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Closing the detection loophole in nonlinear entanglement witnesses

Kornikar Sen, Sreetama Das, and Ujjwal Sen
Harish-Chandra Research Institute, HBNI, Chhatnag Road, Jhunsi, Allahabad 211 019, India

(Received 27 June 2019; published 26 December 2019)

Detectors in the laboratory are often unlike their ideal theoretical cousins. They have nonideal efficiencies,
which may then lead to nontrivial implications. We show how it is possible to predict correct answers about
whether a shared quantum state is entangled in spite of finite detector efficiencies, when the tool for entanglement
detection is a nonlinear entanglement witness. We first consider the detection loophole for shared quantum states
with nonpositive partial transpose. We subsequently find nonlinear witness operators for bound entangled states
with positive partial transpose, and show how the detection loophole can be closed also in such instances.
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I. INTRODUCTION

Entanglement is a useful resource in quantum tasks [1,2],
including quantum teleportation [3], quantum dense coding
[4], and entanglement-based quantum cryptography [5]. It is
therefore important to find out whether a shared quantum
state is entangled. There are several methods known for detec-
tion of entanglement, including the positive partial transpose
(PPT) criterion [6,7], entropic criteria [8,9], Bell inequalities
[10], and entanglement witnesses [7,11]. A necessary and
sufficient criterion that is analytically tractable or numeri-
cally efficient remains elusive. There have been significant
advances in experimental detection of entanglement by using
the above criteria [12,13].

Whatever is the approach for detecting entanglement, it
will of course involve measurements on the shared quantum
state. The devices that are used for such measurements are
typically assumed, in theoretical discussions, to be ideal.

From an experimental perspective, a useful method for
detecting entanglement is by using entanglement witnesses,
which are linear operators on the space of quantum states
(density matrices) and which provide a sufficient condition for
detecting entanglement. The criterion is based on the Hahn-
Banach separation theorem on normed linear spaces [14].
A large number of experiments have utilized entanglement
witnesses for detecting entanglement [13].

Bell inequality violation for a shared quantum state implies
that the state cannot be described by a local hidden variable
model. It also implies that the state is entangled. Indeed, a
typical Bell inequality, e.g., the Clauser-Horne-Shimony-Holt
inequality [15], is a nonoptimal entanglement witness. There
exists a series of works on the detection loophole for Bell
inequality violations [16] (see also [17]), where the theoretical
discussion allows the detectors to have nonideal efficiencies.
Experimental violation of Bell inequalities, while acknowl-
edging nonideal detector efficiencies, has been explored in
several works [18]. Reference [19] considered implications
of the detection loophole in experiments for entanglement
detection via entanglement witnesses.

Entanglement witnesses predicted by the Hahn-Banach
theorem are linear operators. For every entangled state, there

always exists an entanglement witness that can detect it, as
well as some—but not all—other entangled states. However,
it is possible to add nonlinear terms to linear witness operators
that detect the entangled states that are detected by the linear
parent witness, as well as some more entangled states [20–22].

There are two results obtained in this paper, and in the
first one we find limits on the threshold efficiency of detec-
tors for implementing nonlinear entanglement witnesses, for
entangled states with a nonpositive partial transpose (NPPT).

The second one relates to bound entangled states, which,
in the two-party case, are shared quantum states that are
entangled but not distillable, i.e., it is not possible to obtain
singlets, even asymptotically, from the shared state by local
quantum operations and classical communication [23]. In
this part, we begin by constructing nonlinear entanglement
witnesses for bound entangled states with positive partial
transpose. As a particular example, we consider nonlinear
witnesses for the family of bound entangled states given in
Ref. [24]. We subsequently provide bounds on the threshold
efficiency of detectors for detecting the bound entangled state
by utilizing the nonlinear witness.

The paper is arranged as follows. In Sec. II, we briefly dis-
cuss certain general aspects of linear and nonlinear entangle-
ment witnesses. The detection loophole for linear witnesses is
reviewed in Sec. III, which also sets up the notations for the
succeeding sections. We present our results on the detection
loophole for nonlinear entanglement witnesses for entangled
states with a NPPT in Sec. IV. Bound entangled states with
PPT are considered in Sec. V, where we first present nonlinear
witnesses for them, and then consider the limits on detection
efficiencies for their detection using nonlinear witnesses. We
present a conclusion in Sec. VI.

II. LINEAR AND NONLINEAR
ENTANGLEMENT WITNESSES

Among the various methods for detecting entangled states,
there are a few which can be realized experimentally without
going through an entire state tomography. One of them is
by using witness operators. The concept of the entanglement
witness is based on the Hahn-Banach theorem [14]. It states
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that if S is a closed and convex set in a normed linear space
L, and x ∈ L \ S, then there exists a continuous functional f :
L → R such that f (s) < r � f (x) for all s ∈ S where r ∈ R.
The space of density matrices on a given Hilbert space forms a
normed linear space for the norm, ||ρ|| =

√
tr(ρρ†), of a den-

sity matrix ρ. This remains valid for density matrices on the
tensor products of several Hilbert spaces, and in particular for
the tensor product, of two Hilbert spaces HA and HB. We now
identify S with the set of separable states on HA ⊗ HB, and
x with an entangled state [1,2] on the same bipartite system.
We note that separable states form a closed and convex set
in the space of density matrices. The Hahn-Banach theorem,
therefore, guarantees the existence of a functional which
separates the set of separable states with the entangled state.
This functional is called a witness operator [11] and is defined
as an operator W which satisfies the following conditions:

tr(W ρs) � 0 for all ρs ∈ s,

tr(W ρ) < 0 for at least one entangled state ρ.

Note that if for any state ρ one gets tr(W ρ) < 0 one can
surely conclude that it is entangled. Moreover, since the set of
nonseparable states is open, there will always exist an open
ball, in a suitable metric, the entanglement of every state of
which will be detected by the same witness. This is a useful
fact for experimental implementation of the witness, as small
and often inevitable errors in the preparation of the state can
then be nullified. Furthermore, for every entangled state, ρ,
there always exists a witness that detects it. An example of a
witness operator for an NPPT state ρφ is Wφ = |φ〉〈φ|TB [11],
where |φ〉 is an eigenvector corresponding to a negative eigen-
value of ρ

TB
φ . Here, one can easily check that the expectation

value of Wφ is positive for all separable states and negative for
ρφ , i.e., it can detect the entanglement of ρφ . But such witness
operators can only detect NPPT states. Witness operators for
detecting PPT bound entangled states are discussed in Sec. V.

The operator W is a “linear” operator, in the sense that it
acts linearly on the space of density matrices. One can get
more efficient witness operators by adding nonlinear terms to
linear witness operators in such a way that the new “nonlinear
witness operator” can detect the entangled states that can
be detected by the parent linear witness operator, as well as
additional ones. We will introduce nonlinear witness operators
more formally in Sec. IV.

III. DETECTION LOOPHOLE

In this section, we briefly recapitulate the implications
of a finite (i.e., nonzero) efficiency for linear entanglement
witnesses [19]. While we consider only the two-qubit case, the
methods work also in higher dimensions and higher number
of parties. A decomposition of the witness operator, W, in the
two-qubit case, is given by

W = C00I ⊗ I +
3∑

i=1

C0iI ⊗ σi

+
3∑

i=1

Ci0σi ⊗ I +
3∑

i, j=1

Ci jσi ⊗ σ j

= C00I ⊗ I +
15∑

k=1

CkSk, (1)

where Sk’s are tensor products of all combinations of two
σi (i = 0, 1, 2, 3) except I ⊗ I , with σ0 = I , σi for i = 1, 2, 3
being the Pauli matrices. Here, I is the identity operator on
the qubit Hilbert space. Ci j and Ck are real numbers. To detect
the entanglement of a two-qubit state through the expectation
value of W in that state, one has to measure these Sk’s for
that state. Since there could be errors in these measurements,
the status of a state—with respect to whether or not it is
entangled—found by using the value of a witness operator
could have a “loophole” in the argument. We want to find
the condition for overcoming such a loophole. The measured
expectation value of Sk for a certain two-qubit state, ρ, is
given by 〈Sk〉m =

∑
niλi

N =
∑

(ñi+ε+i−ε−i )λi

Ñ+ε+−ε−
. Here, ni denotes the

number of times that the ith eigenvalue λi of Sk has clicked
in experiment, and ñi denotes the number of times the same
should have clicked in case of perfect detectors. Also, N =∑

i ni and Ñ = ∑
i ñi. ε+i are the number of additional events

and ε−i are the number of lost events at the ith outlet. The total
number of additional and lost events are, respectively, given
by ε+ = ∑

i ε+i and ε− = ∑
i ε−i, and the corresponding de-

tection efficiencies are defined as η+ = Ñ
Ñ+ε+

(equal to addi-

tional event efficiency) and η− = Ñ−ε−
Ñ

(equal to lost event
efficiency). In this paper, we assume that the additional event
efficiency η+ = 1, i.e., ε+ = 0, and that the ε−i’s are equal
for all i’s and the value is, say, ε. With additional notations
and algebra, those assumptions can of course be lifted. With
these assumptions, we have 〈Sk〉m =

∑
ñi−ε

∑
λi

Ñ−ε−
. Since Sk’s are

tensor products of the Pauli matrices (which are all traceless
matrices) with each other or with the identity matrix, the traces
of Sk’s are zero. Hence, we get 〈Sk〉m = 1

η−

∑
ñiλi

Ñ
= 1

η−
〈S〉t .

Here, 〈Sk〉t denotes the true value of Sk , i.e, the expectation
value of Sk when measured with ideal detectors, for the state
ρ. Now, from Eq. (1), we have 〈W 〉m = C00 + 1

η−

∑
k〈Sk〉m =

C00(1 − 1
η−

) + 1
η−

〈W 〉t . An entangled state would be detected
when 〈W 〉t < 0, so that we need

〈W 〉m < C00

(
1 − 1

η−

)
.

Now, for a particular detector, the value of η− is known, or can
be estimated, usually, by independent means. If the measured
value of the witness satisfies the above inequality for some
state ρ, then, in spite of the inefficiencies of the detectors,
we can conclude that the state ρ is entangled. We can see
from the relation that if one uses a witness such that in its
decomposition the coefficient C00 = 0 then the loophole in the
detection cannot affect the result.
Let us now take a particular witness operator, given by Wφ+ =
|φ+〉〈φ+|TB (where |φ+〉 = 1√

2
(|00〉 + |11〉). In an ideal sce-

nario, this witness operator will be able to detect the en-
tanglement in any two-qubit state ρφ+ that has |φ+〉 as the
eigenvector corresponding to the negative eigenvalue of ρ

TB
φ+ .

An exemplary family of such states is the Werner family [25],
ρp = p|ψ−〉〈ψ−| + (1 − p) 1

2 I ⊗ 1
2 I , for 1

3 < p � 1. See [6,7]
in this regard. Here, |ψ−〉 = 1√

2
(|01〉 − |10〉). Note here that

two-qubit states can have at most a single negative eigenvalue
after being partially transposed [26]. If we repeat the above
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calculation with this witness operator, we will get the follow-
ing condition:

〈Wφ+〉m <
1

4

(
1 − 1

η−

)
.

Now, for example, if the lost event efficiency η− > 1
3 , then

to overcome the loophole and detect an entangled state one
needs 〈Wφ+〉m < − 1

2 .

IV. DETECTION LOOPHOLE IN NONLINEAR
WITNESS OPERATORS

As we have mentioned before, one can improve a linear
witness operator by adding nonlinear terms to the linear
witness operator, such that it “bends towards negativity.” If
we consider the witness operator which witnesses NPPT states
and is given by |φ〉〈φ|TB then one can add a nonlinear term in
the following way [20]:

F = 〈|φ〉〈φ|TB〉 − 1

s(ψ )
〈X TB〉〈(X TB )†〉,

where the expectations are for the state ρ, the entanglement
of which we wish to detect. Here, X is given by |φ〉〈ψ |,
where |ψ〉 is an arbitrary but fixed state and s(ψ ) is the
square of the largest Schmidt decomposition coefficient of
|ψ〉. It is shown in [20] that F � 0 if the expectations in
F are for a separable state, and that when the expectations
are for an entangled state F < 0. Moreover, F < 0 is true
for more entangled states than for which 〈Wφ〉 < 0. Here we
wish to find the limits on the measured values of F such
that we can still correctly predict whether ρ is entangled,
in the case when the detectors are nonideal. To do this, one
needs to find F , and hence has to measure W and X TB , while
acknowledging that the detectors are not ideal. Although X TB

is not Hermitian, we can decompose X TB into Hermitian and
anti-Hermitian parts as X TB = H + iA, where H and A are
Hermitian, so that we get 〈X TB〉〈(X TB )†〉 = 〈H〉2 + 〈A〉2. Since
H and A are Hermitian, we can measure them. Here we have
considered the case where all the operators are measured by
using similarly engineered detectors so that the η− are the
same for all the measurements. Just like W , the H and A can
also be decomposed in terms of tensor products of the Pauli
matrices and the identity matrix, and we obtain

〈H〉m = C0H

(
1 − 1

η−

)
+ 1

η−
〈H〉t , (2)

〈A〉m = C0A

(
1 − 1

η−

)
+ 1

η−
〈A〉t . (3)

The suffixes m and t indicate, respectively, the measured and
true values, and COH = 1

4 tr(H ) and COA = 1
4 tr(A). Hence, the

measured value of the nonlinear witness operator is

〈F 〉m = 〈Wφ〉m − 1

s(ψ )

[〈H〉2
m + 〈A〉2

m

]
= C00

(
1 − 1

η−

)
+ 1

η−
〈W 〉t

− 1

s(ψ )

[〈H〉2
m + 〈A〉2

m

]

= C00

(
1 − 1

η−

)

+ 1

η−

[
〈F 〉t + 1

s(ψ )

(〈H〉2
t + 〈A〉2

t

)]

− 1

s(ψ )

[〈H〉2
m + 〈A〉2

m

]
.

Putting the value of 〈H〉t and 〈A〉t in terms of 〈H〉m and 〈A〉m

from (2) and (3), we get

〈F 〉m = C00

(
1 − 1

η−

)
+ 1

η−
〈F 〉t

+ η−
s(ψ )

(〈H〉2
m + k2

H − 2〈H〉mkH
)

+ η−
s(ψ )

(〈A〉2
m + k2

A − 2〈A〉mkA
)

− 1

s(ψ )

[〈H〉2
m + 〈A〉2

m

]
,

where kH = C0H (1 − 1
η−

) and kA = C0A(1 − 1
η−

). This will
detect an entangled state when 〈F 〉t < 0. Putting this in the
above equation, we get

〈F 〉m < C00

(
1 − 1

η−

)

+ η−
s(ψ )

(〈H〉2
m + k2

H − 2〈H〉mkH
)

+ η−
s(ψ )

(〈A〉2
m + k2

A − 2〈A〉mkA
)

− 1

s(ψ )

[〈H〉2
m + 〈A〉2

m

]
. (4)

Writing F in terms of the linear witness operator and the
nonlinear terms, we get

〈Wφ〉m < C00

(
1 − 1

η−

)

+ η−
s(ψ )

(〈H〉2
m + k2

H − 2〈H〉mkH
)

+ η−
s(ψ )

(〈A〉2
m + k2

A − 2〈A〉mkA)
)
.

The values of 〈Wφ〉m, 〈H〉m, and 〈A〉m which will satisfy the
above inequality for a given η− will detect an entangled state,
and for that state the loophole would be closed. Although we
have derived the condition for loophole closure for a particular
case, the method can also be utilized for deriving conditions
for other nonlinear entanglement witnesses.

Now if we consider the linear witness operator Wφ+ and add
the nonlinear term X = |φ+〉〈φ−|, the condition for closing
the loophole will be

〈Wφ+〉m <
1

4

(
1 − 1

η−

)
+ 2η−

(〈H〉2
m + 〈A〉2

m

)
.

Here, |φ−〉 = 1√
2
(|00〉 − |11〉). The region above the curved

surface in Fig. 1 shows the range of 〈Wφ+〉m, Xnl , and η−,
for which the loophole would be closed and an entangled

state would be detected. Here, Xnl = (〈H〉2
m + 〈A〉2

m)
1
2 . The
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FIG. 1. Closing the detection loophole for a nonlinear entanglement witness. The values of the triad, 〈Wφ+〉m, Xnl , and η−, ascertain whether
the entanglement in the state ρφ+ is detected, where ρφ+ is any state the partial transpose of which has |φ+〉 as the eigenvector for its negative
eigenvalue. In spite of the nonideal detector efficiency, the entanglement in ρφ+ is detected whenever the triad lies in the region above the
surface plotted in panel (a). Here the different colors denote different ranges of values of 〈Wφ+〉m as indicated in the colorbox. In panel (b),
values of Xnl and 〈Wφ+〉m are shown for some fixed values of η−. The blue double-dot-dashed, green dot-dashed, red dotted, orange dashed, and
magenta continuous lines are, respectively, for η− = 0.15, 0.2, 0.4, 0.6, and 0.9. Each curve, therefore, is a cross section of the surface in panel
(a) for different values of η−. The region outside each η− curve shows the values of Xnl and 〈Wφ+〉m for which entanglement can be detected
for that value of efficiency. It can be seen that as the efficiency increases there is an increase in the region for which successful detection of

entanglement is possible. Note that Xnl = (〈H〉2
m + 〈A〉2

m )
1
2 . All quantities are dimensionless.

figure shows that the condition for detecting entanglement
becomes progressively better as the value of the nonlinear
term X 2

nl increases. More precisely, for a given value of 〈Wφ+〉,
an increase in the nonlinear contribution due to Xnl allows for
the detection of entanglement with lower η−.

V. NONLINEAR WITNESS OPERATORS FOR BOUND
ENTANGLED STATES

In this section, we begin by identifying nonlinear witness
operators for bound entangled states with positive partial
transpose. We subsequently show how one can deal with the
detection loophole also in this case.

A map M, on the space of operators on a Hilbert space, Cd2 ,
which has the property M(X †) = M(X )†, and which preserves
positivity [i.e., if eigenvalues of X are positive, then eigenval-
ues of M(X ) will also be positive], is called a positive map. If
we apply Id1 ⊗ Md2 on operators on the Hilbert space Cd1 ⊗
Cd2 and if the positivity is still preserved, for all d1, then the
map is called completely positive. All positive maps behave
as completely positive if we restrict their action to separable
states on Cd1 ⊗ Cd2 , and corresponding to every entangled
state (say ρ) there exists some positive map (say M1) for
which Id1 ⊗ M1(ρ) will have at least one negative eigenvalue,
for some d1 [7]. Here, M1 is a map on the space of operators
on Cd2 , and Id1 is the identity map on the space of operators
on Cd1 . If an eigenvector corresponding to a negative eigen-
value of Id1 ⊗ M1(ρ) is |φ〉, then W̃φ = (Id1 ⊗ M1)+|φ〉〈φ| will
satisfy the conditions of a witness operator and can detect
the state ρ. Here, (Id1 ⊗ M1)+ is defined by the equation
tr[(Id1 ⊗ M1)+(O1)O2] = tr[O1(Id1 ⊗ M1)(O2)], for all oper-
ators O1 and O2 on Cd1 ⊗ Cd2 . We can now construct a
corresponding nonlinear witness operator as

F = (I ⊗ M1)+|φ〉〈φ| − 1

s(ψ )
〈X TB〉〈(X TB )†〉, (5)

with X = |φ〉〈ψ |, where again |ψ〉 is an arbitrary but fixed
vector and s(ψ ) is the square of the largest Schmidt coefficient

of |ψ〉. Let us consider a particular bound entangled state [24],

ρB = 2

7
|ψ̃〉〈ψ̃ | + a

7
σ+ + 5 − a

7
σ−,

where

|ψ̃〉 = 1√
3

(|00〉 + |11〉 + |22〉),

σ+ = 1

3
(|01〉〈01| + |12〉〈12| + |20〉〈20|),

σ− = 1

3
(|10〉〈10| + |21〉〈21| + |02〉〈02|).

One can easily check that, for a � 4, ρB is PPT. Now, if we
use the map [27],

A

⎛
⎝

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠

⎤
⎦

=
⎡
⎣a11 + a33 −a12 −a13

−a21 a22 + a11 −a23

−a31 −a32 a33 + a22

⎤
⎦,

and find eigenvalues of I ⊗ A(ρB), we can see that it has a
negative eigenvalue value for a > 3. So the state is bound
entangled for 3 < a � 4.

The eigenvector corresponding to the negative eigenvalue
is |φ〉 = 1√

3
[|00〉 + |11〉 + |22〉]. To construct the nonlinear

witness operator as given in (5) let us take |ψ〉 = 1
2 [|01〉 +

|10〉 + |12〉 + |21〉]. Then the corresponding C0H and C0A can
be evaluated to be zero and hence kH and kA are also zeros.
Now, decomposition of the linear term, (I ⊗ M1)+|φ〉〈φ|, in
terms of Gell-Mann matrices, is given by

(I ⊗ M1)+|φ〉〈φ| =
8∑

i, j=0

Ci jλiλ j,

062333-4
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FIG. 2. Closing the detection loophole for a nonlinear witness to detect entanglement in a bound entangled state. Just like in Fig. 1, the
detection of entanglement is determined by the triad, 〈W̃φ〉m, Xnl , and η−. The entanglement detected is of the state ρB, or of one in a small
neighborhood of the same. Despite a possible nonideal detector efficiency, the entanglement of any state in this neighborhood is detected
whenever 〈W̃φ〉m, Xnl , and η− lie in the region above the plotted surface in panel (a), or 〈W̃φ〉m and Xnl lie outside a plotted curve in panel (b) for
the corresponding fixed value of η−. In panel (a), different values of 〈W̃φ〉m have been indicated using different colors as shown in the colorbox.
The curves in panel (b) have been plotted for some particular values of η−. The blue double-dot-dashed, green dot-dashed, red dotted, orange

dashed, and magenta continuous lines are, respectively, for η− = 0.15, 0.2, 0.4, 0.6, and 0.9. Here again, Xnl = (〈H〉2
m + 〈A〉2

m )
1
2 . All quantities

are dimensionless.

where λi’s are the 3 × 3 identity operator [for i = 0] and Gell-
Mann matrices [for i = 1, . . . , 8]. Ci j can be evaluated from
the relation

tr[(I ⊗ M1)+|φ〉〈φ|(λi ⊗ λ j )] = Ci j tr
(
λ2

i

)
tr
(
λ2

j

)
⇒ tr[|φ〉〈φ|(I ⊗ M1)(λi ⊗ λ j )] = Ci j tr

(
λ2

i

)
tr
(
λ2

j

)
. (6)

Now, M1 maps λ0 → 2λ0. Hence putting i = j = 0 in (6), we
get C00 = 2

9 . Then from the inequality (4), we get

〈F 〉m � 2

9

(
1 − 1

η−

)
+ 4(η− − 1)

[〈H〉2
m + 〈A〉2

m

]
.

Representing the above relation in terms of the linear witness
operator, we get

〈W̃φ〉m � 2

9

(
1 − 1

η−

)
+ 4η−

[〈H〉2
m + 〈A〉2

m

]
. (7)

This is the condition for detecting bound entangled states in
real experiments in which the detector does not work ideally.
The boundary beyond which the nonlinear witness operator
can detect entanglement of ρB is shown in Fig. 2. We can
see that as the measured value of X 2

nl increases from 0 to
4, i.e., the value of Xnl increases from 0 to 2 or decreases
from 0 to −2, the chance of detecting entanglement increases,
i.e., it increases with increase in the measured value of non-
linear terms. For example, suppose that the value of 〈W̃φ〉m

is zero. Then, if the nonlinear term Xnl is 0.5, detection of
entanglement is possible for η− � 0.37. For the same value of
〈W̃φ〉m, if the nonlinear term Xnl attains a higher value of, say,

1.0, the same detection is possible for the larger range of the
efficiency, viz., η− � 0.21.

We can also conclude by observing the figures or from rela-
tion (7) that the nonlinear witness constructed for detecting the
bound entangled state is better than its corresponding linear
witness for any nonzero value of the lost event efficiency.

VI. CONCLUSION

We found conditions for detection of entanglement in
bipartite quantum states using nonlinear witness operators
in situations where the detectors have nonideal, but known,
efficiency. The method is related to the way that the detection
loophole is dealt with in experiments looking for violation
of Bell inequalities, and for detection of entanglement using
linear entanglement witnesses. While the method followed
can be generalized to several other situations, we have first
dealt with the case of detecting entangled states with a
nonpositive partial transpose by using a nonlinear witness
operator related to the positive partial transpose criterion.
We have then found nonlinear entanglement witnesses for
a bound entangled state, and have subsequently derived
conditions for it to perform the detection in presence of
errors. In both the cases, the nonlinear witnesses turn out to
be more efficient in detecting entanglement, even for nonideal
efficiencies, than their linear counterparts.
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