatives with respect to t can be computed
explicitly by virtue of Eq. (F8), with the result

η′(t ) = dη(t )

dt
= η(t )

∑
j

(q1 j − q0 j ) ln λ j + θ (t )
∑

j

q1 j − q0 j

λ j
= θ (t )

[
η(t )

θ (t )
ln

θ1

θ0
+
(

η1

θ1
− η0

θ0

)]
, (F12)

ζ ′(t ) = dζ (t )

dt
= ζ (t )

∑
j

(q1 j − q0 j ) ln λ j + θ (t )(q11 − q01) = θ (t )

[
k1(t ) ln

θ1

θ0
+ (q11 − q01)

]
, (F13)

η′′(t ) = d2η(t )

dt2
= θ (t )

(
ln

θ1

θ0

)[
η(t )

θ (t )
ln

θ1

θ0
+ 2
(η1

θ1
− η0

θ0

)]
, (F14)

ζ ′′(t ) = d2ζ (t )

dt2
= θ (t )

(
ln

θ1

θ0

)[
k1(t ) ln

θ1

θ0
+ 2(q11 − q01)

]
, (F15)

where

θ0 = θ (t = 0) = 1

N + 1

∏
j

λ
q0 j

j , θ1 = θ (t = 1) = 1

N + 1

∏
j

λ
q1 j

j . (F16)

Note that

θ ′(t ) = dθ (t )

dt
= θ (t )

∑
j

(q1 j − q0 j ) ln λ j = θ (t ) ln
θ1

θ0
. (F17)

Therefore,

ζ ′′(t )η′(t ) − η′′(t )ζ ′(t ) = θ (t )2

(
ln

θ1

θ0

)2[
(q11 − q01)

η(t )

θ (t )
−
(

η1

θ1
− η0

θ0

)
k1(t )

]

= θ (t )2

(
ln

θ1

θ0

)2{
(q11 − q01)

[
η0

θ0
+
(

η1

θ1
− η0

θ0

)
t

]
−
(

η1

θ1
− η0

θ0

)
[q01 + (q11 − q01)t]

}

= θ (t )2

(
ln

θ1

θ0

)2(
η0q11

θ0
− η1q01

θ1

)
= θ (t )2

(
ln

θ1

θ0

)2
η0η1

θ0θ1

(
θ1q11

η1
− θ0q01

θ0

)
= θ (t )2

(
ln

θ1

θ0

)2
η0η1

θ0θ1
(F1 − F0) � 0. (F18)
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Here, the inequality is strict except when θ1 = θ0, in which
case θ (t ) is independent of t , while both η(t ) and ζ (t ) are
linear in t . So, the derivative d2ζ (t )

dη(t )2 has the same sign as η′(t )
unless it is identically zero.

Note that η(t )/θ (t ) is a linear function of t . So, η′(t )/θ (t )
is linear and thus monotonic in t according to Eq. (F12);
actually, η′(t )/θ (t ) is strictly monotonic in t unless it is a
positive constant. When t = 0, we have

η′(0) = η0

[
ln

θ1

θ0
+
(

η1θ0

θ1η0
− 1

)]

> η0

[
ln

θ1

θ0
+
(

θ0

θ1
− 1

)]
� 0 (F19)

given that η1 > η0 > 0. Since θ (t ) > 0, it follows that η′(t )
has at most one zero point in the interval 0 � t � 1. If
η′(t ) > 0 in this interval, then d2ζ (t )

dη(t )2 � 0 and ζ (t ) is a con-
vex function of η(t ) for 0 � t � 1, so the parametric curve
(η(t ), ζ (t )) lies below the line segment that connects the
two points (η0, ζ0) and (η1, ζ1), which implies the inequality
ζ (tδ ) � ζ (N, δ,�) and Eq. (F3). Here, tδ is the smallest value
of t such that η(t ) = δ. Otherwise, η′(t ) has a unique zero
point 0 < t2 � 1. If t2 = 1, then the same conclusion holds.
If t2 < 1, then η′(t ) > 0 for 0 � t < t2 and η′(t ) < 0 for
t2 < t � 1, which implies that η(t2) > η1. So, there exists a
unique real number t3 that satisfies the conditions 0 < t3 < t2
and η(t3) = η1. Note that ζ (t ) is convex in η(t ) for 0 � t � t3
and that tδ < t3. To prove Eq. (F3), it suffices to prove the in-
equality ζ (t3) � ζ1, that is, F (t3) � F1, given that η(t3) = η1.

To proceed, we compute the derivative of F (t ) over t , with
the result

dF (t )

dt
= θ (t )2

η(t )2

η0η1

θ0θ1
(F1 − F0) > 0. (F20)

This derivative can be derived either from Eq. (F10) or
from Eqs. (F12) and (F13) given that F (t ) = ζ (t )/η(t ). So,
F (t ) increases monotonically with t for 0 � t � 1, which
implies that F (t3) � F (1) = F1 and that ζ (t3) � ζ (1) = ζ1.
Therefore, the parametric curve (η(t ), ζ (t )) for 0 � t � t3
lies below the line segment that connects the two points
(η0, ζ0) and (η1, ζ1), which implies that ζ (tδ ) � ζ (N, δ,�)
and confirms Eq. (F3).

Equation (F4) can be proved using a similar reasoning used
for proving Eq. (F3). When f = 0, we have

η̄(N, f ,�) = max
k∈S̄N

{ηk(λ)|ζk(λ) = 0}

� max
k∈SN

{ηk(λ)|ζk(λ) = 0} = η(N, f ,�), (F21)

which confirms Eq. (F4); here, the inequality follows from
the fact that SN is contained in S̄N . When f > 0, we can
choose q0, q1 ∈ SN and define η0, ζ0, η1, ζ1, η(t ), ζ (t ) in a
similar way to the proof of Eq. (F3), but with the requirement
η0 < δ � η1 replaced by ζ0 < f � ζ1. Since the case f = ζ1

is trivial, we can assume ζ0 < f < ζ1. Then Eqs. (F6)–(F20)
still apply. According to Eq. (F18) and the equation

d2η(t )

dζ (t )2
= −ζ ′′(t )η′(t ) − η′′(t )ζ ′(t )

ζ ′(t )3
, (F22)

the derivative d2η(t )
dζ (t )2 has the opposite sign to ζ ′(t ) unless it is

identically zero.
When t = 0, we have

ζ ′(0) = θ0

[
q01 ln

θ1

θ0
+ (q11 − q01)

]

� θ0

[
q01

(
1 − θ0

θ1

)
+ (q11 − q01)

]

= θ0
q11θ1 − q01θ0

θ1
= θ0

ζ1 − ζ0

θ1
> 0. (F23)

In addition, θ (t ) > 0, and ζ ′(t )/θ (t ) is a linear and thus
monotonic function of t according to Eq. (F13). Therefore,
ζ ′(t ) has at most one zero point in the interval 0 � t � 1 as is
the case for η′(t ). Now, Eq. (F4) can be proved using a similar
reasoning as presented after Eq. (F19), though “convex” is
replaced by “concave.” �

Lemma 26. Suppose 1 > x1 � x2 � . . . , xm > 0 and
c� 0. Then

max
a1,a2,...,am�0

⎧⎨
⎩
∑

j

a j

x j

∣∣∣∣∣∣
∑

j

a j ln x j = c

⎫⎬
⎭ = c

y ln y
, (F24)

where y = x1 if x1 ln x−1
1 � xm ln x−1

m and y = xm otherwise.
Proof. The maximization in Eq. (F24) is a linear program-

ming in which the feasible region is defined by the inequalities
a1, a2, . . . , am � 0 and the equality

∑
j a j ln x j = c. If c = 0,

then a1 = a2 · · · = am = 0, so Eq. (F24) holds.
If c < 0, then the maximum in Eq. (F24) can be attained at

one of the extremal points of the feasible region, which have
the form

a j = c

ln x j
, ai = 0 ∀ i 	= j, j = 1, 2, . . . , m. (F25)

Therefore,

max
a1,a2,...,am�0

⎧⎨
⎩
∑

j

a j

x j

∣∣∣∣∣∣
∑

j

a j ln x j = c

⎫⎬
⎭ = max

j

c

x j ln x j

= max

{
c

x1 ln x1
,

c

xm ln xm

}
= c

y ln y
. (F26)

Here, the second equality follows from the assumption 1 >

x1 � x2 � . . . xm > 0 and the fact that the function c/(x ln x)
is convex in x for 0 < x < 1, given that c is negative. �

2. Main body of the proofs

Now we are ready to prove Lemma 9.
Proof of Lemma 9. We shall first prove Eq. (121). Accord-

ing to Lemma 25,

F (N, f ,�) = f

η(N, f ,�)
� f

η̄(N, f ,�)

= min
k∈S̄N |ζk (λ)= f

ζk(λ)

ηk(λ)
= min

k∈S̄N |ζk (λ)= f

k1∑
j (k j/λ j )

= min
k∈S̄N |ζk (λ)= f

k1

k1 +∑D
j=2(k j/λ j )

. (F27)
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The condition ζk(λ) = f entails the following inequality:

f = ζk(λ) = k1

N + 1

∏
j

λ
k j

j �
D∏

j=2

λ
k j

j � βN+1−k1 , (F28)

which implies that N + 1 − k1 � ln f / ln β = logβ f , that is,
k1 � N + 1 − (ln f / ln β ). In addition, the above equation
implies that 0 �∑D

j=2 k j ln λ j � ln f , which in turn implies

that
∑D

j=2(k j/λ j ) � ln f /(β̃ ln β̃ ) in view of Lemma 26.
Therefore,

F (N, f ,�) � min
k∈S̄N |ζk (λ)= f

k1

k1 + (β̃ ln β̃ )−1 ln f

� N + 1 − (ln β )−1 ln f

N + 1 − (ln β )−1 ln f − h ln f
, (F29)

which confirms Eq. (121).
Next, let us prove Eq. (120). If δ � βN , then we have

τδ � βN+1 and N + 1 − (ln β )−1 ln(τδ) � 0, so the bound
in Eq. (120) is either zero or negative and is thus trivial. If
δ > βN , then Lemma 25 implies that

F (N, δ,�) = ζ (N, δ,�)

δ
� ζ̄ (N, δ,�)

δ

= min
k∈S̄N |ηk (λ)=δ

k1

k1 +∑D
j=2(k j/λ j )

. (F30)

The condition ηk(λ) = δ entails the following inequality:

τδ = τηk(λ) = τ

N + 1

⎛
⎝∏

j

λ
k j

j

⎞
⎠
⎛
⎝∑

j

k j

λ j

⎞
⎠ �

D∏
j=2

λ
k j

j

� βN+1−k1 . (F31)

Now, Eq. (120) can be proved using a similar reasoning that
leads to Eq. (F29), but with f replaced by τδ. �

Proof of Theorem 6. Equation (124) follows from Eq. (30)
and Theorem 3 in the main text. The lower bound in Eq. (125)
follows from Eq. (124) given that β̃ = β = λ2 or β̃ = τ = λD.

To prove the upper bounds in Eq. (125), let f = Fδ with
F = 1 − ε and

N =
⌈

hF ln f −1

ε
+ ln f

ln β
− 1

⌉
; (F32)

then N � 1 since

hF ln f −1

ε
+ ln f

ln β
>

F ln F

εβ ln β
+ ln F

ln β
> 1. (F33)

Here, the second inequality is equivalent to

F ln F + εβ ln F − εβ ln β < 0. (F34)

To prove this inequality, note that for a given 0 < F < 1, the
left-hand side is maximized when β = F/e. So

F ln F + εβ ln F − εβ ln β � F (1 − F + e ln F )

e
< 0.

(F35)

In addition, Lemma 9 implies that

F (N, f ,�) � N + 1 − (ln β )−1 ln f

N + 1 − (ln β )−1 ln f − h ln f

� hFε−1 ln f −1

hFε−1 ln f −1 − h ln f
= 1 − ε. (F36)

In conjunction with Lemma 6, this equation implies that
N (ε, δ,�) � N , which confirms the first upper bound in
Eq. (125). Moreover, we have h > |1/ ln β| since 0 < β < 1
and |β̃ ln β̃| � |β ln β| < | ln β|. Therefore,

N =
⌈

h(1 − ε) ln f −1

ε
+ ln f

ln β
− 1

⌉

<
h ln f −1

ε
− h ln f −1 + ln f

ln β

<
h ln f −1

ε
= h ln(Fδ)−1

ε
, (F37)

which confirms the second upper bound in Eq. (125).
Equation (126) can be proved using a similar reasoning

used to prove the upper bounds in Eq. (125), but with Fδ

replaced by τδ and F (N, f ,�) replaced by F (N, δ,�) �

APPENDIX G: PROOFS OF LEMMAS 10–12

Proof of Lemma 10. By Eqs. (138) and (139) in the main
text, it is clear that p∗(ν, 1 − ν) is nondecreasing in ν, and
h∗(ν, 1 − ν) is nonincreasing in ν. If 1 − e−1 � ν � 1, then

νh∗(ν, 1 − ν) = eν � e(1 − e−1) = e − 1 > 1, (G1)

and νh∗(ν, 1 − ν) is strictly increasing in ν. On the other hand,
if 0 < ν � 1 − e−1, then

νh∗(ν, 1 − ν) = ν[(1 − ν) ln(1 − ν)−1]−1, (G2)

so that

lim
ν→0

νh∗(ν, 1 − ν) = lim
ν→0

ν[(1 − ν) ln(1 − ν)−1]−1 = 1.

(G3)
By the derivative of νh∗(ν, 1 − ν) over ν [cf. Eq. (G5) below
with p = 0], it is straightforward to verify that νh∗(ν, 1 − ν)
is strictly increasing in ν for 0 < ν � 1 − e−1. In conjunction
with Eq. (G1), we conclude that νh∗(ν, 1 − ν) > 1 and it is
strictly increasing in ν for 0 < ν � 1.

In addition,

νh(p, ν, 1 − ν) = ν
(
βp ln β−1

p

)−1
, (G4)

where βp = 1 − ν + pν satisfies 0 < βp < 1. The derivative
of νh(p, ν, 1 − ν) over ν reads as

d

dν

(
ν

βp ln β−1
p

)
= − (1 − p)ν + ln(1 − ν + pν)

[(1 − ν + pν) ln(1 − ν + pν)]2
> 0,

(G5)
where the last inequality follows from the simple fact
that ln(1 + x) < x when x > −1 and x 	= 0. Therefore,
νh(p, ν, 1 − ν) increases strictly monotonically with ν. Inci-
dentally, the derivative in Eq. (G5) approaches 1

2 in the limit
ν → 0. �

Proof of Lemma 11. We shall prove the seven statements of
Lemma 11 in the order 1, 6, 2; 3, 4; 7, 5.
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Recall that p∗(ν, τ ) is the smallest value of p � 0 that
satisfies βp � 1/e and τp ln τ−1

p � βp ln β−1
p [see Eq. (137)].

Let q = p∗(ν, τ ); then 0 � q < 1. Suppose 0 < ν ′ < ν and let
β ′ = 1 − ν ′. Then 1 > β ′ > β � 0 and 1 > β ′

q > βq � 1/e,
so that

β ′
q ln β ′

q
−1

< βq ln β−1
q � τq ln τ−1

q , (G6)

which implies that p∗(ν ′, τ ) � q = p∗(ν, τ ), that is, p∗(ν, τ )
is nondecreasing in ν. If q > 0, actually we can deduce a
stronger conclusion, namely, p∗(ν ′, τ ) < p∗(ν, τ ).

In addition, the inequalities τp � βp � β ′
p imply that

βp ln βp
−1 � min

{
β ′

p ln β ′
p
−1

, τp ln τ−1
p

}
(G7)

and that

h(p, ν ′, τ ) = [
min
{
β ′

p ln β ′
p
−1

, τp ln τ−1
p

}]−1

�
[
min
{
βp ln β−1

p , τp ln τ−1
p

}]−1 = h(p, ν, τ ).

(G8)

So, h(p, ν, τ ) is nonincreasing in ν. When p = p∗(ν ′, τ ), the
above equation implies that

h∗(ν ′, τ ) = h(p, ν ′, τ ) � h(p, ν, τ ) � h∗(ν, τ ). (G9)

So h∗(ν, τ ) is also nonincreasing in ν.
Next, suppose τ � τ ′ � β. Then we have τq � τ ′

q � βq,
βq � 1/e, and

τ ′
q ln τ ′

q
−1 � min

{
βq ln β−1

q , τq ln τ−1
q

} = βq ln β−1
q , (G10)

which implies that p∗(ν, τ ′) � q = p∗(ν, τ ). Therefore,
p∗(ν, τ ) is nonincreasing in τ , which confirms statement 1 of
Lemma 11 given that p∗(ν, τ ) is nondecreasing in ν as shown
above.

In addition, the inequalities τp � τ ′
p � βp imply that

τ ′
p ln τ ′

p
−1 � min

{
βp ln βp

−1, τp ln τ−1
p

}
(G11)

and that

h(p, ν, τ ′) = [
min
{
βp ln βp

−1, τ ′
p ln τ ′

p
−1}]−1

�
[
min
{
βp ln β−1

p , τp ln τ−1
p

}]−1 = h(p, ν, τ ).

(G12)

Therefore, h(p, ν, τ ) is nonincreasing in τ , which confirms
statement 6 of Lemma 11 in view of the above conclusion.
When p = p∗(ν, τ ), Eq. (G12) implies that

h∗(ν, τ ) = h(p, ν, τ ) � h(p, ν, τ ′) � h∗(ν, τ ′). (G13)

So h∗(ν, τ ) is also nonincreasing in τ , which confirms state-
ment 2 of Lemma 11.

Next, consider statements 3 and 4 in Lemma 11. By
Lemma 10 and statement 2 in Lemma 11 proved above, we
have νh∗(ν, τ ) � νh∗(ν, 1 − ν) > 1, which confirms state-
ment 3 in Lemma 11. In addition, the following equations

lim
ν→0

νh∗(ν, τ ) � lim
ν→0

νh∗(ν, 1 − ν) = 1, (G14)

lim
ν→0

νh∗(ν, τ ) � lim
ν→0

νh(ν, ν, τ ) = 1 (G15)

imply the equality limν→0 νh∗(ν, τ ) = 1 and confirm state-
ment 4 in Lemma 11.

Finally, we can prove statements 7 and 5 in Lemma 11. By
definition we have

νh(p, ν, τ ) = max
{
ν
(
βp ln β−1

p

)−1
, ν
(
τp ln τ−1

p

)−1}
, (G16)

where βp = 1 − ν + pν. It is clear that ν(τp ln τ−1
p )−1 in-

creases strictly monotonically with ν. The same conclu-
sion holds for ν(βp ln β−1

p )−1 according to the derivative in
Eq. (G5). Therefore, νh(p, ν, τ ) increases strictly monotoni-
cally with ν, which confirms statement 7 in Lemma 11.

Suppose 0 < ν ′ < ν � 1. Then

ν ′h∗(ν ′, τ )� ν ′h(q, ν ′, τ ) < νh(q, ν, τ ) = νh∗(ν, τ ), (G17)

where q = p∗(ν, τ ). Therefore, νh∗(ν, τ ) increases strictly
monotonically with ν, which confirms statement 5 in
Lemma 11. �

Proof of Lemma 12. Recall that p∗(ν) is the smallest value
of p > 0 that satisfies the conditions βp � 1/e and p ln p =
βp ln βp [see Eq. (146)]. Let q = p∗(ν); then 0 < q � 1/e.
Suppose 0 < ν ′ < ν and β ′ = 1 − ν ′. Then 1 > β ′ > β � 0
and 1 > β ′

q > βq � 1/e, so that

β ′
q ln β ′

q
−1

< βq ln β−1
q = q ln q−1, (G18)

which implies that p∗(ν ′) < q = p∗(ν) and that p∗(ν) is
strictly increasing in ν. Consequently, h∗(ν) is strictly de-
creasing in ν given that h∗(ν) = [p∗(ν) ln p∗(ν)−1]−1 and that
0 < p∗(ν) � 1/e. By contrast, νh∗(ν) is strictly increasing in
ν according to Lemma 11.

Next, let us consider the monotonicity of h(e−1ν, ν) and
νh(e−1ν, ν). By definition we have

h(e−1ν, ν) =
[

min

{
βp0 ln β−1

p0
,
ν

e
ln

e

ν

}]−1

, (G19)

νh(e−1ν, ν) = max

{
ν
(
βp0 ln β−1

p0

)−1
, e

(
ln

e

ν

)−1}
, (G20)

where p0 = ν/e and βp0 = 1 − ν + (ν2/e). As ν increases
to 1, βp0 decreases strictly monotonically to 1/e, while ν/e in-
creases strictly monotonically to 1/e. So, h(e−1ν, ν) decreases
strictly monotonically with ν.

In addition, e(ln e
ν

)−1 is strictly increasing in ν for the
interval 0 < ν � 1. Meanwhile, we have

d
[
ν
(
βp0 ln β−1

p0

)−1]
dν

= eβp0 − (e − ν2) ln(eβp0 )

eβ2
p0

(ln βp0 )2
, (G21)

where the denominator is positive. The numerator is also
positive according to the following equation:

eβp0 − (e − ν2) ln(eβp0 )

= e − eν + ν2 − (e − ν2) ln(e − eν + ν2)

� e − eν + ν2 − (e − ν2)(1 − ν)

= (2 − ν)ν2 > 0. (G22)

Here, the first inequality follows from the inequality below

ln(e − eν + ν2) � 1 − ν, (G23)

which can be proved by inspecting the derivative. Therefore,
both ν(βp0 ln β−1

p0
)−1 and e(ln e

ν
)−1 are strictly increasing in ν,

which implies that νh(e−1ν, ν) is strictly increasing in ν.
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Finally, we are ready to prove Eq. (148). The first inequal-
ity there follows from the definition of h∗(ν). To prove the rest
inequalities, note that

ln β−1
p0

= − ln(1 − ν + e−1ν2) � ν, (G24)

βp0 ln β−1
p0

� (1 − ν + e−1ν2)ν (G25)

by Eq. (G23), where p0 = ν/e. In addition, it is straightfor-
ward to verify the following inequality:

p0 ln
(
p−1

0

) = ν

e
ln

e

ν
� (1 − ν + e−1ν2)ν. (G26)

Therefore,

νh(e−1ν, ν) � (1 − ν + e−1ν2)−1 � 1 + (e − 1)ν � e,
(G27)

which confirms Eq. (148) in Lemma 12. Here, the second
inequality follows from the inequality below

(1 − ν + e−1ν2)[1 + (e − 1)ν]

= 1 + e−1ν(1 − ν)(e2 − 2e + ν − eν) � 1, (G28)

given that 0 < ν � 1. �

APPENDIX H: PROOF OF PROPOSITION 3

Proof. First, consider the bipartite case, let |�〉 be any
bipartite entangled state shared between Alice and Bob. Sup-
pose, on the contrary, that |�〉 can be verified by a strategy
� for which Alice performs only one projective measure-
ment. Without loss of generality, we may assume that this
is a complete projective measurement associated with an

orthonormal basis, say {|ϕ1〉, |ϕ2〉, . . . , |ϕd〉}, where d is the
dimension of the Hilbert space of Alice. Let Pk = |ϕk〉〈ϕk| be
the corresponding rank-1 projectors. Then, any test operator
necessarily has the form E =∑d

k=1 Pk ⊗ Qk , where Qk are
positive operators on the Hilbert space of Bob that satisfy
0 � Qk � 1. To ensure that the target state can always pass
the test, E must satisfy the condition 〈�|E |�〉 = 1.

Let |ψ̃k〉 = 〈ϕk|�〉 be the unnormalized reduced state of
Bob when Alice obtains outcome k and pk = 〈ψ̃k|ψ̃k〉 the cor-
responding probability. Let |ψk〉 = |ψ̃k〉/√pk when pk > 0.
Then

〈�|E |�〉 =
∑

k

〈ψ̃k|Qk|ψ̃k〉 �
∑

k

〈ψ̃k|ψ̃k〉 =
∑

k

pk = 1.

(H1)

By assumption, this inequality is saturated, which implies that
〈ψk|Qk|ψk〉 = 1 whenever pk > 0, in which case |ψk〉 is an
eigenstate of Qk with eigenvalue 1. So, all kets |ϕk〉 ⊗ |ψk〉
with pk > 0 belong to the pass eigenspace (corresponding
to the eigenvalue 1) of each test operator E and thus the
pass eigenspace of �. Note that the number of outcomes
with pk > 0 is at least equal to the Schmidt rank of |�〉.
So, the dimension of the pass eigenspace of � is not smaller
than the Schmidt rank of |�〉; in particular, it is not smaller
than 2 given that |�〉 is entangled. Therefore, |�〉 cannot be
verified if Alice performs only one projective measurement;
the same conclusion holds if Bob performs only one projective
measurement.

In general, the proposition follows from the fact that a
multipartite state can also be considered as a bipartite state
between one party and the other parties. �

[1] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).

[2] O. Gühne and G. Tóth, Entanglement detection, Phys. Rep. 474,
1 (2009).

[3] M. Hein, J. Eisert, and H. J. Briegel, Multiparty entanglement
in graph states, Phys. Rev. A 69, 062311 (2004).

[4] C. Kruszynska and B. Kraus, Local entanglability and multipar-
tite entanglement, Phys. Rev. A 79, 052304 (2009).

[5] R. Qu, J. Wang, Z.-s. Li, and Y.-r. Bao, Encoding hypergraphs
into quantum states, Phys. Rev. A 87, 022311 (2013).

[6] M. Rossi, M. Huber, D. Bruß, and C. Macchiavello, Quantum
hypergraph states, New J. Phys. 15, 113022 (2013).

[7] F. E. S. Steinhoff, C. Ritz, N. I. Miklin, and O. Gühne, Qudit
hypergraph states, Phys. Rev. A 95, 052340 (2017).

[8] F.-L. Xiong, Y.-Z. Zhen, W.-F. Cao, K. Chen, and Z.-B. Chen,
Qudit hypergraph states and their properties, Phys. Rev. A 97,
012323 (2018).

[9] R. Raussendorf and H. J. Briegel, A One-Way Quantum Com-
puter, Phys. Rev. Lett. 86, 5188 (2001).

[10] R. Raussendorf, D. E. Browne, and H. J. Briegel, Measurement-
based quantum computation on cluster states, Phys. Rev. A 68,
022312 (2003).

[11] A. Broadbent, J. Fitzsimons, and E. Kashefi, Universal blind
quantum computation, in Proceedings of the 50th Annual IEEE
Symposium on Foundations of Computer Science (IEEE Com-
puter Society, Washington, DC, USA, 2009), pp. 517–526.

[12] T. Morimae and K. Fujii, Blind quantum computation protocol
in which Alice only makes measurements, Phys. Rev. A 87,
050301(R) (2013).

[13] M. Hayashi and T. Morimae, Verifiable Measurement-Only
Blind Quantum Computing with Stabilizer Testing, Phys. Rev.
Lett. 115, 220502 (2015).

[14] K. Fujii and M. Hayashi, Verifiable fault tolerance in
measurement-based quantum computation, Phys. Rev. A 96,
030301(R) (2017).

[15] M. Hayashi and M. Hajdušek, Self-guaranteed measurement-
based quantum computation, Phys. Rev. A 97, 052308 (2018).

[16] Y. Takeuchi, T. Morimae, and M. Hayashi, Quantum computa-
tional universality of hypergraph states with Pauli-X and Z basis
measurements, Sci. Rep. 9, 13585 (2019).

[17] J. Miller and A. Miyake, Hierarchy of universal entanglement
in 2D measurement-based quantum computation, npj Quantum
Inf. 2, 16036 (2016).

[18] T. Morimae, Y. Takeuchi, and M. Hayashi, Verification of
hypergraph states, Phys. Rev. A 96, 062321 (2017).

[19] M. Gachechiladze, O. Gühne, and A. Miyake, Changing the
circuit-depth complexity of measurement-based quantum com-
putation with hypergraph states, Phys. Rev. A 99, 052304
(2019).

[20] D. Gottesman, Stabilizer Codes and Quantum Error Correction,
Ph.D. thesis, California Institute of Technology, 1997, available
at http://arxiv.org/abs/quant-ph/9705052

062335-37

https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1103/PhysRevA.69.062311
https://doi.org/10.1103/PhysRevA.69.062311
https://doi.org/10.1103/PhysRevA.69.062311
https://doi.org/10.1103/PhysRevA.69.062311
https://doi.org/10.1103/PhysRevA.79.052304
https://doi.org/10.1103/PhysRevA.79.052304
https://doi.org/10.1103/PhysRevA.79.052304
https://doi.org/10.1103/PhysRevA.79.052304
https://doi.org/10.1103/PhysRevA.87.022311
https://doi.org/10.1103/PhysRevA.87.022311
https://doi.org/10.1103/PhysRevA.87.022311
https://doi.org/10.1103/PhysRevA.87.022311
https://doi.org/10.1088/1367-2630/15/11/113022
https://doi.org/10.1088/1367-2630/15/11/113022
https://doi.org/10.1088/1367-2630/15/11/113022
https://doi.org/10.1088/1367-2630/15/11/113022
https://doi.org/10.1103/PhysRevA.95.052340
https://doi.org/10.1103/PhysRevA.95.052340
https://doi.org/10.1103/PhysRevA.95.052340
https://doi.org/10.1103/PhysRevA.95.052340
https://doi.org/10.1103/PhysRevA.97.012323
https://doi.org/10.1103/PhysRevA.97.012323
https://doi.org/10.1103/PhysRevA.97.012323
https://doi.org/10.1103/PhysRevA.97.012323
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevA.68.022312
https://doi.org/10.1103/PhysRevA.68.022312
https://doi.org/10.1103/PhysRevA.68.022312
https://doi.org/10.1103/PhysRevA.68.022312
https://doi.org/10.1103/PhysRevA.87.050301
https://doi.org/10.1103/PhysRevA.87.050301
https://doi.org/10.1103/PhysRevA.87.050301
https://doi.org/10.1103/PhysRevA.87.050301
https://doi.org/10.1103/PhysRevLett.115.220502
https://doi.org/10.1103/PhysRevLett.115.220502
https://doi.org/10.1103/PhysRevLett.115.220502
https://doi.org/10.1103/PhysRevLett.115.220502
https://doi.org/10.1103/PhysRevA.96.030301
https://doi.org/10.1103/PhysRevA.96.030301
https://doi.org/10.1103/PhysRevA.96.030301
https://doi.org/10.1103/PhysRevA.96.030301
https://doi.org/10.1103/PhysRevA.97.052308
https://doi.org/10.1103/PhysRevA.97.052308
https://doi.org/10.1103/PhysRevA.97.052308
https://doi.org/10.1103/PhysRevA.97.052308
https://doi.org/10.1038/s41598-019-49968-3
https://doi.org/10.1038/s41598-019-49968-3
https://doi.org/10.1038/s41598-019-49968-3
https://doi.org/10.1038/s41598-019-49968-3
https://doi.org/10.1038/npjqi.2016.36
https://doi.org/10.1038/npjqi.2016.36
https://doi.org/10.1038/npjqi.2016.36
https://doi.org/10.1038/npjqi.2016.36
https://doi.org/10.1103/PhysRevA.96.062321
https://doi.org/10.1103/PhysRevA.96.062321
https://doi.org/10.1103/PhysRevA.96.062321
https://doi.org/10.1103/PhysRevA.96.062321
https://doi.org/10.1103/PhysRevA.99.052304
https://doi.org/10.1103/PhysRevA.99.052304
https://doi.org/10.1103/PhysRevA.99.052304
https://doi.org/10.1103/PhysRevA.99.052304
http://arxiv.org/abs/quant-ph/9705052


HUANGJUN ZHU AND MASAHITO HAYASHI PHYSICAL REVIEW A 100, 062335 (2019)

[21] D. Schlingemann and R. F. Werner, Quantum error-correcting
codes associated with graphs, Phys. Rev. A 65, 012308 (2001).

[22] S. Perseguers, G. J. Lapeyre, Jr., D. Cavalcanti, M. Lewenstein,
and A. Acín, Distribution of entanglement in large-scale quan-
tum networks, Rep. Prog. Phys. 76, 096001 (2013).

[23] W. McCutcheon, A. Pappa, B. A. Bell, A. McMillan, A.
Chailloux, T. Lawson, M. Mafu, D. Markham, E. Diamanti,
I. Kerenidis, J. G. Rarity, and M. S. Tame, Experimental
verification of multipartite entanglement in quantum networks,
Nat. Commun. 7, 13251 (2016).

[24] D. Markham and A. Krause, A simple protocol for certi-
fying graph states and applications in quantum networks,
arXiv:1801.05057.

[25] D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger,
Bell’s theorem without inequalities, Am. J. Phys. 58, 1131
(1990).

[26] V. Scarani, A. Acín, E. Schenck, and M. Aspelmeyer, Non-
locality of cluster states of qubits, Phys. Rev. A 71, 042325
(2005).

[27] O. Gühne, G. Tóth, P. Hyllus, and H. J. Briegel, Bell Inequalities
for Graph States, Phys. Rev. Lett. 95, 120405 (2005).

[28] M. Gachechiladze, C. Budroni, and O. Gühne, Extreme Vi-
olation of Local Realism in Quantum Hypergraph States,
Phys. Rev. Lett. 116, 070401 (2016).

[29] R. H. Dicke, Coherence in spontaneous radiation processes,
Phys. Rev. 93, 99 (1954).

[30] H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-
kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O.
Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, Scalable
multiparticle entanglement of trapped ions, Nature (London)
438, 643 (2005).

[31] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and
P. Treutlein, Quantum metrology with nonclassical states of
atomic ensembles, Rev. Mod. Phys. 90, 035005 (2018).

[32] F. Verstraete, V. Murg, and J. I. Cirac, Matrix product states,
projected entangled pair states, and variational renormalization
group methods for quantum spin systems, Adv. Phys. 57, 143
(2008).

[33] R. Orús, A practical introduction to tensor networks: Matrix
product states and projected entangled pair states, Ann. Phys.
349, 117 (2014).

[34] Quantum State Estimation, Lecture Notes in Physics, Vol. 649,
edited by M. G. A. Paris and J. Řeháček (Springer, Berlin,
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