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We derive a deterministic protocol to implement a general single-qubit positive operator-valued measure
(POVM) on near-term circuit-based quantum computers. The protocol has a modular structure such that an
n-element POVM is implemented as a sequence of (n − 1) circuit modules. Each module performs a two-element
POVM. Two variations of the protocol are suggested—one optimal in terms of number of ancilla qubits, the other
optimal in terms of number of qubit gate operations and quantum circuit depth. We use the protocol to implement
two- and three-element POVMs on two publicly available quantum computing devices. The results we obtain
suggest that implementing nontrivial POVMs could be within the reach of the current noisy quantum computing
devices.
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I. INTRODUCTION

In quantum mechanics positive operator-valued measures
(POVMs) describe the most general form of quantum mea-
surement. They are able to distinguish probabilistically be-
tween nonorthogonal quantum states [1] and can therefore
be used to perform optimal state discrimination [2,3] and
efficient quantum tomography [4,5]. In quantum communi-
cation and cryptography [6] they are used to enable secure
device-independent communication [7] or, on the contrary,
compromise quantum key distribution protocols by minimiz-
ing the damage done by an eavesdropper to a quantum channel
[8,9].

POVMs can be implemented experimentally in both
bosonic [10–13] and fermionic quantum systems [14]. How-
ever, typically, the hardware for these implementations needs
to be specifically tailored to the measurement. To realize an
arbitrary POVM as part of a quantum communication scheme
or on a quantum computer, where the hardware design allows
only orthogonal projective measurements in the qubit basis,
it is necessary to simulate the action of the POVM using
quantum-gate operations. For example, in Ref. [15] a quantum
Fourier transform is used to implement a restricted class of
projective POVMs. In Refs. [16,17] a probabilistic method
based on classical randomness and postselection is proposed
to implement projective POVMs. A deterministic method to
perform a general POVM can be implemented using Neu-
mark’s dilation theorem [18,19], which states that a POVM
of n elements can be performed as a projective measurement
in an n-dimensional space. In Ref. [20] it is shown that this
method can be realized in a duality quantum computer.

In this work we construct a protocol for a general single-
qubit POVM on a circuit-based quantum computer using Neu-
mark’s theorem. The protocol has a modular structure such
that a quantum circuit for an n-element POVM is constructed
as a sequence of (n − 1) two-element POVM circuit modules
in a similar manner to Ref. [10]. This structure allows for

a straightforward construction of quantum circuits using an
optimal number of ancilla qubits and quantum gates. The
complexity of the protocol, in terms of number of quantum
gates, is O(n2) using �log2 n� ancilla qubits and can be
reduced to O(n log n) at a cost of (�log2 n� − 1) additional
ancilla qubits. The corresponding circuit depths are O(n2) and
O(n), respectively. We use the protocol to implement two- and
three-element POVMs on two public quantum computing de-
vices: IBMQX2 and Aspen4. We measure the output fidelities
and compare the performances of the two devices.

In Sec. II we present our protocol. We describe explicitly
how to construct a quantum-gate circuit for a two-element
POVM and demonstrate how it can be extended to an n-
element POVM. In Sec. III we present the results from the
POVM implementations on the two quantum devices. We
present our concluding remarks in Sec. IV.

II. POVM PROTOCOL

A. Preliminaries

An n-element POVM is defined as a set of n positive oper-
ators {Êi} that satisfy the completeness relation

∑n
i=1 Êi = Î ,

where Êi = M̂†
i M̂i and the {M̂i} are measurement operators.

Performing a POVM on a system in initial state |ψ0〉 re-
sults in wave-function reduction to one of n possible mea-
surement outcomes |ψ0〉 → |ψi〉 = M̂i|ψ0〉√

〈ψ0|M̂†
i M̂i|ψ0〉

, with prob-

ability pi = 〈ψ0|M̂†
i M̂i|ψ0〉. Using Neumark’s theorem, a n-

element POVM on a target system A can be performed by
introducing an ancilla system B, with Hilbert space spanned
by n orthonormal basis states |i(B)〉 that are in one-to-one
correspondence with the POVM measurement outcomes. A
unitary operation ÛAB is applied to the joint state of the two
systems, such that

ÛAB

∣∣ψ (A)
0

〉|0(B)〉 =
n∑

i=1

[
M̂i

∣∣ψ (A)
0

〉]|i(B)〉. (1)
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By performing a projective measurement on system B, system
A collapses to one of the n states M̂i|ψ (A)

0 〉 that correspond
to the outcomes of the POVM. For more details on POVM
implementation refer to [21,22].

B. Protocol outline

Based on the method described above, we implement a n-
element POVM on a target system consisting of a single qubit,
using an ancilla system of �log2 n� qubits. To implement ÛAB,
we divide it into a sequence of (n − 1) quantum-gate circuits,
which we call modules. Each of these modules, except the
first, performs a two-element POVM on one of the outcomes
of the preceding module and entangles the additionally pro-
duced outcome to a new state of the ancilla system.

C. Two-element POVM module

To construct a quantum circuit performing atwo-element
POVM, we need a single ancilla qubit. We assume the target
qubit starts in an arbitrary state |ψ0〉 = a|0〉 + b|1〉. Then
the initial state of the system, target plus ancilla, is |�0〉 =
|ψ0〉|0〉. To perform a two-element POVM we want to trans-
form the system to a state

|� f 〉 = (M̂1|ψ0〉)|o1〉 + (M̂2|ψ0〉)|o2〉, (2)

where M̂1 and M̂2 are the two measurement operators and |o1〉
and |o2〉 are two orthogonal states of the ancilla. First a unitary
gate Û (not to be confused with UAB) is performed on the
initial state of the target qubit:

|�0〉 → (Û |ψ0〉)|0〉 = (a′|0〉 + b′|1〉)|0〉. (3)

Then, two controlled y rotations are performed, acting on the
ancilla qubit and controlled by the target qubit. The rotations
are given by angles θ1 and θ2, and controlled by the target
qubit in states |0〉 or |1〉, respectively:

|�〉 → a′|0〉(cos θ1|0〉 + sin θ1|1〉)

+ b′|1〉(cos θ2|0〉 + sin θ2|1〉). (4)

Rearranging terms, the above state can be written as

|�〉 = (D̂1Û |ψ0〉)|0〉 + (D̂2Û |ψ0〉)|1〉, (5)

where D̂1 = cos θ1|0〉〈0| + cos θ2|1〉〈1| and D̂2 =
sin θ1|0〉〈0| + sin θ2|1〉〈1|. This result corresponds to perf-
orming a two-element POVM specified by arbitrary operators
Ê1 and Ê2. However, to fully specify the measurement
operators M̂1 and M̂2, we need to perform unitary operations
V̂1 and V̂2 on the terms in the target qubit state, corresponding
to the two outcomes of the POVM. This can be done by
two single-qubit unitary gates acting on the target qubit,
and controlled by the ancilla states corresponding to the two
POVM outcomes, |0〉 and |1〉, respectively. This results in a
final state

|�〉 → |� f 〉 = (V̂1D̂1Û |ψ0〉)|0〉 + (V̂2D̂2Û |ψ0〉)|1〉, (6)

with V̂1D̂1Û = M̂1 and V̂1D̂2Û = M̂2. Since Û , V̂1, and V̂2

are unitaries, and D̂1D̂†
1 + D̂2D̂†

2 = I , it is straightforward
to check that M̂1 and M̂2 satisfy the completeness relation.
Furthermore, the expressions for the two measurement op-
erators are in most general form, since they correspond to

|ψ0〉 U • V1 V2

|0〉 Ry(θ1) Ry(θ2) •

FIG. 1. A quantum circuit for a general single-qubit two-element
POVM. The top qubit acts as the target and the bottom as the ancilla.
The output state of the circuit is given by Eq. (6). R̂y(θ ) denotes a
controlled single-qubit y rotation by angle θ . Û , V̂1, and V̂2 denote
general single-qubit unitary operations. V̂1 and V̂2 are controlled
operations, and each of them can be implemented as a combination
of controlled z and y rotations. The circuit contains up to 12 CNOTs
and 14 single-qubit rotations.

singular value decompositions. Therefore Eq. (6) corresponds
to the outcomes of a general two-element POVM. Figure 1
illustrates the complete circuit for the two-element POVM
module.

D. Generalization to n-element POVM

An n-element POVM can be performed sequentially by
(n − 1) POVM modules that share an ancilla register of
�log2 n� qubits. The ith module in the sequence will be char-
acterized by rotation angles θ

(i)
1 and θ

(i)
2 , unitary operations

V̂ (i)
1 and V̂ (i)

2 , and two POVM outcomes with corresponding
orthogonal ancilla register states |o(i)

1 〉 and |o(i)
1 〉. The first

module is additionally characterized by the unitary Û acting
on the target qubit, as shown above. Each of the modules,
except the first one, performs a two-element POVM on the
second outcome of the preceding module, so that the term in
the target qubit state corresponding to this outcome is evolved
in a similar way as for the case of the two-element POVM.
The output state of the sequence of modules can be written as

|�〉 =
n−1∑
i=1

(M̂i|ψ0〉)
∣∣o(i)

1

〉 + (M̂n|ψ0〉)
∣∣o(n−1)

2

〉
, (7)

with the measurement operators M̂i given by

M̂i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M̂1 = V̂ (1)
1 D̂(1)

1 , for i = 1

V̂ (i)
1 D̂(i)

1

∏i−1
j=1

(
V̂ ( j)

2 D̂( j)
2

)
Û , for 1 < i < n

∏n−1
j=1

(
V̂ ( j)

2 D̂( j)
2

)
Û , for i = n,

(8)

where D̂(i)
1 = cos θ

(i)
1 |0〉〈0| + cos θ

(i)
2 |1〉〈1| and D̂(i)

2 = sin
θ

(i)
1 |0〉〈0| + sin θ

(i)
2 |1〉〈1|. These measurement operators sat-

isfy the completeness relation and also represent singular
value decompositions as in the case of the two-element
POVM. Therefore Eq. (7) describes the outcomes of a gen-
eral single-qubit n-element POVM. Appendix A presents an
explicit procedure for the construction of a quantum circuit
for the ith module. This procedure can be used iteratively to
construct the whole n-element POVM. With a few additional
operations the ancilla states |0( j)

1/2〉 can be chosen so that the
ith POVM outcome corresponds to the ancilla state with a
binary value (i − 1). The quantum circuit for a POVM module
sequence is illustrated in Fig. 4 in Appendix A.
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E. Complexity and circuit depth

In Appendix B we show that the complexity, in terms of
number of quantum gates, of the ith POVM module is O(i).
Summing over all modules, the complexity for an n-element
POVM is

∑n−1
i=1 O(i) = O(n2). The depth of the quantum

circuit, in terms of CNOTs, scales quadratically with n also.
Alternatively, we can use (�log2 n� − 1) additional ancilla
qubits to reduce the complexity of the ith module to O(log i).
This results in an overall complexity of O(n log n) for an
n-element POVM. In this case the circuit depth for the ith
module is constant (at most 18 CNOTs); hence the depth for a
n-element POVM becomes linear in n. In the implementation
of the two POVM examples in Sec. III, we use the quadratic
method, however (which requires fewer ancilla qubits), since
for n = 2 and n = 3, both methods use the same number of
quantum gates and have equal maximum circuit depths.

F. Extension to N-qubit POVMs

The modular structure of this protocol can be extended to
the case of a POVM on a d-level system by modifying the
circuit of the POVM module. In the case of the single-qubit
target system, we performed the two rotations θ1 and θ2 on
the ancilla qubit [Eq. (4)], controlled by the two states of the
target qubit. In the case of a d-level target system, we will
have to perform d rotations, specified by angles {θi∈[1,d]} and
controlled by the d different states of the target system. The
output state of the two-element POVM module is, therefore,
given again by Eq. (6), where this time Û , V̂1, and V̂2 are
d-dimensional unitary operations, D̂1 = ∑d−1

i=0 cos θi|i〉〈i| and
D̂2 = ∑d−1

i=0 sin θi|i〉〈i|. However, implementing any Û , V̂1,
and V̂2 now involve the generic problem of performing a
general unitary operation on a multiqubit system. Therefore,
the modular structure does simplify but does not fully solve
the problem of implementing a general multiqubit POVM.

III. IMPLEMENTATION ON QUANTUM
COMPUTING DEVICES

Using our protocol we implement a two- and three-element
POVM on two public quantum computing devices: IBM’s
5-qubit IBMQX2 [23], and Rigetti’s 16-qubit Aspen4 [24].
These devices are capable of performing universal operations
[25] on their qubit registers. However, they have high noise
levels and imperfect qubit control, and hence are referred to
as noisy intermediate-scale quantum (NISQ) devices [26].

A. Two-element POVM

First we consider an example of a two-element POVM
that exhibits an output state with clear symmetry in terms of
its outcomes. We choose two equal measurement operators,

defined by θ1 = θ2 = π
4 , V̂1 = V̂2 = Î , Û1 = 1

2 (1 0
0

√
3), and an

initial target qubit state |ψ0〉 = |0〉. Note that the resulting

measurement operators M̂1 = M̂2 = 1
2 (1 0

0
√

3) are not projec-
tive. From Eq. (6) the expected output state is

|�〉 = (|0〉 + √
3|1〉)|0〉 + (|0〉 + √

3|1〉)|1〉
2
√

2
. (9)

FIG. 2. Measurement probabilities for a two-element POVM,

described by M̂1 = M̂2 = 1
2 (

1 0
0

√
3), on a qubit in an initial state

|0〉. The IBMQX2 probabilities are obtained from 8192 runs of the
circuit, and the Aspen4 probabilities from 104 runs. The expected
probability values from Eq. (9) are included for reference.

Figure 2 presents the results for the two-element POVM
from the two quantum devices. The Aspen4 output has a
fidelity of 99.5%.1 Although the outcome state of the target
qubit is not obtained exactly, the expected symmetry between
the states corresponding to the two POVM outcomes is ob-
tained. The output from the IBMQX2 is less accurate with a
fidelity of 98.0%, exhibiting asymmetry in the measurement
probabilities for the values of the ancilla qubit corresponding
to the two POVM outcomes. A possible reason for this asym-
metry is the fact that IBMQX2 have different CNOT gate error
rates depending on which qubit is the control or the target (see
[23] for device characterization).

B. Three-element POVM

The second example we implement is a three-element
POVM defined by measurement operators that project on
three states separated by 2π

3 rad in the x-z plane of the Bloch
sphere:

M̂1 =
√

2

3
|0〉〈0|, (10)

M̂2 = 1√
6

|0〉 + √
3|1〉

2

〈0| + √
3〈1|

2
, (11)

M̂3 = 1√
6

|0〉 − √
3|1〉

2

〈0| − √
3〈1|

2
. (12)

This POVM is a classic example, often considered in lit-
erature, which can be used to distinguish between two

nonorthogonal states (for example, between |1〉 and
√

3|0〉+|1〉
2 ).

It is implemented using two POVM modules defined

1The fidelity values are calculated as the overlap, F = |〈ψ |φ〉|2, of
two pure states instead of as F = 〈φ|σψ |φ〉, where σψ is the generally
mixed state produced by a real device.
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FIG. 3. Measurement probabilities for a three-element POVM,
described by measurement operators given by Eqs. (10), (11), and
(12), on a qubit in initial state |0〉. The IBMQX2 probabilities are
obtained from 8192 runs of the circuit and the Aspen4 probabilities
from 104. The expected probability values from Eq. (13) are included
for reference.

by θ
(1)
1 = cos−1 (

√
2
3 ), θ

(1)
2 = π

2 , θ
(2)
1 = 0, θ

(2)
2 = π

2 , Û = Î ,

V̂ (1)
2 = 1√

2
( 1 1
−1 1), V̂ (1)

1 = Î , V̂ (2)
1 = 1

2 ( 1 −√
3√

3 1
), and V̂ (2)

2 =
− 1

2 (
√

3 −1
1

√
3
). In Appendix C we outline explicitly the steps

to construct a quantum circuit for the second POVM module.
Substituting Eqs. (10), (11), and (12) in Eq. (7) for an initial
target qubit in a state |ψ0〉 = |0〉, the expected output state is

� =
√

3

2
|0〉|00〉 + |0〉 + √

3|1〉
2
√

6
|10〉 + |0〉 − √

3|1〉
2
√

6
|01〉.

(13)

Figure 3 shows the results for the three-element POVM,
obtained from the two quantum devices. In this case it is
evident that the results from both devices suffer from signifi-
cantly higher decoherence than in the case of the two-element
POVM. The IBMQX2 performs better this time, obtaining
an output state with fidelity 80.2%. It produces close to
the expected values for the measurement probabilities of the
|010〉, |110〉, |001〉, and |101〉 states. However, the state |000〉
seems to have decayed to the states with zero expected proba-
bility, |100〉, |011〉, and |111〉. The output from the Aspen4
has a fidelity of 46.6% and demonstrates little correlation
with the expected output. The reason for these significantly
worse results in the case of the three-element POVM is the
depth and complexity of the quantum circuit. For comparison,
the two-element POVM circuit has 6 CNOTs, resulting in
a depth of 6 also, while the three-element POVM circuit
has 30 CNOTs, with a maximum depth of 16 for the target
qubit.

IV. CONCLUSION

In this paper we presented a deterministic protocol that
enables a general POVM to be performed on a qubit in
a circuit-based quantum computer using a conventional set

of single- and two-qubit quantum gates. We show that the
same protocol can be modified so that it can be applied
to several qubits. We implement the POVM as a projective
measurement, using Neumark’s theorem, on an ancilla register
of qubits. The protocol therefore does not measure the target
qubit and hence can be used as a subroutine in a larger
protocol.

We use the protocol to implement two- and a three-
element POVMs on two quantum computing devices: IBM’s
IBMQX2 and Rigetti’s Apsen4. In the case of the two-
element POVM, both devices produce high-fidelity results,
with the Aspen4 being more accurate and consistent than
the IBMQX2. For the three-element POVM, the results
from both devices evidently suffer from strong decoherence.
Nevertheless, the results of the IBMQX2 demonstrate good
correlation with the expected output and fidelity of ∼80%.
This result suggests that there is reason to be optimistic
that given the regular upgrades of these devices, it might
soon be possible to perform these measurements with high
fidelity. This will open the way to their use in a wide variety
of applications including quantum tomography and quantum
cryptography.
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APPENDIX A: CONSTRUCTING THE iTH MODULE OF
AN n-ELEMENT POVM

Here we describe the explicit steps to construct the ith
module of an n-element POVM. The key is to entangle the two
POVM outcomes of the module with suitable computational
states of the ancilla register so that one can perform the same
operations as in the case of the two-element POVM on the
term in the target qubit state corresponding to the second
output of the (i − 1)th module. To do this, consider the (i −
1)th and the ith modules of a POVM module sequence and the
ancilla register states corresponding to their pairs of outcomes,
{|o(i−1)

1 〉, |o(i−1)
2 〉} and {|o(i)

1 〉, |o(i)
2 〉}, respectively. The explicit

steps for constructing the ith module are as follows:
(1) Entangle the first POVM outcome of the ith module

with the ancilla register state used for the second outcome of
the (i − 1)th module, which is “redirected” to the ith module
so it can be “reused.” Hence we get |o(i)

1 〉 = |o(i−1)
2 〉.

(2) Entangle the second outcome of the ith module with
the free computational ancilla register state with smallest
binary value such that it differs by just one qubit (additional
one in its binary expression) from |o(i)

1 〉. If there are no free
ancilla register states, add another ancilla qubit in initial
state |0〉.

(3) A θ
(i)
1 and θ

(i)
2 y rotation [similar to Eq. (4)], are

performed on the ancilla qubit, differing between the |o(i)
1 〉 and

|o(i)
2 〉 states. These two rotations are controlled by the other

062317-4



IMPLEMENTATION OF A GENERAL SINGLE-QUBIT … PHYSICAL REVIEW A 100, 062317 (2019)

module 1 module 2 module n − 1

|ψ0〉 U • V
(1)
1 V

(1)
2

• V
(2)
1 V

(2)
2

. . . • V
(n−1)
1 V

(n−1)
2

|0〉0 θ
(1)
1 θ

(1)
2

• • • • • . . . • • • •

|0〉1 θ
(2)
1 θ

(2)
2

• . . . • • • •
...

...
......

...

|0〉log n . . . θ
(n−1)
1 θ

(n−1)
2

•

FIG. 4. Representation of a quantum circuit performing an n-element POVM as a sequence of (n − 1) two-element POVM modules. The
target qubit is in initial state |ψ0〉, and each of the �log2 n� ancilla qubits is in initial state |0〉. Each module consists of two controlled y-rotation
gates and two controlled general unitary gates. For the kth module, these operations are controlled by the state of �log2 k� qubits. The circuit
has a maximum depth of O(n2) in terms of CNOT gates.

ancilla qubits, having the same values as in |o(i)
i 〉 and the target

qubit in states |0〉 and |1〉, respectively.
(4) The ancilla state entangled to the second output of the

ith module is changed to the unused ancilla register state with
smallest binary value. This can be done by applying at most
(�log2 i� − 1) multiqubit CNOT gates. This is not a necessary
step, but it ensures that all POVM outcomes are entangled to
ancilla register states in order of increasing binary value.

(5) Finally, V̂ (i)
1 and V̂ (i)

2 general unitary operations are
performed on the terms of the target qubit state corresponding
to the two POVM outcomes of the ith module, entangled to
|o(i)

1 〉 and |o(i)
2 〉, respectively. Each of these two unitaries is

performed by two �log2 i�-qubit-controlled-rotation gates.
Following these steps the ith module transforms the joint

state of the target and the ancilla systems after the (i − 1)th
module as

|�i−1〉 =
i−2∑
k=0

[M̂k+1|ψ0〉]|k〉 +
(

i−1∏
k=1

V̂ (k)
2 D̂(k)

2

)
Û |ψ0〉|i − 1〉 →

|�i〉 =
i−2∑
k=0

[M̂k+1|ψ0〉]|k〉 + V̂ (i)
1 D̂(i)

1

(
i−1∏
k=1

V̂ (k)
2 D̂(k)

2

)
Û |ψ0〉|i − 1〉 +

(
i∏

k=1

V̂ (k)
2 D̂(k)

2

)
Û |ψ0〉|i〉

=
i−1∑
k=0

[M̂k+1|ψ0〉]|k〉 +
(

i∏
k=1

V̂ (k)
2 D̂(k)

2

)
Û |ψ0〉|i〉, (A1)

where D̂(k)
1 = cos θ

(k)
1 |0〉〈0| + cos θ

(k)
2 |1〉〈1| and D̂(k)

2 =
sin θ

(k)
1 |0〉〈0| + sin θ

(k)
2 |1〉〈1|. In this way we can obtain the

output state in Eq. (7) with measurement operators given
by Eq. (8). Additionally, the ancilla register state entangled
to the kth outcome of the POVM is |k − 1〉, the state with
binary value (k − 1). Constructing an iterative program which
performs the same steps for each module is straightforward.
The example of constructing a three-element POVM is
included in Appendix C.

APPENDIX B: MULTIQUBIT CONTROLLED
OPERATIONS AND ANALYSIS OF THE COMPLEXITY

Multiqubit controlled operations are used extensively in
our POVM protocol. To carry out a rotation around a single
axis of the Bloch sphere of a qubit q0 controlled by qubits
q1 . . . qm, the rotation is decomposed to two rotations with

m − 1 control qubits as

CRi(θ, q1 . . . qm, q0)

= CNOT(q1, q0)CRi

(
−θ

2
, q2 . . . qm, q0

)

× CNOT(q1, q0)CRi

(
θ

2
, q2 . . . qm, q0

)
, (B1)

where i ∈ {x, y, z}, and CR stands for controlled rotation.
By decomposing each controlled rotation further, the overall
operation can be brought down to (2m − 2) CNOTs and 2m
1-qubit rotations. Therefore the complexity of this method is
exponential with m—the number of control qubits. An alter-
native method, suggested in [27,28], has linear complexity in
terms of m; however, it needs m − 1 additional ancilla qubits.
For the examples of the two- and three-element POVMs
considered in this paper, the exponential method is preferred,
which, for the case of two-qubit controlled gates, has the
same complexity and circuit depth as the linear method (both
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require six CNOTs and two single-qubit rotations) but does
not need an additional ancilla qubit. Nevertheless when im-
plementing many-element POVMs, use of the linear method
should be considered.

To find the overall complexity of the protocol for an n-
element POVM in terms of number of quantum gates, con-
sider first the complexity of a single module. The ith module
requires up to 6 �log2 i�-qubit controlled operations. There-
fore its complexity is either O(i) or O(log i), respectively,
depending on whether the exponential or the linear method
for a multiqubit controlled operations is used. The depth of
the circuit for the ith module in these two cases is linear with
i, 0(i), or constant, O(1), respectively.

APPENDIX C: CONSTRUCTING A CIRCUIT FOR THE
SECOND POVM MODULE

This section illustrates the procedure for constructing the
ith POVM module with the explicit example of the second
module of a three-element POVM. The three POVM out-
comes require a three-dimensional ancilla space; therefore we
need a 2-qubit ancilla register. Starting with the output state
of the first POVM module, the system state can be written as

|�〉 = (
V̂ (1)

1 D̂(1)
1 Û |ψ0〉

)|00〉 + (
V̂ (1)

2 D̂(1)
2 Û |�0〉

)|10〉
= M̂1|ψ0〉|00〉 + (c|0〉 + d|1〉)|10〉, (C1)

where an additional ancilla qubit in state |0〉 is added,
and c and d are coefficients such that (c|0〉 + d|1〉) =
V̂ (1)

2 D̂(1)
2 U |ψ0〉. Now we carry out the steps outlined in

Appendix A:

(1) Associate the two outcomes of the second module with
ancilla register states |o(2)

1 〉 = |10〉 and |o(2)
2 〉 = |11〉 (at the end

we will change |o(2)
2 〉 to |01〉).

(2) Perform θ
(2)
1 and θ

(2)
2 y rotations over the second

ancilla qubit controlled by the first ancilla qubit in state |1〉
and the target qubit in states |0〉 and |1〉, respectively:

|�〉 → |ψ1〉|00〉 + (
c cos θ

(2)
1 |0〉 + d cos θ

(2)
2 |1〉)|10〉

+ (
c sin θ

(2)
1 |0〉 + d sin θ

(2)
2 |1〉)|11〉. (C2)

(3) Using a doubly controlled X gate (equivalent to Toffoli
gate) change |o(2)

2 〉 → |01〉 so that the POVM outcomes are
entangled to states ordered in increasing binary value (taking
the leftmost qubit as the least significant bit). Hence,

|�〉 → |ψ1〉|00〉 + (
D̂(2)

1 V̂ (1)
2 D̂(1)

2 Û |�0〉
)|10〉

+ (
D̂(2)

2 V̂ (1)
2 D̂(1)

2 Û |ψ0〉
)|01〉 (C3)

.
(4) Unitary operations V̂ (2)

1 and V̂ (2)
2 are performed on

the target qubit, controlled by the ancilla register states |o(2)
1 〉

and |o(2)
2 〉, respectively. The system state at this point can be

expressed as

|�〉 = (M̂1|ψ0〉)|00〉 + (M̂2|ψ0〉)|10〉 + (M̂3|ψ0〉)|01〉,
(C4)

where

M̂1 = V̂ (1)
1 D̂(1)

1 Û , (C5)

M̂2 = V̂ (2)
1 D̂(2)

1 V̂ (1)
2 D̂(1)

2 Û , (C6)

M̂2 = V̂ (2)
2 D̂(2)

2 V̂ (1)
2 D̂(1)

2 Û . (C7)
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