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Genuinely entangled subspaces (GESs) are those subspaces of multipartite Hilbert spaces that consist only
of genuinely multiparty entangled pure states. They are natural generalizations of the well-known notion of
completely entangled subspaces, which by definition are void of fully product vectors. Entangled subspaces are
an important tool of quantum information theory as they directly lead to constructions of entangled states, since
any state supported on such a subspace is automatically entangled. Moreover, they have also proven useful in
the area of quantum error correction. In our recent contribution [M. Demianowicz and R. Augusiak, Phys. Rev.
A 98, 012313 (2018)], we have studied the notion of a GES qualitatively in relation to so-called nonorthogonal
unextendible product bases and provided a few constructions of such subspaces. The main aim of the present
work is to perform a quantitative study of the entanglement properties of GESs. First, we show how one can
attempt to compute analytically the subspace entanglement, defined as the entanglement of the least-entangled
vector from the subspace, of a GES and illustrate our method by applying it to a new class of GESs. Second,
we show that certain semidefinite programming relaxations can be exploited to estimate the entanglement of
a GES and apply this observation to a few classes of GESs revealing that in many cases the method provides
the exact results. Finally, we study the entanglement of certain states supported on GESs, which is compared to
the obtained values of the entanglement of the corresponding subspaces, and find the white-noise robustness of
several GESs. In our study we use the (generalized) geometric measure as the quantifier of entanglement.
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I. INTRODUCTION

Genuinely multiparty entangled (GME) states, that is,
states not displaying any form of separability and as such
representing the strongest form of entanglement in many-
body systems, have become an important resource in many
information processing protocols over the recent years (see,
e.g., [1–3]). Due to their significance, there has been a
tremendous amount of research in the literature aimed at
understanding their properties (see, e.g., [4–7]). While there
has been a lot of progress in the area, still many facets of
entanglement in systems of many particles have remained
unexplored or less studied. In an effort to contribute to this
line of research, we have recently proposed to analyze in
more detail subspaces that only consist of GME states; we
called them genuinely entangled subspaces (GESs) [8] (see
also [9]). They are the natural analogs of the well-studied
completely entangled subspaces (CESs), which are void of
fully product vectors [10,11]. Entangled subspaces comprise
a particularly important tool of quantum information theory
as they allow for general constructions of entangled states,
since any state supported on such a subspace is necessarily
entangled. Importantly, in the case of GESs such constructed
states are GME. Furthermore, particular classes of entan-
gled subspaces—perfectly entangled, or k-totally entangled,
k-uniform ones [10]—have found an application in quantum
error correction (QEC) [12–16]. The case k = �n/2� corre-

sponds to certain types of GESs, and it is directly related to
the notion of absolutely maximally entangled (AME) states
(see, e.g., [17,18]).

The attempt at a characterization of GESs made by us in
[8] was qualitative, in the sense that we have only considered
the problem of their general constructions in setups with an
arbitrary number of parties holding subsystems of arbitrary
local dimensions (see [19] for recent advances). This has been
linked with the notion of the unextendible product bases [20],
another very powerful tool with diverse applications (see,
e.g., [21–23]). Clearly, however, the quantitative description
of GESs (or, more generally, any subspaces) is also vital, as it
provides a means of comparing them and potentially deciding
on their usefulness in certain tasks, in particular those where
the amount of entanglement is the figure of merit. So far, this
problem has not been considered in the literature (albeit see
[24], where the distillability across bipartite cuts has been
investigated) and the present paper aims at filling this gap.

There are two main approaches to the problem of quanti-
fying entanglement of a subspace [12,25,26] (see, e.g., [27]
for other ways). In the first one, one asks about the average
entanglement over all pure states in a subspace [25,26]; in
the other, the question is how much entangled is the least-
entangled vector in a subspace (see, e.g., [12]). While both
appear equally significant, it is the second one we pursue in
the present paper as our main method. From the practical
point of view, this approach is relevant for scenarios in which
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entangled states drawn from a subspace are a resource and one
is interested in the estimation of the worst-case performance
of the protocol. In our study we use the geometric measure
(GM) of entanglement [28–30] and its variant, the generalized
geometric measure (GGM) [31], suitable for GME detection.
This choice is motivated by their usefulness in different ar-
eas of quantum information theory (see, e.g., [32–35]). We
present two general methods of computation of the entangle-
ment of a subspace as measured by the geometric measures
and show their applicability on a new class of N-partite GESs
in a C2 ⊗ (Cd )⊗(N−1) setup. In particular, we find analytically
the GGM of these subspaces for arbitrary N and d . Further,
the choice of measures allows us to lower-bound the sub-
space entanglement using semidefinite programming (SDP)
relaxations, which in many cases turn out to provide the exact
results. In addition, we also consider other approaches to the
problem and analyze the entanglement properties of states,
which are normalized projections on GESs, and investigate
the white-noise tolerance of such states. These two additional
quantifiers, although not standard, are expected to convey
some supplementary information about the entanglement of
a subspace. In this part of our research, we again use the SDP
relaxations but also some other tools such as entanglement
witnesses, the PPT mixtures, and a direct numerical algorithm
for approximating the geometric measures.

The paper is organized as follows. In the preliminary
section, Sec. II, we introduce the notation and the terminology.
Then, in Sec. III, we recall the definition of the entanglement
of a subspace and present two methods of its computation. In
Sec. IV, we apply these methods to find the entanglement of
a new class of GESs. Section V puts forward SDP bounds
on the entanglement of a subspace and investigates their
performance for a few classes of GESs. In Sec. VI, we turn our
attention to other methods of quantifying the subspace entan-
glement, namely, the entanglement of normalized projections
on GESs and the white-noise tolerances of such states, and
consider several methods of their computation. We conclude
in Sec. VII, where we also state some open questions and
propose future research directions.

II. PRELIMINARIES

In this section we briefly introduce the necessary terminol-
ogy and the notation.

a. Notation. In the paper we deal with finite-dimensional
N-partite product Hilbert spaces Cd1 ⊗ · · · ⊗ CdN , with di

standing for the dimension of the local Hilbert space of system
Ai; the shorthand A := A1A2 . . . AN denotes all subsystems.
Pure states are denoted as |ψ〉, |ϕ〉, . . ., with subscripts corre-
sponding to respective subspaces if necessary, e.g., |ψ〉A1A2....
The same convention applies to mixed states; that is, we write,
e.g., ρA1A2 for a state with subsystems held by A1 and A2.
For few subsystems the denotations A, B, ... will be used.
The standard notation for tensor products of basis vectors is
employed: |i j〉 = |i, j〉 := |i〉 ⊗ | j〉.

b. Entanglement. An N-partite pure state |ψ〉A1...AN is called
fully product if it is possible to write it as

|ψ〉A1...AN = |ϕ〉A1 ⊗ · · · ⊗ |ξ 〉AN . (1)

Otherwise it is said to be entangled. An important class of
such states is genuinely multiparty entangled ones. A mul-
tipartite pure state is called genuinely multiparty entangled
(GME) if

|ψ〉A1...AN �= |ϕ〉K ⊗ |φ〉K̄ (2)

for any bipartite cut (bipartition) K|K̄ , where K is a sub-
set of A and K̄ := A \ K denotes the rest of the par-
ties. A paradigmatic example of such a state is the N-
qubit Greenberger-Horne-Zeilinger (GHZ) state: |GHZN 〉 =
(1/

√
2)(|0〉⊗N + |1〉⊗N ).

States which are not GME, i.e., do admit the form
|ψ〉A1...AN = |ϕ〉K ⊗ |φ〉K̄ , are called biproduct. It then follows
that fully product states are a subclass of the biproduct ones.
Let us finally stress that within this terminology a biproduct
state is entangled if it is not fully product.

Generalization of these concepts to the mixed-state domain
is nontrivial. A mixed state ρA is said to be fully separable if
it admits the form

ρA =
∑

i

pi�
(i)
A1

⊗ · · · ⊗ γ
(i)

AN
. (3)

A state which is not fully separable is entangled. An entan-
gled multipartite mixed state is called genuinely multiparty
entangled (GME) if

ρA �=
∑
K|K̄

pK|K̄
∑

i

q(i)
K|K̄�

(i)
K ⊗ σ

(i)
K̄

, (4)

where the first sum goes over all bipartitions of A. If a
state does admit the decomposition as above, it is called
biseparable. Just as previously in the case of pure states, we
emphasize that biseparable states may be entangled.

c. Genuinely entangled subspaces. There exist subspaces
composed solely of entangled pure states; they are called
completely entangled subspaces (CESs) [10,11]. This notion
is naturally generalized to the case of GME. Formally, a
subspace G of a multipartite Hilbert space is called a gen-
uinely entangled subspace (GES) if all |ψ〉 ∈ G are gen-
uinely multiparty entangled [8] (see also [9,10]). A simple
example of a two-dimensional GES is the subspace spanned
by the W state, |W 〉 = 1/

√
N (|00 . . . 001〉 + |00 . . . 010〉 +

· · · |10 . . . 000〉), and its complement W̃ , |W̄ 〉 = σ⊗N
x |W 〉 [36].

A few general constructions of higher-dimensional GESs have
been recently given in [8], where the notion has been linked
to the notion of the unextendible product bases. In fact,
the subspaces constructed there are our test-ground cases in
the present paper. They are introduced in further parts of the
present paper.

An important observation regarding CESs and GESs is that
mixed states supported on them are, respectively, entangled
and genuinely multiparty entangled. As such they provide
an important tool to construct (genuinely) entangled mixed
states.

III. ENTANGLEMENT OF GENUINELY
ENTANGLED SUBSPACES: DEFINITION

AND METHODS OF COMPUTATION

Following [12], we define the entanglement of a subspace
S (or the subspace entanglement of S), as measured by E ,
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through

E (S ) = min
|ψ〉∈S

E (|ψ〉), (5)

where E is a measure of multipartite entanglement. Impor-
tantly, if this measure is chosen to be nonzero exclusively on
GME states, E (S ) will be a quantifier of genuine entangle-
ment of a subspace.

We pick the geometric measure (GM) and the generalized
geometric measure (GGM) of entanglement as the quantifiers
E in our further considerations. For pure states the GM is
defined as [28,29]

EGM(|ψ〉) = 1 − max
|ψprod〉

|〈ψprod|ψ〉|2 (6)

with the maximization performed over fully product vectors.
Only a slight modification is needed to make this measure
quantify solely genuine multipartite entanglement. Namely,
one defines the generalized geometric measure (GGM) of
entanglement [37]:

EGGM(|ψ〉) = 1 − max
|ψbiprod〉

|〈ψbiprod|ψ〉|2 (7)

with the maximization this time over all pure states that are
biproduct. It is obvious that it serves the purpose. The GGM
has been shown to be analytically computable for pure states
[37].

For a mixed sate ρ, the (G)GM is defined through the
standard convex roof construction, that is,

E(G)GM(ρ) = min
{pi,|ψi〉}

∑
i

E(G)GM(|ψi〉), (8)

where the minimum is computed over all pure state ensembles
of the state, i.e., ρ = ∑

i pi|ψi〉〈ψi|.
Clearly, for any subspace S it holds that

E(G)GM(ρ) � E(G)GM(S ), supp(ρ) ⊆ S, (9)

where supp(ρ) is the support of the density matrix ρ. This
property actually holds for any entanglement measure ex-
tended from pure states to the mixed-state domain by the
convex roof.

Following [38], we rewrite the right-hand side of (5) for
the present choice of the measure to a form useful for further
treatment:

E(G)GM(S ) ≡ min
|ψ〉∈S

E(G)GM(|ψ〉)

= min
|ψ〉∈S

(
1 − max

|ψ(bi)prod〉
|〈ψ(bi)prod|ψ〉|2

)

= 1 − max
|ψ(bi)prod〉

max
|ψ〉∈S

|〈ψ(bi)prod|ψ〉|2

= 1 − max
|ψ(bi)prod〉

〈ψ(bi)prod|PS |ψ(bi)prod〉

= min
|ψ(bi)prod〉

〈ψ(bi)prod|P⊥
S |ψ(bi)prod〉, (10)

where PS projects onto S and P⊥
S onto S⊥, that is, PS +

P⊥
S = 1. The crucial transition from the third line to the fourth

follows from the fact that for a given ψ(bi)prod, the vector
maximizing the quantity will be the (normalized) projection
of ψ(bi)prod onto S . The great value of this reformulation lies
in the fact that we now have only one optimization to perform.

Now, if S contains a (bi)product vector then this quantity
will simply give zero. However, in the opposite case, it is
certainly nonzero, signifying (genuine) entanglement of S .

Notice that the GGM of a subspace can also be written as

EGGM(S ) = min
K|K̄

EK|K̄
GM (S ), (11)

where EK|K̄
GM (S ) denotes the GM of the subspace across a

particular bipartition and the minimization is over all bipar-
titions. This emphasizes the fact that although we deal here
with genuine entanglement the problem reduces to a repeated
analysis of a bipartite case. This is the great feature of the
GGM making it computable in many cases. We will use this
formulation in one of the proofs. We must stress, however, that
this reasoning only applies to subspaces, not states.

In passing, we note that one could also consider “inter-
mediate” geometric measures, where instead of considering
N-product (fully product) or 2-product (biproduct) vectors,
the maximization is performed over k-product vectors. This
has been considered, e.g., in [39].

A. Method of projecting onto a subsystem

Here we describe a general method of computing the
entanglement of a subspace based on the observation (10). We
will refer to this method as the method of projecting onto a
subsystem.

Let us first consider the case of the GGM and rewrite
EGGM(S ) more explicitly as

EGGM(S ) = min
K|K̄

min
|ϕK 〉⊗|ϕ̄K̄ 〉

〈ϕK | ⊗ 〈ϕ̄K̄ |P⊥
S |ϕK〉 ⊗ |ϕ̄K̄〉 (12)

= 1 − max
K|K̄

max
|ϕK 〉⊗|ϕ̄K̄ 〉

〈ϕK | ⊗ 〈ϕ̄K̄ |PS |ϕK〉 ⊗ |ϕ̄K̄〉, (13)

where K|K̄ denotes a bipartition of the parties and |ϕK〉 and
|ϕ̄K̄〉 are vectors on K and K̄ , respectively. We have reversed
the order of representations of E (S ) in comparison to (10)
because, in fact, the second form, i.e., (13), will be more
useful to us. This is due to the fact that we will more easily
write out a basis for S than for R. We note, however, that the
method works equally well if one uses the representation (12).

Defining the matrix

SK̄ := (1K ⊗ 〈ϕ̄K̄ |)PS (1K ⊗ |ϕ̄K̄〉) ≡ 〈ϕ̄K̄ |PS |ϕ̄K̄〉, (14)

we can rewrite Eq. (13) as

EGGM(S ) = 1 − max
K|K̄

λmax(SK̄ ), (15)

where λmax is the largest eigenvalue maximized over all
choices of ϕ̃K̄ of the matrix SK̄ for the cut K|K̄ . The problem
of the computation of the entanglement of a subspace has
thus been reduced to the problem of the computation of the
maximal eigenvalues of certain matrices and then picking the
largest among them.

Clearly, one could choose the subsystem K to perform the
projection on in (14). Which subsystem we choose in practice
is dictated by the simplicity of the resulting computations of
the largest eigenvalues.

In the case of the GM in which the optimization is over
fully product vectors one defines the counterpart of the matrix
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SK̄ as

SAi :=

⎛
⎜⎜⎜⎝

N⊗
k=1
i �=k

〈ϕk|

⎞
⎟⎟⎟⎠PS

⎛
⎜⎜⎜⎝

N⊗
k=1
i �=k

|ϕk〉

⎞
⎟⎟⎟⎠, (16)

where |ϕk〉 ∈ HAk . In analogy to the case above, all SAi ’s
must be considered and the maximum of the set of the largest
eigenvalues of all such matrices must be found.

If the vectors spanning S share some nice structural proper-
ties, the largest eigenvalues of S’s can be found analytically.
Otherwise, we need to resort to numerical calculations. We
consider both situations in what follows.

B. Seesaw iteration

An alternative approach to the optimization problems
above is a seesaw iteration, which is as follows. We start
with an initial vector (the subscripts enumerate the step of the
algorithm, the superscripts the number of the party): |ψ (1)

0 〉 ⊗
|ψ (2)

0 〉 ⊗ · · · ⊗ |ψ (N )
0 〉. This vector can be chosen at random.

We then choose some small number ε > 0 and construct the
following matrix:

S(1)
00...0 := 〈

ψ
(2)
0

∣∣ · · · 〈ψ (N )
0

∣∣PS
∣∣ψ (2)

0

〉 · · · ∣∣ψ (N )
0

〉
; (17)

the eigenvector corresponding to its largest eigenvalue is set
to be |ψ (1)

1 〉. Then the matrix

S(2)
10...0 := 〈

ψ
(1)
1

∣∣〈ψ (3)
0

∣∣ · · · 〈ψ (N )
0

∣∣PS
∣∣ψ (1)

1

〉∣∣ψ (3)
0

〉 · · · ∣∣ψ (N )
0

〉
(18)

is constructed; the eigenvector corresponding to its largest
eigenvalue is set as |ψ (2)

1 〉. The procedure is repeated for
all the parties to get the first approximation of the optimal
product vector |ψ (1)

1 〉 ⊗ |ψ (2)
1 〉 ⊗ · · · ⊗ |ψ (N )

1 〉, which ends the
first step of the algorithm. The output is accepted if〈

ψ
(1)
1

∣∣ · · · 〈ψ (N )
1

∣∣PS
∣∣ψ (1)

1

〉 · · · ∣∣ψ (N )
1

〉
−〈ψ (1)

0

∣∣ · · · 〈ψ (N )
0

∣∣PS
∣∣ψ (1)

0

〉 · · · ∣∣ψ (N )
0

〉
< ε. (19)

Otherwise, the next step is performed. The procedure is re-
peatedly used until the required precision ε is reached. The
algorithm needs to be run for a number of initial states to
increase the chance of avoiding a local maximum.

For subspaces with a nice structure one can expect to be
able to perform some number of steps analytically in the
iteration above. The advantage of the seesaw approach in
comparison to a direct optimization over parameters is its
simplicity and the speed of execution.

Notice that the method of projecting onto a subsystem
exposed in previous subsection can be seen as a one-shot
analytical seesaw method.

IV. ENTANGLEMENT OF A CLASS OF GENUINELY
ENTANGLED SUBSPACES OF C2 ⊗ (Cd )⊗(N−1)

In this section we apply our methods to a new class of
N-partite genuinely entangled subspaces with one qubit sub-
system and the rest d-level systems, i.e., a subspace of C2 ⊗
(Cd )⊗(N−1). For N = 2 the subspace reduces to a completely
entangled one and we begin with this basic case.

A. A completely entangled subspace of C2 ⊗ Cd

The method of projecting onto a subsystem put forward
above in Sec. III A is clearly applicable in this case with the
simplification being that we only deal with the GM due the
bipartite nature of the problem.

Let us introduce the relevant subspace.
Definition 1. The subspace Sθ

2×d ⊂ C2 ⊗ Cd is given by
the span of the following vectors:

|φi〉AB = a|0〉A|ψi〉B + b|1〉A|ψi+1〉B, (20)

i = 0, 1, . . . , d − 2, with a = cos(θ/2) and b = eiξ sin(θ/2),
θ ∈ (0, π ), ξ ∈ [0, 2π ), and 〈ψi|ψ j〉 = δi j .

Clearly, dim Sθ
2×d = d − 1, which is also the maximal

available dimension of a CES in this scenario [10,11].
The following result giving the entanglement of this sub-

space will serve as a basis for our further computations.
Theorem 1. Let d � 3. Sθ

2×d is a CES with the subspace
entanglement as measured by the GM given by

EGM
(
Sθ

2×d

) = 1

2

[
1 −

√
1 − sin2 θ sin2

(π

d

)]
. (21)

In particular, for a = b = 1/
√

2, i.e., θ = π/2, the entangle-
ment is

EGM
(
Sπ/2

2×d

) = 1

2

(
1 − cos

π

d

)
= sin2 π

2d
. (22)

Proof. We omit the detailed proof here, which has been moved
to Appendix A, and only present the main ingredient. The
relevant matrix (16) has the tridiagonal form:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α g 0 · · · 0 0

g∗ α + β g · · · 0 0

0 g∗ α + β · · · 0 0
...

...
. . .

. . .
...

...

0 0
. . . α + β g 0

0 0 · · · g∗ α + β g

0 0 · · · 0 g∗ β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (23)

with α = |ax0|2, β = |bx1|2, g = ax1(bx0)∗. One finds its
eigenvalues to be [40]

λk (x0) = α + β + 2|g| cos
kπ

d

= |ax0|2 + |bx1|2 + 2|x0x1ab| cos
kπ

d
(24)

for k = 1, 2, . . . , d − 1 and λd = 0. The task is to find

λmax := max
x0,k

λk (x0) (25)

and the optimization results in (21). �
Not surprisingly, the subspace entanglement is a decreas-

ing function of d with the maximum at a = 1/
√

2 (θ = π/2)
for any d . When d = 2 (not covered by the theorem) we only
have one vector, whose entanglement is immediately found to
be min{sin2(θ/2), cos2(θ/2)}. This is also the GM of any of
the spanning vectors in (20). In Fig. 1 we plot EGM(Sθ

2×d ) as
a function of θ for several values of the dimension d .
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FIG. 1. EGM(Sθ
2×d ) as a function of θ for d = 3 (second from the

top curve), 4,5,6,7 (lowermost curve). For reference we also put the
entanglement of the vector in the case of d = 2, or equivalently, any
vector in (20) (uppermost curve).

B. N-party GES Sθ
2×dN−1 : The case of the GGM

Let us now move to the multiparty case. In this section we
introduce a multipartite subspace, which is a generalization of
the CES from Definition 1 to N � 3 parties, and compute its
GGM.

Definition 2. The subspace Sθ
2×dN−1 ⊂ C2 ⊗ (Cd )⊗(N−1) is

given by the span of the following vectors:

|�i2...iN 〉A = a|0〉A1

(
N⊗

m=2

∣∣ψ (m)
im

〉
Am

)

+ b|1〉A1

(
N⊗

m=2

∣∣ψ (m)
im+1

〉
Am

)
, (26)

im = 0, 1, . . . , d − 2, with a = cos(θ/2), b = eiξ sin(θ/2),
θ ∈ (0, π ), ξ ∈ [0, 2π ), and 〈ψim |ψ jm〉 = δim jm for each m.

One easily sees that dim Sθ
2×dN−1 = (d − 1)N−1. Note that

the maximal dimension of a GES in this setup is dN−1 − 1 [8]
and it would thus be interesting to see how these subspaces
could be completed into maximal GESs (but not with random
vectors, which can always be done).

Using the results of the previous subsection, we now prove
the main result of this part of the paper stating that the
subspace entanglement of Sθ

2×dN−1 measured by the GGM is
the same as that of the CES Sθ

2×d considered above, and the
subspace is equally entangled across any cut with respect
to this measure. Generally speaking, this equality is due to
the fact that the relevant matrices whose eigenvalues need
to be maximized bear the same structures as a result of the
generalization.

Clearly, the choice of ψ’s does not matter for the entangle-
ment properties of the subspace as different choices for them
are related through local unitary operations, which do not
change entanglement measures. For the clarity of exposition,
without loss of generality, we then set |ψ (m)

im
〉Am = |im〉Am in the

proof. The basis vectors (26) are in this case

|�i2...iN 〉A = a|0〉A1 |i2, . . . , iN 〉A2...AN

+ b|1〉A1 |i2 + 1, . . . , iN + 1〉A2...AN . (27)

We will then use the following denotations allowing us to keep
the formulas cleaner:

Ak,l := Ak, Ak+1, . . . , Al , (28)

ik,l := ik, ik+1, . . . , il , (29)

ik,l � 1 := ik + 1, ik+1 + 1, . . . , il + 1, (30)

∑
ik,l

:=
d−2∑

ik ,...,il =0

, (31)

for any k < l . In this notation the vectors (27) can be com-
pactly written as

|�i2,N 〉A = a|0〉A1 |i2,N 〉A2,N + b|1〉A1 |i2,N � 1〉A2,N . (32)

Before we state the main result, let us give a simple lemma
which will be crucial for its proof.

Lemma 1. Given are operators Rk with orthogonal supports.
Let R := ∑

k Rk . The largest eigenvalue of R is given by
λmax(R) = maxk λmax(Rk ).

Proof. This is obvious. �
Theorem 2. Sθ

2×dN−1 is a GES with the subspace entangle-
ment as measured by the GGM given by

EGGM
(
Sθ

2×dN−1

) = 1

2

[
1 −

√
1 − sin2 θ sin2

(π

d

)]
. (33)

Moreover, the entanglement of Sθ
2×dN−1 is the same across any

bipartite cut.
We will use the observation (11) in the proof, which will

be split into two parts regarding different types of cuts.
(i) A1|A2,N ;
(ii) k|N − k parties, k > 1.
Proof of Theorem 2. Case (i): Entanglement across A1|A2,N .

We construct the matrix (14), by choosing K̄ = A1, i.e., pro-
jecting onto the A1 subsystem:

SA1 (x0) =
∑
i2,N

|ϕi2,N 〉〈ϕi2,N |A2,N , (34)

where we have defined

|ϕi2,N 〉A2,N ≡ 〈x|A1 |�i2,N 〉A

= ax∗
0 |i2,N 〉A2,N + bx∗

1 |i2,N � 1〉A2,N (35)

with |x〉A1 = x0|0〉A1 + x1|1〉A1 , |x0|2 + |x1|2 = 1.
We now distinguish two cases:
(a) x0 = 0 or 1;
(b) x0 �= 0, 1.
In case (a), the vectors (35) are orthogonal and the nonzero

eigenvalues of SA1 are all equal to |a|2 = cos2(θ/2) (for x0 =
1) or |b|2 = sin2(θ/2) (for x0 = 0).

In case (b), these vectors no longer form an orthogonal set.
Our strategy now will be to write the matrix SA1 (x0) as a sum
of operators, call them Rk’s, with orthogonal supports and then
use Lemma 1 to find its largest eigenvalue.

With this aim, consider a grouping of the vectors according
to the index i2. For each value i2 = ĩ2, we call such a group
F̃i2 . Vectors within each group are orthogonal, while the over-
lapping vectors necessarily come from neighboring groups,
which is easily seen directly from Eq. (35). Moreover, for a
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given vector there may exist only one vector with a nonzero
overlap with it and some vectors are orthogonal to all the
remaining ones; e.g., this happens for the vector |φ00...0 d−2〉.
These observations will be exploited in the construction of
Rk’s, which goes as follows. To construct R0, (i) choose the
first vector from F0, i.e., |ϕ0...00〉; (ii) find the vector from
F1 which has a nonzero overlap with |ϕ0...00〉; this will be
|ϕ1...11〉; (iii) find the vector from F2 having nonzero overlap
with |ϕ1...11〉; this vector is |ϕ2...22〉; (iv) repeat the procedure
until the group Fd−2 is reached and the vector |ϕd−2,...,d−2,d−2〉
is picked from this group. Build

R0 =
d−2∑
p=0

|ϕp...pp〉〈ϕp...pp|. (36)

To construct R1, (i) take the second vector of F0, i.e., |ϕ0...01〉;
(ii) find the vector from F1 which has a nonzero overlap with
|ϕ0...01〉; this will be |ϕ1...12〉; (iii) repeat the procedure until
the group is reached with no vector with a nonzero overlap
with the one from the previous group. It is easy to see that
in this case the last vector to be drawn is |ϕd−3,...,d−3,d−2〉
from Fd−3; i.e., the procedure terminates faster as there is no
vector from Fd−2 which is suitable (this vector would have
been |ϕd−2,...,d−2,d−1〉). Build R1 similarly to (36). We repeat
the whole procedure for all so far unused vectors (from F0, but
also from the following groups) to construct the remaining
Rk’s. As noted above, some Rk’s will simply be equal to
|ϕi2...iN 〉〈ϕi2...iN | for some values of indices im’s.

This procedure decomposes the matrix SA1 (x0) as the sum
SA1 (x0) = ∑

k Rk , where all Rk’s have mutually orthogonal
supports as desired.

Importantly, the eigenvalues of the constituent operators
can be now easily found and the use of Lemma 1 is straight-
forward. This is because either (i) they are |ϕ〉〈ϕ| or (ii) have
the same structure of the tridiagonal matrix from (23) but
the corresponding matrices are of different sizes (and ranks);
this is easily seen if we look at the form of the vectors (35).
Among the latter operators, R0 has the largest rank (equal to
d − 1) due to the fact that it has been constructed from the
vectors from all the groups Fi2 and its matrix is d × d . It is
the unique such operator. Since the largest eigenvalue of (23)
is increasing with d , we need to maximize over x0 the largest
eigenvalue of R0. This has already been done in the proof of
Theorem 1. In turn, we have

λmax(SA1 ) = 1

2

[
1 +

√
1 − sin2 θ sin2

(π

d

)]
. (37)

Since this is larger than both cos2(θ/2) and sin2(θ/2) corre-
sponding to the cases of x0 = 0 or 1, respectively, we have that
in the cut A1|A2,N the GM of the subspace equals

EA1|A2,N

GM

(
Sθ

2×dN−1

) = 1

2

[
1 −

√
1 − sin2 θ sin2

(π

d

)]
, (38)

which is the same as EGM(Sθ
2×d ). This ends the part of the

proof for the current bipartition. �
Before we move to the case of other cuts, we notice that

the above analysis lets us prove indirectly an interesting result
which will be essential in the remainder of the proof of
Theorem 2.

Lemma 2. Let d � 3 and M � 1. Consider the matrix

X =
∑
i1,M

( |a|2|xi1,M |2 ab∗x∗
i1,M

xi1,M�1

a∗bxi1,M x∗
i1,M�1 |b|2|xi1,M�1|2

)
, (39)

where a= cos(θ/2), b=eiξ sin(θ/2), θ ∈ (0, π ), ξ ∈ [0, 2π ),
and

∑d−1
i1,...,iM=0 |xi1,M |2 = 1. The largest eigenvalue of X maxi-

mized over the coefficients xi1,M is given by the formula (37),
regardless of the value of M, i.e., of the number of the indices
ip.

Proof of Lemma 2. To compute the entanglement of Sθ
2×dN−1

across the bipartition A1|A2,N , instead of the matrix SA1 (x0)
consider the complementary one SA2,N (x), obtained by pro-
jecting onto

|x〉A2,N =
d−1∑

j2,..., jN =0

x j2... jN | j2 . . . jN 〉A2,N ; (40)

x denotes the set of the coefficients of |x〉A2,N . It is easy to
realize that it is a 2 × 2 matrix of the form

SA2,N (x) =
∑
i2,N

( |a|2|xi2,N |2 ab∗x∗
i2,N

xi2,N�1

a∗bxi2,N x∗
i2,N�1 |b|2|xi2,N�1|2

)
. (41)

Since the results obtained for the value of the GM with both
S’s must be the same, we conclude that the largest eigenvalue
of SA2,N maximized over x is given by (37), regardless of the
number of parties N . This proves the claim as SA2,N (x) is of
the same structure as X from (39) of Lemma 2. �

With this preparation in hand let us then go back to the
proof of Theorem 2 and consider the cuts with k vs N − k
parties for k > 1.

Proof of Theorem 2 (continued). Case (ii): Cuts k|N −
k parties, k > 1. Clearly, for any cut k|N − k with k > 1
we may consider, without loss of generality, the bipartition
A1,k|Ak+1,N . We construct the matrix from (14) by projecting
onto the subsystem Ak+1,N :

SAk+1,N (x) =
∑
i2,N

∣∣ξ ik+1,N

i2,k

〉〈
ξ

ik+1,N

i2,k

∣∣
A1,k

, (42)

where∣∣ξ ik+1,N

i2,k

〉
A1,k

≡ 〈x|Ak+1,N |�i2,N 〉A

= ax∗
ik+1,N

|0〉A1 |i2,k〉A2,k +bx∗
ik+1,N�1|1〉A1 |i2,k � 1〉A2,k

(43)

with the normalized vector on the Ak+1,N subsystem

|x〉Ak+1,N =
d−1∑

jk+1,..., jN =0

xjk+1,N |jk+1,N 〉Ak+1,N , (44)

and x denoting the set of the coefficients xjk+1,N .
Rewrite now (42) as

SAk+1,N (x) =
∑
i2,k

Ri2,k (x), (45)

where

Ri2,k (x) =
∑
ik+1,N

∣∣ξ ik+1,N

i2,k

〉〈
ξ

ik+1,N

i2,k

∣∣
A1,k

. (46)
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Since 〈ξ ik+1,N

j2,k
|ξ ik+1,N

i2,k
〉 = 0 whenever j2,k �= i2,k , the operators

R have orthogonal supports, which, by Lemma 1, means
that

λmax(SAk+1,N ) = max
x,i2,k

λmax(Ri2,k (x)). (47)

This maximization can be easily done if we realize that all R’s
have in fact the same structure of the 2 × 2 matrix considered
in Lemma 2. Since the largest eigenvalue does not depend on
the number of indices we conclude that λmax(SAk+1,,N ) is again
given by (37), and in turn, by (15) applied to the particular
bipartition, we obtain

EA1,k |Ak+1,N

GM

(
Sθ

2×dN−1

) = 1

2

[
1 −

√
1 − sin2 θ sin2

(π

d

)]
.

(48)

In conjunction with (38) this shows that all cuts are equally
entangled and we arrive at the claimed result (33). �

In Appendix B we show that in the case of N = 3 the
subspace Sπ/2

2×d2 corresponds to the one given in Theorem 1
of Ref. [8]. In fact, this correspondence was our primary
motivation for considering such subspaces.

C. N-party GES Sθ

2×dN−1 : The case of the GM

We now move to the computation of the GM of Sθ
2×dN−1 .

Again, for simplicity we set |ψ (m)
im

〉Am = |im〉Am .
Take the fully product vectors in the problem (10) to be

|ψprod〉 = |x(1)〉A1 ⊗ · · · ⊗ |x(N )〉AN (49)

with the normalized local vectors

|x(1)〉A1 = x(1)
0 |0〉A1 + x(1)

1 |1〉A1 ,

|x(m)〉Am =
d−1∑
n=0

x(m)
n |n〉Am , m = 2, 3, . . . , N. (50)

Inserting this into (10) with PS taken to be the projection onto
Sθ

2×dN−1 we obtain

EGM
(
Sθ

2×dN−1

) = 1 − max
x

FN (x), (51)

where x denotes the set of all coefficients of ψprod, and

FN (x) =
d−2∑

i2,...,iN =0

∣∣ax(1)
0 x(2)

i2
· · · x(N )

iN
+ bx(1)

1 x(2)
i2+1 · · · x(N )

iN +1

∣∣2.
(52)

Maximization of this quantity can be approached with the
seesaw algorithm (Sec. III B). Unfortunately, it is not possible
to obtain an exact formula through this approach; neverthe-
less, an easily computable bound can be given. The details
are as follows. For simplicity we consider the case a = b
but the essential arguments remain unchanged outside this
specialized case.

At the beginning, we set all the coefficient on parties
A2, . . . , AN equal, i.e., x(k)

ik
= 1/

√
d , which results in the

following quantity to be maximized:

F1(x1) = c1(d, N )
∣∣x(1)

0 + x(1)
1

∣∣2; (53)

c1(d, N ) = 1
2 [(d − 1)/d]N−1, x1 = (x(1)

0 , x(1)
1 ). Clearly, the

factor in front is not important and the optimal values (up to
an irrelevant phase) are x(1)

0 = x(1)
1 = 1/

√
2.

We then set the obtained values on A1, keeping the coef-
ficients equal on A3 . . . AN , and the resulting quantity to be
maximized in the second step of the first iteration is given
by

F2(x2) = c2(d, N )
d−2∑
i2=0

∣∣x(2)
i2

+ x(2)
i2+1

∣∣2
= c2(d, N )〈x(2)|F2|x(2)〉, (54)

where x2=(x(2)
0 , x(2)

1 , . . . , x(2)
d−1), c2(d, N )= 1

4 [(d − 1)/d]N−2,
and F2 is a tridiagonal matrix given by (23) with α = 1,
β = 1, g = 1. By the results of [40] we then conclude that the
coefficients of |x(2)〉A2 , which are optimal at this step of the
algorithm, are given by (again, disregarding possible phases)

x̃(2)
i2

=
√

2

d
sin

(2i2 + 1)π

2d
, i2 = 0, 1, . . . , d − 1. (55)

In the next step, we substitute the found values for parties A1

and A2 leaving the parties A3, . . . , AN untouched and obtain
the following quantity to be maximized:

F3(x3) = c3(d, N )
d−2∑

i2,i3=0

∣∣x̃(2)
i2

x(3)
i3

+ x̃(2)
i2+1x(3)

i3+1

∣∣2

= c3(d, N )
d−2∑
i3=0

{
w1

∣∣x(3)
i3

∣∣2 + w2

∣∣x(3)
i3+1

∣∣2
+w3

[(
x(3)

i3

)∗
x(3)

i3+1 + x(3)
i3

(
x(3)

i3+1

)∗]}
= c3(d, N )〈x(3)|F3|x(3)〉, (56)

where c3(d, N ) = 1
4 [(d − 1)/d]N−3, x3 = (x(3)

0 , x(3)
1 , . . . ,

x(3)
d−1), and

w1 =
d−2∑
i2=0

(
x̃(2)

i2

)2 = 1 − 2

d
sin2 π

2d
= 1

d

(
d − 1 + cos

π

d

)
,

w2 =
d−2∑
i2=0

(
x̃(2)

i2+1

)2 = 1 − 2

d
sin2 π

2d
= 1

d

(
d − 1 + cos

π

d

)
,

w3 =
d−2∑
i2=0

x̃(2)
i2

x̃(2)
i2+1 = 1

d

[
(d − 1) cos

(π

d

)
+ 1

]
, (57)

and F3 is again a matrix of the form (23), in this case with
α = w1, β = w2, g = w3.

062318-7



MACIEJ DEMIANOWICZ AND REMIGIUSZ AUGUSIAK PHYSICAL REVIEW A 100, 062318 (2019)

TABLE I. EGM(Sπ/2
2×dN−1 ) for several values of d and N obtained

through a numerical optimization (for N = 3 and d = 3, 4 the results
are analytic). In the parentheses, we give the analytical upper bounds
(58). A long dash indicates the problem too large for a desktop.

N →
3 4 5 6

3 3/7 (31/72) 0.490 (0.563) 0.498 (0.660) 0.499 (0.733)
d ↓ 4 0.265 (0.266) 0.360 (0.364) 0.432 (0.446) 0.475 (0.514)

5 0.178 (0.179) 0.250 (0.251) 0.311 (0.315) —(0.370)

This time, however, we are not able to compute the eigen-
values of the corresponding matrix and in turn find the exact
value of the GM.

The idea thus is to find an easily computable bound instead.
With this aim take all x’s having coordinates as in (55). This
clearly results in an upper bound on the GM and it is easy to
see that it is of the following form:

1

4

(
wN−1

1 + wN−1
2 + 2wN−1

3

)
= 1

2dN−1

{(
d − 1 + cos

π

d

)N−1

+
[
(d − 1) cos

(π

d

)
+ 1

]N−1
}
. (58)

In Table I, we compare the obtained bound with the results
of a numerical optimization of (51) in the case of a = b for
some values of d and N . We see that there is a clear trend in
the values: for a given N the GM drops with the dimension
d; on the other hand, for a given d it grows with N (probably
tending to 0.5). While the bound (58) is very tight for N =
3, we observe that it gets, as expected, much weaker when
the number of parties increases. However, for a given N it
gets tighter with the increasing dimension d . We conclude by
noting that for d = 3, 4 and N = 3 it is possible to obtain an
analytical value of the GM; we omit the details here, though,
as this is just a simple algebra.

V. LOWER BOUNDS ON THE ENTANGLEMENT
OF A SUBSPACE IN TERMS OF SDP

Analytical computation of the subspace entanglement will
usually be a very difficult problem (cf. [41]). Our result and
the one of Ref. [38] seem to be notable exceptions. In partic-
ular, this will not be accessible for large systems or subspaces
with complicated basis vectors. It is thus desirable to have
at one’s disposal easily computable bounds. We consider this
problem in the present section.

The form of the minimization problem (10) directly allows
us to bound the entanglement of a subspace from below using
a relaxation involving instances of SDPs. Namely, the GM can
be bounded as follows:

EGM(S ) = min
|ψprod〉

〈ψprod|P⊥
S |ψprod〉

= min
|ψprod〉

tr[P⊥
S |ψprod〉〈ψprod|]

� min
ρ � 0

∀K ρTK � 0

tr[P⊥
S ρ], (59)

while for the GGM one has

EGGM(S ) = min
|ψbiprod〉

〈ψbiprod|P⊥
S |ψbiprod〉

= min
|ψbiprod〉

tr[P⊥
S |ψbiprod〉〈ψbiprod|]

� min
K|K̄

⎧⎪⎨
⎪⎩ min

ρ � 0
ρTK � 0

tr[P⊥
S ρ]

⎫⎪⎬
⎪⎭. (60)

In the above, ρTK denotes the partial transpose of ρ with re-
spect to the bipartition K|K̄ . The idea behind this relaxation is
that product states necessarily have a positive partial transpose
(PPT) across the cuts with respect to which they are product,
but these are not the only states having the PPT property, as
there exist PPT entangled states, and thus we enlarge the class
of states over which the optimization should be performed.
This clearly results in lower bounds.

We should mention that the idea of using the set of PPT
states in such optimization problems is not new and it has been
very recently applied in [42] to find the GM of the Werner
and the isotropic states (see also [43]). We discuss the use of
such approach for computing bounds on the (G)GM of a class
of multipartite states in further parts. As another remark, we
also note that in this kind of problem, where minimization
over (bi)product vectors is required, it is obviously possible
to introduce intermediate relaxations in Eqs. (59) and (60)
requiring ρ’s, over which the minima are taken, to be k-
symmetric PPT extendible [44,45] (see also [46]). Finally, let
us note that in the relaxation one could use optimization over
states, which remain positive under a different positive map,
not necessarily the transposition; this could for example be
the Breuer-Hall map [47,48]. To make a better approximation
of the set of (bi)separable states, this could also be performed
over states which stay positive under a set of positive maps
[49]. All these relaxations are SDPs.

Note that if the bound for the GGM was zero this would
signify that there exists a PPT GME state supported on the
GES under scrutiny. This, however, will not be the case for
the examples we consider.

The bounds, from now on referred to as the SDP bounds
and denoted ESDP

(G)GM, have been computed in a few relevant
cases and compared with the results obtained via direct min-
imization or the ones found in the literature to check their
performance. We discuss the results below.

A. Case 1: Subspace Sπ/2
2×dN−1 (Definition 2)

Table II presents a comparison of the SDP bounds and
the results obtained numerically (some of them analytically)
for Sπ/2

2×dN−1 introduced in Definition 2. There is a curious
case of d = 3, where we observe discrepancy between the
analytic result and the SDP bound. In Appendix C, we give
an exemplary class of states beating the analytical value for
this case. This class may serve as a starting point of a future
analysis toward the resolution of the problem of why a gap
is observed here and, more generally, in some other setups as
well. In the remaining cases the difference between the results
is 10−8 to 10−12 depending on the scenario.
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TABLE II. Comparison of the SDP bounds and the values of the
(G)GM for Sπ/2

2×d2 from Definition 2. The values of EGM for d = 3, 4
have been obtained analytically, the remaining ones numerically.
The values of the GGM are given by the formula EGGM(Sπ/2

2×d2 ) =
sin2[π/(2d )] (Theorem 2). Except for a single case d = 3 in the GM
case the results match with a precision ranging from 10−8 to 10−12.

d EGM(Sπ/2
2×d2 ) ESDP

GM (Sπ/2
2×d2 ) EGGM(Sπ/2

2×d2 ) ESDP
GGM(Sπ/2

2×d2 )

3 0.42857 0.41416 0.25000 0.25000
4 0.26543 0.26543 0.14645 0.14645
5 0.17837 0.17837 0.09549 0.09549
6 0.12742 0.12742 0.06699 0.06699
7 0.09530 0.09530 0.04952 0.04952
8 0.07384 0.07384 0.03806 0.03806

B. Case 2: Subspace QN,d
1 (Theorem 2 of Ref. [8])

As the second example, we consider the subspace intro-
duced in Theorem 2 of Ref. [8]. Originally, it has only been
defined as a subspace of (Cd )⊗N orthogonal to a continuous
set of product vectors (a nonorthogonal unextendible product
basis) with no explicit basis given. In Appendix D, we fill
this gap and find that this GES—in the present paper called
QN,d

1 —is spanned by the following (nonorthogonal) unnor-
malized vectors:

|i〉A1 |pm−i + k〉A2,k − |i + 1〉A1 |pm−i−1 + k〉A2,k ,

m = 1, 2, . . . , d − 2, i = 0, 1, . . . , m − 1,

|i〉A1 |pd−i−1〉A2,k − |i + 1〉A1 |pd−i−2〉A2,k ,

i = 0, 1, . . . , d − 2, (61)

|i〉A1 |pm−i + k + 1〉A2,k − |i + 1〉A1 |pm−i−1 + k + 1〉A2,k ,

m = d − 1, d, . . ., 2(d − 2), i = m−(d − 2), . . ., d − 2,

where pi = ip1, i = 0, 1, . . . , d − 1, with p1 = ∑N
m=2 dN−m.

The dimension of the GES is dim QN,d
1 = dN − (2dN−1 − 1).

We have tested the SDP bounds on Q3,d
1 for d = 3, 4, 5

and the results are given in Table III. We observe that in some
cases the SDP bounds most probably provide exact values;
however, in the case of the GGM for d = 3 the gap between
the results is quite large.

C. Case 3: Subspace QN,d
2 (Theorem 3 of Ref. [8])

Our third test case is the GES—here called QN,d
2 —from

Theorem 3 of Ref. [8]. A basis for this GES has been given in
[8] in the case of qubits. We find a basis in the general case in

TABLE III. The SDP bounds on GM and GGM of Q3,d
1 . The

parentheses give the results of a numerical minimization of EGM and
EGGM correspondingly. No parentheses means that the values we have
found are the same.

d N dim Q3,d
1 ESDP

GM (Q3,d
1 ) ESDP

GGM(Q3,d
1 )

3 3 10 0.19022 (0.19036) 0.025078 (0.030844)
4 3 33 0.03696 0.000976 (0.001144)
5 3 76 0.00629 0.000016 (0.000024)

TABLE IV. The GM and GGM of the qubit subspaces QN,2
2 . The

SDP bounds and numerical results match with very high precision.

N dim QN,2
2 EGM(QN,2

2 ) EGGM(QN,2
2 )

3 2 0.2640 0.07810
4 4 0.1794 0.01637
5 8 0.1213 0.00436
6 16 0.0821 0.00099

Appendix E to be

|0〉A1

⎛
⎝ N∑

f =2

|kdN− f + m〉A2,k

⎞
⎠− |k〉A1 |m〉A2,k ,

k = 1, . . . , d − 1, m = 0, 1, . . . , dN−1 − dN−2 − 1.

(62)

The dimension is dim QN,d
2 = dN−2(d − 1)2.

1. Qubits: QN,2
2

In the qubit case (d = 2) the subspaces S2×2N−1 and QN,2
1

are equivalent and consist of a single state, which is locally
unitarily equivalent to the GHZ state. In contrast, QN,2

2 is
nontrivial and its dimension is 2N−2.

We present the results in Table IV. In the case of EGM an
agreement up to 12 significant digits between the SDP bounds
and the direct minimization has been observed. For EGGM, an
agreement to 6–8 significant digits, depending on the case,
is observed. We thus feel inclined to believe that the SDP
bounds are exact values of the entanglement of the GESs in
this case. Unfortunately, we have not been able to find an
analytical proof of this fact, but it seems plausible that such
a proof should rely on particular properties of systems with
qubit subsystems.

We observe that the entanglement in both cases drops
with the dimension of a subspace. This clearly happens more
rapidly for EGGM than for EGM.

2. Tripartite qudit case: Q3,d
2

The results for higher dimensions in the tripartite case
(N = 3) are collected in Table V.

We have found agreement for EGM to 8–12 significant
digits indicating that the SDP bounds represent the true values
in these cases. On the other hand, the results for EGGM suggest
that this is not true in this case.

TABLE V. The SDP bounds on Q3,d
2 in the cases of qutrits (d =

3), ququarts (d = 4), and ququints (d = 5). In the parentheses we
give the values obtained with a direct minimization over biproduct
vectors.

d N dim Q3,d
2 ESDP

GM (Q3,d
2 ) ESDP

GGM(Q3,d
2 )

3 3 12 0.05856 4.8023 × 10−3 (4.8184 × 10−3)
4 3 36 0.00753 1.2579 × 10−4 (1.2649 × 10−4)
5 3 80 0.00124 2.2147 × 10−6 (2.2727 × 10−6)
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D. Other subspaces from the literature

We have also checked how the SDP bounds behave for
some other subspaces not considered either here or in [8].

First, we have verified that they reproduce the correct
value of the entanglement of any superpositions of either
two of the following states: |W 〉, |W̃ 〉 = σ⊗3

x |W 〉, and |GHZ〉
(cf. [30,39]). In particular, this means that they recover the
results concerning the measure for each of the states above and
give the correct values for two-dimensional GESs spanned by
either two states from above.

Second, we have considered the antisymmetric subspace.
The antisymmetric subspace, Ad,N , of an N-partite Hilbert

space (Cd )⊗N , d � N , is the (d
N )-dimensional subspace

spanned by the states acquiring the minus sign when any odd
permutation of the parties is done. It is easy to realize that
Ad,N is indeed a GES. By the result of [50] the geometric
measure of the antisymmetric subspace equals

EGM(Ad,N ) = 1 − 1

N!
; (63)

that is, it is independent of the local dimension d . Numeri-
cally, we found that in the case of the GGM this property also
holds, and the value is

EGGM(Ad,N ) = 1 − 1

N
. (64)

Unfortunately, we have only managed to consider the SDP
bounds for small systems but found they agree in these cases
with (63) and (64).

VI. ENTANGLEMENT PROPERTIES OF STATES
CONSTRUCTED FROM A GES

We now approach the problem of quantifying entanglement
of subspaces from a different perspective. Namely, we con-
sider the entanglement of states

�G (p) = (1 − p)
PG
dG

+ p
1D

D
, D = �idi, (65)

where G is a GES, PG is the projection onto G, and dG =
rank PG ; we will call them noisy GES states.

We will consider two extreme cases to characterize the
entanglement of a subspace G:

(i) the (G)GM of a noiseless state, E(G)GM(�G (0))
(cf. [50,51]);

(ii) the white-noise tolerances p∗
gme and p∗

ent, that is, the
threshold probabilities below which the state (65) is certainly
GME or entangled, respectively.

The parameters above, although not strictly entanglement
measures, seem natural alternative quantifiers of entanglement
of G apart from E (G) itself. Moreover, E (�G (0)), by (9),
provides an upper bound on the entanglement of G, while
the critical probability p∗ is of particular importance from an
experimental point of view.

We have considered the problems above using several
different methods. In Secs. VI A–VI D we briefly describe
them and in Sec. VI E we gather and analyze the obtained
results. In our study we concentrate on the tripartite (N = 3)
case, which is dictated by the computational power available

to us. Our test GESs are those considered extensively so far in
the paper: S , Q1, and Q2.

A. Connection with entanglement witnesses

Here we establish a connection between the entanglement
of a subspace and entanglement witnesses. This will allow,
in particular, for a simple analytical estimation of the white-
noise tolerance of ρG (0) = PG/dG .

In [8] we noted that the genuine entanglement of ρG (0)
from (65) can be witnessed by the following entanglement
witness [52]:

WGES = 1

(1 − εgme)D − dG
[(1 − εgme)1D − PG] (66)

with

εgme ≡ min
|ψbiprod〉

〈ψbiprod|P⊥
G |ψbiprod〉. (67)

Now, comparing (67) with (10), we immediately infer that

εgme = EGGM(G), (68)

providing a direct link between these two notions. This can be
viewed as a generalization of the observation made already in
Ref. [30] for pure states.

In fact, the witness WGES detects all states supported on G,
not only of ρG (0). However, it comes with a price: it gives a
constant value on all such states, and as such cannot be used to
compare their entanglement. This behavior can be attributed
to the nonoptimality of the witnesses.

Using the witnesses we can bound the white-noise toler-
ance p∗ of any states with the support in a GES. With this aim
consider more general states than in (65):

γG (p) = (1 − p)σG + p
1D

D
, supp(σG ) ⊆ G. (69)

Evaluating their mean value with WGES we get

trWGESγG (p) = 1

(1 − εgme)D − dG

(
p(D − dG )

D
− εgme

)
,

(70)

from which we obtain that γG (p), with �G (p) as a special case,
is certainly GME at least in the region

p < p∗witn
gme ≡ Dεgme

D − dG
. (71)

For example, in the case of Sπ/2
2×d2 (Sec. IV B) we obtain an

analytical noise tolerance threshold:

p∗witn
gme

(
Sπ/2

2×d2

) = 2d2

d2 + 2d − 1
sin2 π

2d
. (72)

It can be seen that the value of the white-noise tolerance
predicted by this approach drops with an increasing local
dimension d; as we will see later this happens faster than for
the actual value of the white-noise tolerance.

The same reasoning can be applied to find an estimate on
the value of p∗witn

ent , below which a state is certainly entangled.
To achieve this, instead of taking biproduct vectors in (67) we
take fully product ones to define εent = EGM(G) and use this
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quantity to construct the witness just as in (66). The white-
noise tolerance is simply given by

p∗witn
ent ≡ Dεent

D − dG
. (73)

B. PPT mixtures

The next method of detecting and quantifying genuine
entanglement of states is the PPT mixtures technique from
[53]. The idea is to check with an SDP whether a given state
is a convex combination of PPT states. If it is not, the state
is necessarily GME. We briefly recall for completeness the
method below.

Given a multipartite state ρ one solves the following opti-
mization problem:

min tr(W ρ), (74)

such that W = PK + QTK
K , 0 � PK � 1, 0 � QK � 1,∀K|K̄ ,

(75)

where the condition for W holds for all bipartitions K|K̄ .
The found witness W is called fully decomposable and the
function

Eppt (ρ) = −tr(W ρ) (76)

is an entanglement monotone. Its nonzero value signifies
genuine entanglement of the state.

A version of this problem, instead of the conditions (75),
assumes that for all K it only holds that W TK � 0, i.e., PK = 0.
We then talk about fully PPT witnesses and they clearly are
weaker. The monotone in this case will be denoted E fully

ppt .

C. Bounds on the (G)GM of states using PPT relaxations

SDP is useful in yet another way. Namely, exploiting the
relation between the (G)GM of a state and the fidelity one can
put forward simple SDP bounds on the measure and in turn
have numerically computable estimates on the entanglement
of the states under scrutiny.

The geometric measures have been shown to be directly
related to the fidelity F (ρ, σ ) = tr

√√
ρσ

√
ρ through the

following formulas [54,55]:

EGM(ρ) = 1 − max
σ fully sep

F 2(ρ, σ ), (77)

EGGM(ρ) = 1 − max
σ biseparable

F 2(ρ, σ ), (78)

where the maximization is over fully separable and bisepara-
ble states for the GM and GGM, respectively.

Such representations allow us again to use certain relax-
ations. Precisely, we approximate the set of separable states
with the set of PPT states (across relevant cuts) and the set of
biseparable states with the set of states which are mixtures of
PPT states (as already discussed different forms of relaxations
could be used). We then obtain the bounds (cf. [42])

EGM(ρ) � 1 − max
σ � 0

∀K σ TK � 0

F 2(ρ, σ ) =: EF
GM(ρ), (79)

EGGM(ρ) � 1 − max
σ PPT mixture

F 2(ρ, σ ) =: EF
GGM(ρ). (80)

We will later refer to these bounds as the fidelity relaxation
bounds. The value of the relaxations lies again in the fact that
the fidelity can be efficiently computed with an instance of
an SDP. Precisely, the fidelity F (ρ, σ ) is computed as follows
[56]:

max 1
2 trX + 1

2 trX †, (81)

such that

(
ρ X

X † σ

)
� 0. (82)

D. Algorithmic approximation of the (G)GM

Finally, we have applied the algorithm found in [57] to
approximate numerically the (G)GM of the relevant states and
find their white-noise tolerances (we note that originally the
algorithm is designed for the GM but a simple modification
allows one to use it to approximate the GGM). In principle,
since the algorithm only requires solving eigenproblems and
finding the singular value decomposition of certain matrices
it is easy to implement. However, it requires decompositions
of density matrices into ensembles with (d1d2 · · · dN )2 terms,
which quickly becomes intractable by a desktop computer.
To get around this problem one needs to use smaller, i.e.,
not optimal in this respect, ensembles. Our experience gained
for smaller problems shows that if the number of terms in
an ensemble is not unreasonably small and the precision
parameter set in the algorithm is very small the results appear
to be accurate. Nevertheless, one needs to keep in mind the
limitations of the approach when comparing the numbers and
treat them with care. Interestingly, this was not an issue for
the computation of the (G)GM of the normalized identity
on Sπ/2

2×d2 , as the algorithm quickly converges even for small
ensembles. This could be attributed to the nice structure of
the basis vectors for this subspace which translates into less
demanding computations.

E. Results obtained with methods from Secs. VI A–VI D

The results obtained with the aid of the methods described
above are collected in Tables VI and VII.

Before we move to a detailed discussion of the results,
we must emphasize that our aim here is not to compare the
subspaces of different types; this would make little sense since
they are of different dimensionalities for the same parameters.
Our goal is rather to compare different methods for a given
subspace type and see how the properties change with an
increasing local dimension within a subspace class.

1. Entanglement of PG/dG

Let us start with the entanglement of the noiseless GES
states �G (0) = PG/dG . The results are presented in Table VI.
For reference, the entanglement of the corresponding sub-
space, E(G)GM(G), has also been given. We have performed
our calculations on a desktop computer and some problems
turned out to be too big; these are indicated with a long dash
in the table.

PPT mixtures (Sec. VI B). We see an interesting be-
havior for the subspace Sπ/2

2×d2 , namely, E fully
ppt < EGGM(S ) <

Eppt, with E fully
ppt approaching the value of EGGM(S ) for an
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TABLE VI. Entanglement of the normalized identity on a GES as given by different methods. For reference, the entanglement of subspaces
is given. A long dash indicates problems too large for a desktop. See the main text for a discussion.

Entanglement E d Sπ/2
2×d2 (Sec. IV B) Q3,d

1 (Sec. V B) Q3,d
2 (Sec. V C)

EGGM(G )/EGM(G ) 2 0.5000 0.5000 0.0781/0.2640
(Secs. IV B, V B, V C; 3 0.2500/0.42857 0.030844/0.19036 0.0048184/0.05856
cf. Tables II, III, V) 4 0.1465/0.26543 0.001144/0.03696 0.0001265/0.00753

5 0.0955/0.17837 0.000024/0.00629 0.0000023/0.00124
6 0.0670/0.1274 – –
7 0.0495/0.0953 – –
8 0.0381/0.0738 – –

Eppt/E fully
ppt 2 0.5000 0.5000 0.1832/0.0942

(Sec. VI B) 3 0.3008/0.2253 0.0951/0.0774 0.0600/0.0253
4 0.1905/0.1361 0.0375/0.0219 0.0246/0.0087
5 0.1347/0.0902 – –
6 0.1012/0.0641 – –
7 –/0.0479 – –
8 –/0.0372 – –

EF
GGM/EF

GM 2 0.5000 0.5000 0.0875/0.2801
(Sec. VI C) 3 0.2286/0.4150 0.0663/0.2297 0.0293/0.1380

4 0.1316/0.3056 0.0231/0.1410 0.0128/0.0859
5 0.0872/0.2344 – –
6 0.0625/0.1900 – –
7 –/0.1597 – –

E algor
GGM/E algor

GM 2 0.5000 0.5000 0.0962/0.2801
(Sec. VI D) 3 0.2500/0.4375 0.0816/0.2297 0.0378/0.1524

4 0.1667/0.3056 0.0345/0.1491 0.0183/0.0980
5 0.1250/0.2344 0.0172/0.1065 0.0111/0.0712
6 0.1000/0.1900 – –
7 0.0833/0.1597 – –

increasing local dimension. This is, however, not observed for
subspaces Q3,d

i , in which cases both Eppt and E fully
ppt exceed

quite largely the entanglement of the subspace.

Fidelity relaxation bounds on the (G)GM (Sec. VI C). Let
us start with Sπ/2

2×dN−1 , d � 3, and the case of the GGM. We
observe that the bounds are trivial as the better ones are

TABLE VII. The white-noise tolerance estimates for different subspaces as given by various methods. A long dash indicates problems too
large for a desktop. See the main text for a discussion.

Noise tolerance p∗ d Sπ/2
2×d2 (Sec. IV B) Q3,d

1 (Sec. V B) Q3,d
2 (Sec. V C)

p∗witn
gme /p∗witn

ent 2 0.571/0.571 0.571/0.571 0.1041/0.352
(Sec. VI A) 3 0.321/0.551 0.0490/0.302 0.0087/0.105

4 0.204/0.369 0.0024/0.076 0.0003/0.017
5 0.140/0.262 6 × 10−5/0.016 6.3 × 10−6/0.0034
6 0.103/0.195 – –

p∗ppt
gme 2 0.571 0.571 0.265

(Sec. VI B) 3 0.409 0.224 0.128
4 0.300 0.126 0.076
5 0.243 – –
6 0.212 – –

p∗F
gme/p∗F

ent 2 0.571/0.799 0.571/0.799 0.265/0.630
(Sec. VI C) 3 0.409/0.692 0.224/0.653 0.128/0.582

4 0.300/0.639 0.126/0.612 0.076/0.577
5 0.243/0.609 – –
6 0.212/0.590 – –

p∗algor
gme /p∗algor

ent 2 0.571/0.799 0.571/0.799 0.265/0.630
(Sec. VI D) 3 0.506/0.692 0.254/0.653 0.145/0.582

4 0.473/0.639 0.152/0.612 0.133/0.577
5 0.457/0.609 – –
6 0.449/0.590 – –
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simply provided by EGGM(S ) [cf. Eq. (9)]; nevertheless, EF
GGM

approaches the latter from below for the increasing local
dimension. In the case of the GM, we see that for d = 3
the bound is useless for the same reason as above; i.e., it is
below the value of EGM(S ). The remaining values, however,
are nontrivial bounds as they are above the entanglement of
the subspace. In this case, we also see that the gap between
EF

GM(�S (0)) and EGM(S ) gets larger with the increasing d ,
meaning that the former bound becomes more useful. More
importantly, however, it appears that in the case d > 3 the
values of the bound are in fact the values of EGM(�S (0)). We
comment on this issue again below.

For subspaces Q3,d
i with d � 5 the problem is too large

for the desktop we have used and we have only managed to
treat the cases d = 2, 3, 4. These scarce data show that the
bounds are nontrivial as they exceed the entanglement of the
subspaces.

Algorithmic approximation of the (G)GM (Sec. VI D). Let
us again begin with Sπ/2

2×d2 . We believe that the values obtained
with the algorithm are enough to infer that the PPT bounds
on the GM discussed above are the exact values (we have
observed agreement to 8–10 significant figures) except for the
already identified peculiar case d = 3. In case of the GGM on
the other hand, we observe that it equals the entanglement of
the subspace for d = 3, but for larger d the gap between these
values grows. The results also provide strong evidence that the
value of the GGM equals 1/(2d − 2). For the remaining two
subspaces the data are again limited but show that EF

(G)GM <

E algor
(G)GM except for two nontrivial cases: the GGM in the case

of Q3,3
1 and the GM in the case of Q3,2

2 . We have not been
able to identify either necessary or sufficient conditions on
subspaces for the equality to hold and this is left as an open
problem.

2. The white-noise tolerance of PG/dG

Let us now move to the case of the white-noise tolerance
of the noiseless states from (65) �G (0) = PG/dG .

Witnesses (Sec. VI A). Not surprisingly, the white-noise
tolerance predicted by this method is not high, with particu-
larly low values for subspaces Q3,d

1 and Q3,d
2 —this is the price

one pays for the generality of the bound, i.e., the fact that it
works for any state of the form (69). Specifying the states ρ

to be the identities on G we are able to increase these values
significantly using different methods.

PPT mixtures (Sec. VI B), fidelity relaxation bounds on
the GGM (Sec. VI C), and the algorithmic computation of
the GGM (Sec. VI D). Contrary to other methods, the PPT
mixtures approach only deals with genuine entanglement of
states and, clearly, the values obtained with its aid are the
same as the ones obtained with the relaxation (80). The PPT
mixtures have proved useful in improving estimations of the
white-noise tolerance for several classes of genuinely entan-
gled states [53] and we thus expected to improve significantly
using them on the values obtained with the witnesses. This
was indeed the case, but the improvement is more significant
for Qi’s than for S2×d2 . In the case of S2×d2 , it may be argued
that the threshold tolerances predicted by the approach tend to
a limit value, which probably lies between 0.18 and 0.20. It
is probably also the case for Qi’s but the data are too limited

to estimate the limits. An analogous behavior is observed for
the values found with the algorithm for the GGM. In this case,
however, the limit value for S2×d2 lies significantly above the
one predicted by the PPT mixtures and is most likely above
0.44. We note that apart from the trivial qubit cases S2×22

and Q3,2
1 , the methods give the same threshold value only for

Q3,2
2 . We conclude by observing that genuine entanglement of

subspaces Q1 and Q2 displays very low white-noise tolerance.
Fidelity relaxation bounds on the GM (Sec. VI C) and the

algorithmic computation of the GM (Sec. VI D). It turns out
that the threshold values obtained using the PPT relaxations
on the fidelity are the same as from the algorithm for all three
subspaces considered in the paper. As previously, it appears
there are some limit values for the thresholds, which are
significantly higher than the ones for GME; this is particularly
visible for Qi’s.

The meaning of the threshold values obtained with the
algorithm is that in the region 0 � p � p∗algor

gme a state is GME;
whenever p∗algor

gme < p � p∗algor
ent a state is entangled but the

entanglement is not genuine, i.e., a state is biseparable but
not fully separable; and finally, above p∗

ent a state is fully
separable. Concluding, let us observe that for all subspaces
it holds that p∗

gme < p∗
ent with gaps being quite large. This

probably is a generic behavior and it would thus be interesting
to find an example of a subspace for which both values of the
white-noise tolerance are equal.

VII. CONCLUSIONS AND OUTLOOK

We have considered the problem of quantification of en-
tanglement of genuinely entangled subspaces (GESs), that is,
subspaces composed only of genuinely multiparty entangled
(GME) states, mainly using the (generalized) geometric mea-
sure [(G)GM] of entanglement. This has been done from three
qualitatively different perspectives exploiting both analytical
and numerical methods. The main one has used the definition
of the subspace entanglement in terms of the least-entangled
pure state from the subspace. We have proposed an analytical
method to compute it and provided an easily implementable
semidefinite program (SDP) to lower-bound it. We have ob-
served that in many cases these two methods agreed. In
particular, they reproduced, except for the tripartite case with
d = 3, the same results for a new class of a GES, Sθ

2×dN−1 ,
introduced in the paper. In the second approach, we have
asked about the entanglement of a state being a normalized
projection onto a GES. Here, we have exploited the method of
the PPT mixtures, but also used certain SDP relaxations and
a direct numerical algorithm for approximating the (G)GM.
Comparison of the latter two have revealed agreement of the
methods for Sθ

2×dN−1 in the case of the GM except the curious
case of N = 3 and d = 3. Finally, in the third approach,
we have considered how much of the white noise such a
normalized projection tolerates before the state gets fully or
biseparable. In addition to the methods mentioned above we
have also used the established here connection of the problem
with entanglement witnesses. We have observed that in the
case of the GGM the latter method predicted the lowest
values of the white-noise tolerance, while the PPT mixtures
intermediate ones in relation to the “exact” values predicted
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by the algorithm. In the case of the GM, the values obtained
from the witnesses are again the lowest, but the ones from PPT
relaxation on the fidelity and the algorithm match.

The results of the present paper provoke several questions
and suggest future research directions.

From a specialized point of view, it would be interesting
to identify conditions under which the SDP bounds on the
subspace entanglement reproduce the true values of the latter.
In particular, one should look carefully into the case of the
subspace Sθ

2×dN−1 , where only a single case of N = 3 and d =
3 gives differing results, the qubit subspace QN,2

2 (or, possibly,
in general the qubit case), and the antisymmetric subspace. It
would also be interesting to consider other ways to quantify
entanglement of GESs, such as the average entanglement or
the maximal entanglement of a vector drawn from a subspace,
as well as using other entanglement measures. A natural
direction regarding the noise tolerance of GESs is to consider
their entanglement robustness to local noise, which is relevant
for scenarios with the distribution of particles in networks.
The latter is the subject of ongoing research [58].

From a more general perspective, as entangled subspaces
play important roles in different areas of quantum information
theory, it is desirable to construct more examples of GESs
with analytically computed properties. In particular, it would
be of interest to have examples of highly, but not maximally,
entangled subspaces and investigate the possibility of their
application in (approximate) QEC.
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APPENDIX A: PROOF OF THEOREM 2 (SEC. IV A)

Proof. We construct the matrix SA from (16) choosing the
vectors on subsystem A to be |x〉 = x0|0〉 + x1|1〉 with |x0|2 +
|x1|2 = 1. We obtain (we explicitly state the dependence on x0

of this matrix)

SA(x0) =
d−2∑
i=0

〈x|φi〉〈φi|x〉

=
d−2∑
i=0

(|ax0|2|ψi〉〈ψi| + |bx1|2|ψi+1〉〈ψi+1|

+ax1(bx0)∗|ψi〉〈ψi+1| + (ax1)∗bx0|ψi+1〉〈ψi|).
(A1)

In the basis of |ψi〉’s it is a d × d tridiagonal matrix of the
form

SA(x0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α g 0 · · · 0 0

g∗ α + β g · · · 0 0

0 g∗ α + β · · · 0 0
...

...
. . .

. . .
...

...

0 0
. . . α + β g 0

0 0 · · · g∗ α + β g

0 0 · · · 0 g∗ β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A2)

where α = |ax0|2, β = |bx1|2, g = ax1(bx0)∗.
Crucially, αβ = |g|2, and using the results of [40] we find

the eigenvalues to be

λk (SA(x0)) = α + β + 2|g| cos
kπ

d

= |ax0|2 + |bx1|2 + 2|x0x1ab| cos
kπ

d
(A3)

for k = 1, 2, . . . , d − 1 and λd = 0.
We now need to find

λmax(SA) := max
x0,k

λk (SA(x0)), x0 ∈ [0, 1]. (A4)

First, let us consider the values on the boundary of the interval
for x0. We have that λ(S(x0 = 0)) = |b|2 = sin2(θ/2) and
λ(S(x0 = 1)) = |a|2 = cos2(θ/2).

For x0 ∈ (0, 1) it is clear that we can restrict ourselves to
the eigenvalues (24) for which the cosine is larger than zero.
For a given such k we have (recall that |x0|2 + |x1|2 = 1)

dλk (SA(x0))
d|x0| = 2(|a|2 − |b|2)|x0| + 2|ab| cos

(
kπ

d

)

× 1 − 2|x0|2√
1 − |x0|2

. (A5)

Denoting p := |a|2 − |b|2 and qk := |ab| cos ( kπ
d ) > 0 we

equate this to zero to obtain

p|x0|(1 − |x0|2) = qk (2|x0|2 − 1). (A6)

It follows that

p > 0 (|a| > |b|) ⇒ |x0| >
1√
2
, (A7)

p < 0 (|a| < |b|) ⇒ |x0| <
1√
2
. (A8)

When p = 0, i.e., |a| = |b|, we have |x0| = 1/
√

2. Squaring
(A6) we obtain a biquadratic equation on |x0|:(

p2 + 4q2
k

)|x0|4 − (
p2 + 4q2

k

)|x0|2 + q2
k = 0. (A9)

Having in mind (A7) and (A8) we then conclude that the
optimal x0 = x̃0 is given by

x̃0 = eiξ

√√√√√1

2

⎛
⎝1 + p√

p2 + 4q2
k

⎞
⎠, ξ ∈ R (A10)
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with the denotation as above.
This results in

λk (SA(x̃0)) = 1

2

(
1 +

√
p2 + 4q2

k

)
(A11)

and in turn

λmax(SA) = λ1(SA(x̃0))

= 1

2

[
1 +

√
(|a|2 − |b|2)2 + 4|ab|2 cos2

(π

d

)]

= 1

2

[
1 +

√
1 − sin2 θ sin2

(π

d

)]
. (A12)

This is larger than both sin2(θ/2) and cos2(θ/2) obtained on
the boundaries and it follows that the entanglement of Sθ

2×d is
given by

EGM
(
Sθ

2×d

) = 1

2

[
1 −

√
1 − sin2 θ sin2

(π

d

)]
. (A13)

The nonzero value of the entanglement signifies that the
subspace is indeed a CES.

In the case θ = π/2, i.e., |a| = |b| = 1/
√

2, we obviously
have

EGM
(
Sπ/2

2×d

) = 1

2

(
1 − cos

π

d

)
= sin2 π

2d
. (A14)

�

APPENDIX B: THE CASE OF THREE PARTIES:
REDUCTION OF THE GES FROM THEOREM 1

OF REF. [8] TO Sπ/2
2×d2

Here we consider a class of GESs considered recently in
Theorem 1 of Ref. [8]. It is defined as being orthogonal to
the nonorthogonal unextendible product basis given by the
following vectors (α ∈ C):

(1, αd̃ , α2d̃ , . . . , α(d−1)d̃ )A1 ⊗ (
1, α, α2, . . . , αdN−1−1

)
A2,k

=
(

d−1∑
i=0

αid̃ |i〉A1

)
⊗
⎛
⎝dN−1−1∑

k=0

αk|k〉A2,k

⎞
⎠

=
d−1∑
i=0

dN−1−1∑
k=0

αid̃+k|i〉A1 |k〉A2,k (B1)

with d̃ = dN−1 − d + 1.

In Ref. [8] we have not given an explicit basis for
the resulting GES but only showed that its dimension is
(d − 1)2. We now provide such basis and provide an explana-
tion on why the dimension does not scale with the number of
parties N .

By looking at the repeating monomials of α in the coordi-
nates of the vectors (B1) after performing tensor multiplica-
tion, one can easily verify that, regardless of the number of
parties N , the vectors orthogonal to the vectors (B1), i.e., the
vectors spanning the corresponding GES, are

1√
2

(|i〉A1 |d̃ + k〉A2,k − |i + 1〉A1 |k〉A2,k

)
,

i = 0, 1, . . . , d − 2, k = 0, 1, . . . , d − 2. (B2)

One sees that they form an orthonormal set.
Importantly, on qudits A2, . . . , AN−1 one has in fact a qubit

subspace. This is because

|d̃ + k〉A2,k = |d − 1〉A2 · · · |d − 1〉AN−1 |k + 1〉AN ,

|k〉A2,k = |0〉A2 |0〉A3 · · · |0〉AN−1 |k〉AN . (B3)

Denoting further

|1̄〉 := |d − 1〉⊗(N−2), |0̄〉 := |0〉⊗(N−2), (B4)

and substituting A1 → A, A2 . . . AN−1 → B, AN → C, we can
write down the vectors from (B2) as follows:

1√
2

(|i〉A|1̄〉B|k + 1〉C − |i + 1〉A|0̄〉B|k〉C
)
,

i = 0, 1, . . . , d − 2, k = 0, 1, . . . , d − 2. (B5)

This means that the setup is in fact d ⊗ 2 ⊗ d . Applying local
unitaries, Uc = ∑

i |d − 1 − i〉〈i| on C and iσ B
y on B, and then

swapping A and B, we get a tripartite subspace Sπ/2
2×d2 of the

class considered in the main text in Theorem 2.
It is worth noting that the dimension of the GES displays

the same behavior in the leading term as the maximal dimen-
sion, which here is d2 − 1 [8].

APPENDIX C: A CLASS OF PPT STATES FOR WHICH
THE VALUE OF THE SDP BOUND IS LOWER

THAN EGM(Sπ/2
2×d2 )

The (unnormalized) spanning vectors of Sπ/2
2×32 are |000〉 +

|111〉, |001〉 + |112〉, |010〉 + |121〉, |011〉 + |122〉. Let P3,3
S

denote the projection onto the GES.
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Consider the following state:

ρ = 1

N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aα2 0 0 0 0 0 0 0 0 0 0 0 0 aαβ 0 0 0 0

0 b+c
2 0 0 0 0 0 0 0 0 0 0 0 0 b−c

2 0 0 0

0 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 b+c
2 0 0 0 0 0 0 0 0 0 0 0 0 b−c

2 0

0 0 0 0 aβ2 0 0 0 0 0 0 0 0 0 0 0 0 aαβ

0 0 0 0 0 z 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 z 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 y 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 y 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 z 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 z 0 0 0 0 0

aαβ 0 0 0 0 0 0 0 0 0 0 0 0 aβ2 0 0 0 0

0 b−c
2 0 0 0 0 0 0 0 0 0 0 0 0 b+c

2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0

0 0 0 b−c
2 0 0 0 0 0 0 0 0 0 0 0 0 b+c

2 0

0 0 0 0 aαβ 0 0 0 0 0 0 0 0 0 0 0 0 aα2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C1)

where the normalization factor is N = 2(a + b + c + 2x +
y + 2z). The quantity of interest is

v := tr
(
P3,3
S ρ

) = a − 2aα
√

1 − α2 + 2c + 4x + 2y + 4z

2(a + b + c + 2x + y + 2z)
.

(C2)
One checks that for the following values of the parameters

a = 9
10 , b = 14

25 , c = 7
25 , x = 1

30 , y = 1
14 ,

z = 1
7 , α = 7

25 , (C3)

it holds that ρ�A � 0, ρ�B � 0, ρ�C � 0 and the value of v is

v = 239 371
568 000 � 0.4214 < 3/7. (C4)

APPENDIX D: A BASIS FOR QN,d
1 —THE GES FROM

THEOREM 2 OF REF. [8]

Here we present a basis for the GES considered in Theorem
2 of Ref. [8]. In the current paper this subspace is named QN,d

1
(Sec. V B).

By definition, QN,d
1 is the subspace orthogonal to the set of

the following product vectors (α ∈ C):

(1, αp1 , . . . , α(d−1)p1 )A1 ⊗ (
1, α, α2, . . . αdN−1−1

)
A2,k

=
(

d−1∑
i=0

αip1 |i〉A1

)
⊗
⎛
⎝dN−1−1∑

k=0

αk|k〉A2,k

⎞
⎠

=
d−1∑
i=0

dN−1−1∑
k=0

αip1+k|i〉A1 |k〉A2,k (D1)

with

p1 ≡
N∑

m=2

dN−m =
N−2∑
m=0

dm. (D2)

Notice that it holds that

(d − 1)p1 = dN−1 − 1. (D3)

As shown in Ref. [8], the dimension of this GES is equal to
dN − (2dN−1 − 1).

From (D1) we infer that we must identify possible real-
izations of ip1 + m for each value of this expression. Since
there will be more than one realization for the latter we see
that the vectors in the GES can be put into different groups
within which they are not orthogonal, while the vectors from
different groups are.

In what follows we omit the superscripts denoting parties;
it is assumed that the first ket corresponds to A1 and the second
one to A2,k = A2 . . . AN . For clarity of exposition we also omit
the normalization factors 1/

√
2 and denote for convenience

pi := ip1, i = 0, 1, . . . , d − 1. (D4)

In the components of the vectors (D1) there are no repeating
monomials αi with i = 0, 1, . . . , p1 − 1. Consideration of the
monomials αp1+k with k = 0, 1, . . . , p1 − 1 gives rise to the
following p1 vectors in the GES:

|0〉|p1 + k〉 − |1〉|p0 + k〉, k = 0, 1, . . . , p1 − 1. (D5)

Monomials αp2+k give rise to p2 = 2p1 vectors (we present
them in a “cyclic” form):

|0〉|p2 + k〉 − |1〉|p1 + k〉, |1〉|p1 + k〉 − |2〉|p0 + k〉,
k = 0, 1, . . . , p1 − 1. (D6)
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The vectors are constructed in a similar manner for αpm+k and
for m = d − 2 we have pd−2 = (d − 2)p1 vectors:

|0〉|pd−2 + k〉 − |1〉|pd−3 + k〉,
|1〉|pd−3 + k〉 − |2〉|pd−4 + k〉,
...

|d − 3〉|p1 + k〉 − |d − 2〉|p0 + k〉,
k = 0, 1, . . . , p1 − 1. (D7)

Further, monomials αpd−1 give rise to d − 1 vectors:

|0〉|pd−1〉 − |1〉|pd−2〉,
|1〉|pd−2〉 − |2〉|pd−3〉,
...

|d − 2〉|p1〉 − |d − 1〉|p0〉. (D8)

Now, let us consider powers of α larger than αpd−1 . Monomials
αpd−1+k+1 give rise to (d − 2)p1 vectors:

|1〉|pd−2 + k + 1〉 − |2〉|pd−3 + k + 1〉,
|2〉|pd−3 + k + 1〉 − |3〉|pd−4 + k + 1〉,
...

|d − 2〉|p1 + k + 1〉 − |d − 1〉|p0 + k + 1〉,
k = 0, 1, . . . , p1 − 1. (D9)

Monomials αpd +k+1 give rise to (d − 3)p1 vectors:

|2〉|pd−2 + k + 1〉 − |3〉|pd−3 + k + 1〉,
|3〉|pd−3 + k + 1〉 − |4〉|pd−4 + k + 1〉,
...

|d − 2〉|p2 + k + 1〉 − |d − 1〉|p1 + k + 1〉,
k = 0, 1, . . . , p1 − 1. (D10)

This construction ends for monomials α(2d−4)p1+k+1 =
αpd−2+pd−2+k+1 giving rise to p1 vectors:

|d − 2〉|pd−2 + k + 1〉 − |d − 1〉|pd−3 + k + 1〉,
k = 0, 1, . . . , p1 − 1. (D11)

Succinctly, these (unnormalized) vectors may be written as
follows (k = 0, 1, . . . , p1 − 1):

|i〉|pm−i + k〉 − |i + 1〉|pm−i−1 + k〉, (D12)

m = 1, 2, . . . , d − 2, i = 0, 1, . . . , m − 1,

|i〉|pd−i−1〉 − |i + 1〉|pd−i−2〉, (D13)

i = 0, 1, . . . , d − 2,

|i〉|pm−i + k + 1〉 − |i + 1〉|pm−i−1 + k + 1〉,
m = d − 1, d, . . . , 2(d − 2), i = m − (d − 2), . . . , d − 2.

(D14)

In the cyclic form that we have used, two neighboring vectors
have an overlap of 1/2, while the rest are orthogonal within

each group. This observation is useful for the Gram-Schmidt
procedure and we have the following.

Lemma 3. Let there be given a subspace S spanned by the
vectors

|ψk〉 = 1√
2

(|γk−1〉 − |γk〉), k = 1, . . . , S, (D15)

with orthonormal |γi〉’s. The following vectors are an or-
thonormal basis for S:

|ϕm〉 = 1√
m(m + 1)

(
m−1∑
i=0

|γi〉 − m|γm〉
)

(D16)

= 1√
m(m + 1)

m∑
i=0

λi|γi〉, m = 1, . . . , S, (D17)

where λ0 = λ1 = · · · = λm−1 = 1 and λm = −m.
Proof. We present the proof assuming the unnormalized

case for simplicity. Set

|ϕ1〉 = |ψ1〉. (D18)

The remaining vectors are formed as follows:

|ϕ2〉 = |ϕ1〉 + 2|ψ2〉,
|ϕ3〉 = |ϕ2〉 + 3|ψ3〉,
... (D19)

that is

|ϕk〉 = |ϕk−1〉 + k|ψk〉. (D20)

It is easy to see that the above procedure gives an orthonormal
basis (D16). �

Concluding, we observe that

|pi + k〉A2,N = |i + kN−2〉A2 · · · |i + k1〉AN−1 |i + k0〉AN

=
N⊗

m=2

|i + kN−m〉Am (D21)

with k = ∑N−2
l=0 kldl and the constraint that k � p1 − 1.

APPENDIX E: A BASIS FOR QN,d
2 —THE GES FROM

THEOREM 3 OF REF. [8]

In this Appendix we consider the GES from Theorem 3 of
Ref. [8] and present a nonorthogonal basis for it. In the main
text this GES is named QN,d

2 (Sec. V C). A basis for the qubit
case has been given in the cited paper as an example and we
now solve for the general case. In fact, the basis we obtain is
a simple generalization of Eq. (64) from Ref. [8].

The GES under inspection has been defined as the subspace
orthogonal to the set of the following product vectors (α ∈ C):

(1, P1(α), . . . , Pd−1(α))A1
⊗ (

1, α, α2, . . . αdN−1−1
)

A2,k

=
(

d−1∑
k=0

Pk (α)|k〉A1

)
⊗
⎛
⎝dN−1−1∑

m=0

αm|m〉A2,k

⎞
⎠

=
d−1∑
k=0

dN−1−1∑
m=0

Pk (α)αm|k〉A1 |m〉A2,k , (E1)
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where

Pk (α) =
N∑

m=2

αkdN−m
. (E2)

It has been observed in Ref. [8] that only the polynomi-
als αmPk (α) with m = 0, 1, . . . , dN−1 − dN−2 − 1 are linear
combinations of other components of (E1); more precisely
they are sums of the monomials which are the first dN−1 − 1
components of these vectors. The number of these linearly
dependent polynomials gives us thus the dimension of the
GES and we easily construct the vectors spanning the GES

using the above observations:

|0〉A1

⎛
⎝ N∑

f =2

|kdN− f + m〉A2,k

⎞
⎠− |k〉A1 |m〉A2,k ,

k = 1, . . . , d − 1, m = 0, 1, . . . , dN−1 − dN−2 − 1.

(E3)

Clearly, these vectors do not form an orthogonal set, which is
the main obstacle in analytical computation of the measure for
this subspace. That is, after the orthogonalization their form is
very involved and seems not to offer an easy insight into the
structure of the GES.
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