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Noisy Toric code and random-bond Ising model: The error threshold in a dual picture
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It is known that noisy topological quantum codes are related to random-bond Ising models where the order-
disorder phase transition in the classical model is mapped to the error threshold of the corresponding topological
code. On the other hand, there is a dual mapping between classical spin models and quantum Calderbank-Shor-
Steane (CSS) states where the partition function of a classical model defined on a hypergraph H is written as
an inner product of a product state and a CSS state on dual hypergraph H̃ . It is then interesting to see what the
interpretation is of the classical phase transition in the random-bond Ising model within the framework of the
above duality, and whether such an interpretation has any connection to the error threshold of the corresponding
topological CSS code. In this paper, we consider the above duality relation specifically for a two-dimensional
random-bond Ising model. We show that the order parameter of this classical system is mapped to a coherence
order parameter in a noisy Toric code model. In particular, a quantum phase transition from a coherent phase
to a noncoherent phase occurs when the initial coherent state is affected by two sequences of bit-flip quantum
channels where a quenched disorder is induced by measurement of the errors after the first channel. On the other
hand, the above transition is directly related to the error threshold of the Toric code model. Accordingly, and
since the noisy process can be applied to other topological CSS states, we conclude that the dual correspondence
can also provide a useful tool for the study of error thresholds in different topological CSS codes.
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I. INTRODUCTION

It has been shown that quantum information theory has
many fascinating connections to statistical physics, which
have led to several cross-fertilizations between these two
important fields of physics. During past decades different
problems including quantum algorithms for the evaluation
of partition functions or simulation of classical spin models
[1–5], mathematical mappings from quantum systems to clas-
sical statistical models [6–9], and applications of percolation
theory in quantum error correcting codes [10] have been
developed. Of the most interesting connections is a mapping
from partition functions of classical spin models to quan-
tum stabilizer states [11]. Such mappings have recently been
simplified by a duality relation based on hypergraphs [12]
where a partition function of a classical spin model defined
on a hypergraph H can be written as an inner product of
a product state and a Calderbank-Shor-Steane (CSS) state
defined on the dual hypergraph H̃ . Using the above dual
correspondence, concepts from measurement based quantum
computation have been used for considering complexity of
classical spin models [13,14]. In particular, the concept of
completeness in statistical models [15–20], and recently uni-
versal models [21,22], have emerged in statistical physics,
which has opened an important window toward a unification
of statistical mechanical models.
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On the other hand, one of the important and well-
established problems in statistical mechanics is the existence
of thermal phase transition in classical spin models [23]. In
this respect and using the dual correspondence between clas-
sical spin models and quantum CSS states, one can expect to
find an interpretation of phase transitions in classical models
for quantum CSS states. For example, it has recently been
shown that thermal phase transitions in classical spin models
are mapped to topological phase transitions in the correspond-
ing CSS models [24]. Furthermore, the above mapping has led
to insights about noisy topological CSS states where a thermal
phase transition in a ferromagnetic spin model is mapped to
a critical stability against bit-flip noise in the corresponding
topological CSS code [12]. In particular, it has been shown
that a phase transition in two-dimensional (2D) Ising model is
mapped to a coherence-noncoherence phase transition in the
2D Toric code model under bit-flip noise [25].

In addition to the dual correspondence, the connection
between thermal phase transitions in classical spin models
and noisy topological codes has also been considered in a
different framework [26–32], where the error threshold of
noisy topological codes is mapped to the transition point of
the random-bond Ising models on the Nishimori line [33].
Accordingly, it seems that such problem should be related to
the dual correspondence between classical spin models and
quantum CSS states. If it is correct, it means that the same
dual correspondence also relates to the error threshold of a
topological CSS state defined on a hypergraph H with the
phase-transition point of a random-bond Ising system defined
on H̃ .
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In this paper, we start from the dual correspondence for
the 2D random-bond Ising model where the partition function
is mapped to an inner product of the Toric code state and a
product state in which random couplings are encoded. Then,
we explore a mapping from this problem to a noisy Toric code
model to find a relation to the error threshold problem. To this
end, we introduce a quantum formalism for the order param-
eter of the random-bond Ising model. Then, using a mapping
from temperature to the probability of noise, we find an im-
portant interpretation for the order parameter in a noisy Toric
code model. Specifically, we introduce a noisy process on a
coherent state in the Toric code where two sequences of bit-
flip channels are applied and a quenched disorder is induced
by measurement of error syndromes after the first channel. We
introduce an order parameter for determining the coherence
of an initial state after applying noise, and we show that it
is mapped to local magnetization in the random-bond Ising
model. Therefore, we find a coherence-noncoherence phase
transition in the noisy Toric code model corresponding to a
ferromagnetic-paramagnetic phase transition in the random-
bond Ising model. Specifically, the phase diagram here is
richer than the one that has been derived for the ordinary
Ising model [25], in the sense that, here, the two quenched
and annealed noise parameters determine the coherence phase
of the model. On the other hand, we show that the above
transition is also related to the error threshold of the Toric
code model. Since this result is derived by using the dual cor-
respondence and it can be applied to arbitrary random-bond
Ising systems, we conclude that the same dual correspondence
connects the error threshold of topological CSS codes and the
transition point of the dual random-bond Ising systems. We
give examples to show that this is very useful for studying
the error threshold of different topological states. The reason
is that, by using hypergraphs, we can easily find the classical
spin model corresponding to any quantum CSS state.

The paper is organized as follows: In Sec. II we briefly
review the quantum formalism of the partition function for the
Ising model. In Sec. III, we introduce a quantum formalism
for the order parameter of the random-bond Ising model.
In Sec. IV, we give the main result of the paper where we
introduce a mapping to the Toric code model under a sequence
of bit-flip noises. Specifically, we map the order parameter of
the random-bond Ising model to a coherence parameter for the
above noisy Toric code model. Finally, in Sec. V we explain
the connection of our results with the error threshold of the
Toric code and we conclude that the duality correspondence
between classical spin models and quantum CSS states is
helpful for investigation of the error threshold of quantum
CSS states.

II. QUANTUM FORMALISM FOR PARTITION FUNCTION
OF TWO-DIMENSIONAL ISING MODEL

In this section, we give a brief review of the quantum
formalism for the partition function of the two-dimensional
(2D) Ising model. To this end, consider a 2D square lattice
where classical spins of s = ±1 live on vertices (vertex spins).
The classical Hamiltonian is defined as follows:

H = −
∑
〈i, j〉

Ji jsis j, (1)

FIG. 1. (a) Ising spins si denoted by black circles live on vertices
of a square lattice. Edge spins Si j = sis j denoted by green (light)
circles are added on links of the lattice. Product of edge spins
belonging to a face F of the lattice should be equal to 1. (b) In a
quantum formalism, each constraint corresponding to a face of the
lattice is mapped to a face operator BF = ∏

e∈∂F Ze. It is in fact a
stabilizer of the Toric code. There is also another kind of stabilizer,
Av = ∏

e∈v Xe, corresponding to each vertex of the lattice.

where 〈i, j〉 refers to the nearest neighbors and Ji j refers
to the coupling constant corresponding to the interaction of
〈i, j〉. All thermodynamic properties of the above model can
be derived from the partition function, which is obtained by
a summation of the Boltzmann weights corresponding to all
spin configurations s:

Z[J] =
∑

s

eβ
∑

〈i, j〉 Ji j sis j , (2)

where β is equal to 1
kBT and kB refers to the Boltzmann

constant. Interestingly, the above partition function can be
rewritten in a quantum formalism as follows: We insert new
spins Se (edge spins), denoted by green (light) circles, on the
edges of the square lattice, as Fig. 1(a) shows. The value of
each edge spin Se is defined as product of the vertex spins
living on the two endpoints of the edge e, i.e., Se = sis j . Next,
we replace the vertex spins in Eq. (2) with edge spins Se.
However, we also need to consider the constraints between the
edge spins. Specifically, as shown in Fig. 1(a), corresponding
to each face F of the lattice there is a constraint between edge
spins in the form of

∏
e∈∂F Se = 1, where e ∈ ∂F refers to

an edge around the face F . We apply such constraints by δ

functions in Eq. (2) and rewrite the partition function in the
following form:

Z[J] =
∑

S

eβ
∑

e JeSe
∏

F

δ

( ∏
e∈∂F

Se, 1

)
. (3)

Here
∏

F refers to all independent constraints corresponding
to faces of the lattice and Je = Ji j where i, j are the two
endpoints of e. Furthermore, by using the following form of
the δ function, δ(

∏
e∈∂F Se, 1) = 1+∏

e∈∂F Se

2 , we obtain

Z[J] =
∑

S

eβ
∑

e JeSe
∏

F

1 + ∏
e∈∂F Se

2
. (4)

Now we are ready to introduce the quantum formalism of
the partition function by replacing edge spins Se in Eq. (4)
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with Pauli operators Ze. To this end, note that each edge spin
Se takes two values ±1 which can be considered as eigenval-
ues of a Pauli operator Ze. Let |0〉 and |1〉 refer to eigenstates
of the Z operator with eigenvalues +1 and −1, respectively. It
is simple to check that

∑
Se

g(Se) = 2〈+|g(Ze)|+〉 where g is
an arbitrary function and |+〉 = 1√

2
(|0〉 + |1〉). Therefore, the

partition function in Eq. (4) reads as follows:

Z[J] = 2M⊗M〈+|eβ
∑

e JeZe
∏

F

1 + ∏
e∈∂F Ze

2
|+〉⊗M, (5)

where M refers to the number of edges of the lattice. The right-
hand side of the above equation is in fact an inner product of
the following quantum states:

|α[J]〉 = eβ
∑

e JeZe |+〉⊗M = 1
√

2
M ⊗e (eβJe |0〉 + e−βJe |1〉),

|G〉 =
∏

F

1 + BF

2
|+〉⊗M . (6)

Here BF = ∏
e∈∂F Ze, which is called a face operator; see

Fig. 1(b). Finally, the partition function is of the form Z[J] =
2M〈α[J]|G〉. While |α〉 is simply a product state containing
information of the couplings of the Ising model, |G〉 is an
entangled state which encodes the interaction pattern of the
Ising model. Specifically, |G〉 is a Toric code state defined on
qubits that live on the edges of the lattice. Note that, since
BF (1 + BF ) = (1 + BF ), it is clear that state |G〉 is stabilized
by BF . On the other hand, corresponding to each vertex of
the lattice or to each face of the dual lattice, there is a vertex
operator in the form Av = ∏

e∈v Xe; see Fig. 1(b). Here Xe

refers to the Pauli operator σx which is applied to the edge
qubit on edge e emanating to vertex v; see Fig. 1(b). Since
each vertex operator Av has zero or two common qubits with
BF operators, it is concluded that [Av, BF ] = 0. Finally, if
we apply Av to state |G〉 = ∏

F
1+BF

2 |+〉⊗M it will pass from∏
F

1+BF
2 and since Av|+〉M = |+〉M , it is concluded that the

Av are also stabilizers of |G〉. Therefore, state |G〉 can also be
written in terms of vertex operators in the following form:

|G〉 =
∏
v

1 + Av

2
|0〉⊗M . (7)

In this way, the state |G〉 is stabilized by vertex and face
operators Av and BF which are exactly stabilizers of Toric
code states as defined in Ref. [34]. Consequently, the partition
function of the 2D Ising model has been mapped to the inner
product of a product state and the Toric code state where
couplings of the Ising model are encoded in the product state
and interaction pattern of the Ising model is encoded in the
Toric code state. In this way, 2D Ising model is mapped to the
Toric code state as an entangled state with topological order,
which shows a natural robustness against local perturbation
[35–38]. To understand topological order of this state, let
us consider the above mapping for a lattice with a periodic
boundary condition, i.e., a torus. With such a topology, it
is necessary to reconsider the constraints which have been
considered in Eq. (3). In fact, the constraints associated with
faces of the lattice are not independent when we consider
a periodic boundary condition. As a result, the product of

FIG. 2. Loop operators T 1
z , T 2

z , T 1
x , and T 2

x correspond to non-
trivial loops around the torus.

all face operators in Toric code on a torus is equal to the
identity operator. Furthermore, there are other constraints
which should be added because of the topology of the torus.
In particular, consider two nontrivial loops as shown in Fig. 2
around the torus in two different directions. Since Z-type
loop operators, denoted by T 1

z and T 2
z , corresponding to the

above nontrivial loops, cannot be constructed by a product of
face operators, they should be considered as two independent
constraints. Consequently, state |G〉 includes both trivial and
nontrivial loop operators. The role of nontrivial loop operators
in |G〉 is a property which cannot be characterized by any
local order parameter. As shown in Fig. 2, there are two
nontrivial loops on the dual lattice and we can define two
X -type operators corresponding to such loops, denoted T 1

x and
T 2

x . Since these loop operators cross Z-type nontrivial loop
operators once, they have an anticommutation relations in the
following form:

{
T 1

x , T 2
z

} = 0,
{
T 1

z , T 2
x

} = 0. (8)

Now, if we apply operators T 1
x and T 2

x to state |G〉, we obtain
the fourfold degenerate ground space of the Toric code:

|ψμν〉 = (
T 1

x

)μ(
T 2

x

)ν |G〉, (9)

with μ, ν = {0, 1}. Because of the anticommutation relation
(8), it is concluded that the expectation values of T 1

z and T 2
z

are different for the above quantum states. Since T 1
x and T 2

x
are nonlocal operators, it means that the above quantum states
can be distinguished from each other only by nonlocal order
parameters. This property, that no local order parameter can
distinguish the above states from each other, is in fact the
result of topological order of Toric code states. We should
emphasize that here we considered the periodic boundary
condition in order to better explain the topological order in
the Toric code. However, in the following, we will return to
the open boundary condition, which is more convenient for
our calculations.
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FIG. 3. A schematic phase diagram of a random-bond Ising
model where ferromagnetic and paramagnetic phases are separated
by a critical curve. There is also a Nishimori line where p = e−2βJ

1+e−2βJ .

III. QUANTUM FORMALISM FOR THE ORDER
PARAMETER

The two-dimensional Ising model is a well-known statis-
tical mechanics model which can be used for describing the
ferromagnetic-paramagnetic phase transition when all cou-
plings in Eq. (1) are fixed to J . However, one can consider
a quenched disorder for couplings to generate a random-bond
Ising model where each coupling might be J with a probability
of 1 − p and might be −J with a probability of p. The set of
all edges E then includes two subsets of E1 and E2 where
E1 ∪ E2 = E ; all edge couplings in subset E1 are fixed to
+J and the couplings in subset E2 are fixed to −J . It has
been shown that such a model can still show a ferromagnetic-
paramagnetic phase transition. Such phase transitions can
be characterized by a local order parameter, which is the
averaged magnetization m; see Fig. 3 for a schematic phase
diagram of the random-bond Ising model.

In the previous section we gave a quantum formalism for
the partition function of such a model. In this section we are
going to find a quantum formalism for the magnetization m
in order to consider consequences of phase transitions in the
2D Ising model in the quantum side. Such a study has been
done for the Ising model without quenched disorder where the
above phase transition is mapped to a coherent to non coherent
phase transition in the noisy Toric code state [25]. However,
here we are going to consider the random-bond Ising model,
which has a richer phase diagram, and the magnetization is a
function of the temperature and the probability of disorder p.

We start with a quenched configuration of couplings to
calculate the magnetization and then we calculate the mean
value of this quantity for all realizations of the quenched
disorder. For an arbitrary spin, for example, sn:

mn[J] = 〈sn〉 = 1

Z[J]

∑
s

sneβ
∑

〈i, j〉 Ji j sis j , (10)

where Ji j = +J (−J ) when i and j are endpoints of an
edge e ∈ E1(E2). To find a quantum formalism for the above
relation, let us consider an open boundary condition for the
model where spins of the boundary are fixed to s0 = +1,
see Fig. 4. By such a boundary condition, we consider a
string called γn which starts from a spin in the boundary

FIG. 4. (a) String γn starts from a spin in the boundary and ends
in a spin at site n. (b) The Toric code state corresponding to the
Ising model with the above boundary condition will have an open
boundary where face operators in the boundary are three-local. To
each string γn we assign a Z-type operator 
Z = ∏

i∈γn
Zi.

and ends in spin sn. Next, since s2
i = 1, we can rewrite sn as

snsn−1sn−1 · · · s1s1s0 and, therefore, Eq. (10) is written in the
following form:

mn[J] =
∑

s (snsn−1)(sn−1sn−2) · · · (s1s0)eβ
∑

〈i, j〉 Ji j sis j

Z[J]
. (11)

Next, we do the same process that was done in the previous
section for finding the quantum formalism of the partition
function. First we replace Ising interactions sis j with edge
spins Se and then replace these spins with Pauli operators Ze.
Therefore, Eq. (11) is written in the following quantum form:

mn[J] = 〈α[J]| ∏e∈γn
Ze|G〉

〈α[J]|G〉 , (12)

where the operator 
Z = ∏
e∈γn

Ze refers to a product of Z
operators corresponding to all edge qubits belonging to string
γn. Furthermore, we note that since here we have an Ising
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model with open boundary, the state |G〉 in the above relation
is also the Toric code state defined on a lattice with open
boundary conditions. Thus, the face operators in the boundary
should be a local operator in the form of a product of three
Z operators which is called a three-local operator; see Fig. 4.
The operator 
Z is in fact the quantum form of the product
(snsn−1)sn−1 · · · s1(s1s0) in Eq. (11). Now we have a quantum
formalism for the order parameter of the random-bond Ising
model with an arbitrary quenched configuration of disorder.
We should emphasize that it is necessary to take the mean
value mn[J] for different quenched configurations. Therefore,
the mean value m = (

∑
n mn[J])/N will be a function of β

and p. In the next section, we find a physical meaning for this
quantity where we show that it is related to a decoherence
problem in the Toric code model.

IV. MAPPING TO THE TORIC CODE MODEL UNDER
BIT-FLIP CHANNELS

To this point, we have only rewritten the partition function
as well as the order parameter of the random-bond Ising
model in a quantum formalism. However, the above quantum
formalism seems only a mathematical mapping and we need
to introduce a physical meaning for the order parameter in
the quantum side. In this section, we show that the order
parameter can characterize the coherence of a quantum state in
the Toric code model, which is under two sequences of bit-flip
channels. To this end, first we need to introduce the bit-flip
channel and consider its effect on the Toric code model. This
section involves two subsections where in the first one we
introduce the noisy Toric code and in the second one we come
back to the quantum formalism of the order parameter and
derive the main result of the paper.

A. Toric code model and bit-flip noise

As briefly mentioned in the first section, the Toric code
model is defined by two kinds of stabilizer operators BF and
Av . Furthermore, the Toric code state |G〉 is also a ground
state of a Hamiltonian in the form of H = −∑

F BF − ∑
v Av .

Now, suppose that the initial state is the same as the ground
state |G〉, and then a Pauli operator X is applied to each qubit
with probability p. Here we use the same notation of the
random-bond Ising model because we are going to map these
problems to each other. Therefore, the initial state will change
to the following state after the bit-flip noise:

ρ =
∑
E

WE (p)Ê (X )|G〉〈G|Ê (X ), (13)

where E refers to a pattern of qubits which are affected by the
noise and Ê (X ) refers to a product of X operators which are
applied to the qubits belonging to the error pattern E . WE (p) is
the probability that an error pattern E happens. If the number
of qubits which have been affected by the noise is equal to l
and the total number of qubits is M, WE (p) will be equal to
pl (1 − p)M−l . It is useful to give a geometrical description for
the effect of the bit-noise in the Toric code state. As shown in
Fig. 5, when an X operator is applied to a qubit, it does not
commute with two face operators which involve that qubit.
Therefore, the system goes to an excited state which can be

m

m

X

m

m

FIG. 5. An X operator on a qubit in the Toric code does not
commute with two face operators which are neighbors of that qubit.
It leads to two excitations in the neighboring faces. A string of X
operators also leads to two excitations in the endpoints of that string.

represented by two excitations, which are called flux anyons,
in the corresponding faces. Consequently, the effect of the
bit-flip operator on a qubit is geometrically described by a
string in the dual lattice whose endpoints are flux anyons. In
the same way, the effect of bit-flip noise on other qubits can
be described by a pattern of strings whose endpoints show
excitations. However, there can also be some closed strings
(loops) where the pattern of effect of bit-flip operators is
described by loops. Such patterns do not lead to an excitation
and the Toric code state remains stable under such patterns.
Consequently, the state ρ is a mixture of excited states and
the ground state of the Toric code model. In particular, one
can compute the fidelity of ρ with the ground state i.e., F =
〈G|ρ|G〉 which is also a measure of stability of the Toric code
state against the bit-flip noise. This quantity will be in fact
equal to the total probability that bit-flip noise generates a
pattern of loops in the dual lattice.

By the above geometrical description for noise patterns, it
seems that some concepts like stability against noise might
be related to some geometrical problems. Furthermore, other
geometrical problems can emerge when we consider other
initial states in Eq. (13). For example, we define a specific
quantum state as a coherent superposition of the ground state
and an excited state of the Toric code model, an excitation
which is generated by applying Z operators in the ground
state. To this end, as shown in Fig. 6, consider a Toric code
model with an open boundary condition. Then consider a
string γ which starts from the boundary and ends on a vertex
of the lattice; see Fig. 6. Then, we construct the string operator

Z = ∏

e∈γ Ze corresponding to such a string. This operator
commutes with all face operators. It also commutes with all
vertex operators except the vertex operator corresponding to
the vertex at the endpoint of the string. Therefore, 
Z leads to
an excitation called a charge anyon in the Toric code model
which is geometrically represented by a string in the lattice.
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FIG. 6. A Toric code can be defined on a lattice with an open
boundary where face operators in the boundary are three-local. A
string γ which starts from the boundary leads to an excitation in the
vertex in the endpoint of γ . There are two X -type loop operators L+
and L− which cross the string γ for even and odd number of times,
respectively.

Now, consider a coherent superposition from the ground state
and the above excited state in the following form:

|ψ+〉 = 1√
2

(|G〉 + 
Z |G〉). (14)

Next, we consider the above state as an initial state which has
been affected by a bit-flip noise. As we explained, the bit-flip
noise can be described by patterns including open strings and
loops. Similar to the Toric code state |G〉, the effect of open
strings on the state |ψ+〉 leads to flux anyons. However, the
effect of loops is different here. We divide the noise patterns
that correspond to loops to two subsets; see Fig. 6. The first
subset, denoted by L+, contains loops that cross the string γ

an even number of times, and the second subset, denoted by
L−, contains loops that cross the string γ for an odd number
of times. Since the X -type loop operators corresponding to
the first subset commute with the operator 
Z , they preserve
the state |ψ+〉. On the other hand, the X -type loop operators
corresponding to the second subset anticommute with 
Z and,
therefore, convert the state |ψ+〉 to a new state in the form
|ψ−〉 = 1√

2
(|G〉 − 
Z |G〉. It will be interesting to consider

the effect of bit-flip noise only in a subspace generated by
|ψ+〉 and |ψ−〉. The initial state is a coherent state in this
subspace and, after the bit-flip channel, the quantum state
in this subspace is converted to a completely mixed state. It
has been shown that there is a quantum phase transition from
coherent to mixed phase in a critical value of the probability
pcr [25]. Such a result has been derived by a mapping from
the order parameter of the Ising model to an order parameter
in Toric code state which characterizes the coherence in the
above subspace. In the next section, we consider a different

noise process on the |ψ+〉 where the coherence of the model
is mapped to the order parameter of the random-bond Ising
model.

B. Random-bond Ising model and transition in coherence

Let us start again with the initial state |ψ+〉. Then, we
consider two sequences of bit-flip channels of Eq. (13) where
the probability of the noise is p for the first channel and is
q for the second one. We also suppose that, after the first
quantum channel, a measurement of face operators BF is done
in order to find what excitations have been generated by the
noise. Therefore, after measurement we will have a quenched
pattern of the error and then the second quantum channel is
applied. Consequently, the final quantum state should be in
the following form:

�[η] =
∑
E

WE (q)Ê (X )η̂(X )|ψ+〉〈ψ+|η̂(X )Ê (X ), (15)

where η refers to the error pattern generated by the first
channel. Similar to the previous section, here we give a
geometrical description of the above state. The most important
difference is that here we have a combination of two noise
patterns related to operators Ê (X ) and η̂(X ). However, both
the above operators are in the same type and both of them
involve patterns of open strings and loops. Therefore, the
initial state goes to its excitations if the combination of Ê (X )
and η̂(X ) corresponds to a pattern that includes open strings,
and it remains in the subspace of |ψ+〉 and |ψ−〉 if the above
combination corresponds to a pattern of loops. Furthermore,
here we can also consider coherence in the above subspace
where loops that cross the string γ an odd number of times
lead to decoherence in the above subspace. To characterize
the coherence in the above subspace, we define the following
parameter as a measure of coherence:

O[η] = W+[η] − W−[η]

W [η]
, (16)

where W+[η] is the fidelity of state �[η] with |ψ+〉 in the form
of W+[η] = 〈ψ+|�[η]|ψ+〉. Similarly, W−[η] is the fidelity of
�[η] and |ψ−〉, which is W−[η] = 〈ψ−|�[η]|ψ−〉 and W [η] =
W+[η] + W−[η]. By a geometrical description, W+[η] is inter-
preted as a probability that the combination of errors Ê (X )
and η̂(X ) generates loop configurations which cross string γ

an even number of times and W−[η] is the probability that
the above combination generates loop configurations which
cross γ an odd number of times. We should also emphasize
that the measurement that we have done after the first channel
can lead to different patterns of η̂(X ) with the corresponding
probability. However, we have defined the coherent parameter
O[η] for one specific quenched pattern, therefore one should
take the mean value O(p, q) = O[η] for different realizations
of η̂(X ). Since the probability of generating η̂(X ) is a function
of p, the mean value of the coherent parameter is a function
of p and q. Interestingly, we shall see that the coherence
parameter O(p, q) is mapped to the order parameter of the
random-bond Ising model. To show this, consider the quantum
form of the local magnetization:

mn[J] = 〈α[J]| ∏e∈γn
Ze|G〉

〈α[J]|G〉 . (17)
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In this equation, for a quenched configuration of couplings J,
there is a product state |α[J]〉 = 1√

2
M ⊗e (eβJe |0〉 + e−βJe |1〉),

where Je = +J for e ∈ E1 and Je = −J for e ∈ E2. Such
a quenched configuration of disorder in couplings can be
mapped to a quenched pattern of errors in the Toric code,
which was denoted by η. Then, we do a change of variable
from βJ to a parameter q = e−2βJ

1+e−2βJ . Since βJ is a quantity
between zero and infinity, it is concluded that 0 � q � 1

2 . By
such a change of variable the state (eβJ |0〉 + e−βJ |1〉) for e ∈
E1 is converted to eβJ (1 + q

1−q X )|0〉 and the state (e−βJ |0〉 +
e+βJ |1〉) for e ∈ E2 is converted to eβJ (X + q

1−q 1)|0〉 =
eβJ X (1 + q

1−q X )|0〉. Therefore, the state |α〉 is written in the
following form:

|α[J]〉 = eMβJ ⊗e

(
1 + q

1 − q
Xe

)
⊗e∈E2 Xe|0〉⊗M

= eMβJ

(1 − q)M ⊗e [(1 − q)I + qXe] ⊗e∈E2 Xe|0〉⊗M .

(18)

Next, consider the term ⊗e[(1 − q)I + qXe] in the above
equation. If we expand this product, it generates different
patterns of X operators where an X operator appears with
probability q. Therefore, we have

⊗e[(1 − q)I + qXe] =
∑
E

WE (q)Ê (X ), (19)

where WE (q) is the probability of error pattern E , which
is defined in Eq. (13). On the other hand, the other factor
⊗e∈E2 Xe in Eq. (18) is also a quenched pattern of η where each
qubit has been affected by an X operator with probability p.
In this way, the state |α〉 includes a superposition of all error
patterns generated by the two sequences of bit-flip channels.
The quenched error after the first channel is generated by a
measurement of the face operators.

Now, we are ready to consider the inner product
〈α[J]| ∏e∈γn

Ze|G〉 in Eq. (17). As we explained in Sec. II,
since the Av operators can be represented by loops in the dual
lattice, the state |G〉 = ∏

v (1 + Av )|0〉⊗M includes a superpo-
sition of X -type loop operators. We divide again all possible
loop configurations into two subsets. The first subset called
L+ includes loop configurations which cross the string γn

an even number of times, and the second subset called L−
includes loop configurations which cross the string γn an odd
number of times. Therefore, the state

∏
e∈γn

Ze|G〉 will be a
superposition of the loop configurations in L+ with a positive
weight and the loop configurations in L− with a negative
weight: ∏

e∈γn

Ze|G〉 = |G+〉 − |G−〉. (20)

Consequently, the inner product 〈α[J]|∏e∈γn
Ze|G〉 is equal to

〈α[J]|G+〉 − 〈α[J]|G−〉. In this way, we have an inner product
of |α[J]〉, as a superposition of all possible error patterns with
the corresponding probabilities, with |G+〉 and |G−〉, as two
kinds of loop configurations. Therefore, up to an irrelevant
factor, 〈α[J]|G+〉 (〈α[J]|G−〉) will be equal to the probability
that the bit flip noise generates loop configurations which

cross the string γn an even (odd) number of times, which is
the same as W+[J] (W−[J]). Furthermore, it is clear that the
denominator in Eq. (17) is also equal to W+[J] + W−[J] up to
an irrelevant factor which is removed from both denominator
and nominator. Therefore, the order parameter of the random-
bond Ising model will be in the form of mn[J] = W+[J]−W−[J]

W+[J]+W−[J]
which is the same as the definition of the coherence param-
eter in Eq. (16). Consequently, a ferromagnetic paramagnetic
phase transition in the 2D random-bond Ising model is exactly
mapped to a transition from a coherent to a noncoherent phase
in the noisy Toric code model. It is also important to compare
our result with the result which has already been derived in
Ref. [25], where a similar phase transition has been found. We
should emphasize that here we have a richer phase diagrams
with the two quenched and annealed noise parameters which
determine the coherence phase of the model. Therefore, there
is a coherence region in the phase diagram with a nonzero
coherence order parameter. We will return to this point in the
conclusion in order to show that it can lead to different insights
on the noisy Toric code model.

V. CONNECTION TO ERROR CORRECTION IN THE
TORIC CODE

In this section, we want to point out an interesting connec-
tion between our problem and quantum error correction in the
Toric code. In particular, in Ref. [26] the authors have consid-
ered a Toric code model defined on a torus under bit-flip noise
where, after measuring error syndromes, errors are corrected
by an active process. To this end, one has to apply a string of X
operators between two syndromes to generate a loop to correct
the error. However, since the Toric code has been defined on
a torus, there is a probability that the string applied between
two syndromes generates a nontrivial loop around the torus.
Since such a nontrivial loop leads to an error in the code space,
the Toric code will be noncorrectable under such a situation.
Therefore, the probability of the noise p should be below a
threshold such that the probability of generating a nontrivial
loop goes to zero when the lattice size goes to infinity. It
technically means the quenched error syndrome and the string
of correction are in the same homological class. In the above
paper, the authors have shown that the probability of being in
the same homological class is mapped to the partition function
of the random-bond Ising model. Therefore, error threshold of
the Toric code is mapped to the critical point of the random-
bond Ising model on the Nishimori line where p = e−2βJ

1+e−2βJ .
In this respect, it seems that there are similarities with our
problem where we have also a mapping to random-bond Ising
model and p = q is in fact the Nishimori line in our process.

To clarify the above connection, let us come back to
Eq. (15) and replace the initial state with the ground state of
the Toric code model defined on a torus:

�∗[η] =
∑
E

WE (q)Ê (X )η̂(X )|G〉〈G|η̂(X )Ê (X ). (21)

In fact, we will have two sequences of bit-flip channels on the
Toric code state with a measurement of syndromes after the
first channel. To be on the Nishimori line, we suppose that,
for both error patterns Ê and η̂, the probability of single-qubit
noise is equal to p. Then, we consider the fidelity of the final
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state with the initial state in the form of F ∗[η] = 〈G|�∗[η]|G〉.
Using geometrical interpretation of error patterns, it is con-
cluded that F ∗ is equal to the total probability that error
pattern Ê generates loop configurations when it is added to
quenched pattern η̂. It is indeed equal to the probability that
error patterns Ê and η̂ are in the same homological class. On
the other hand, as it has been shown in Ref. [26], this quantity
is directly related to the correctability of the Toric code under
bit-flip noise in the sense that a singularity in this quantity
reveals a transition in correctability. Interestingly, F ∗ is also
proportional to partition function of the random-bond Ising
model. To check this, one can start with quantum formalism
of the partition function Z[J] = 2M〈α[J]|G〉. Then, similar
to the procedure for the order parameter, and by a change of
variable in |α[J]〉 in the form of q = e−2βJ

1+e−2βJ , one can show that
Z[J] is proportional to F ∗. Therefore, it is concluded that the
ferromagnetic-paramagnetic transition in the random-bond
Ising model on the Nishimori line is mapped to a transition
in the correctability of the Toric code.

We note that we derive the above result by using the dual
correspondence between the Toric code and the 2D Ising
model. Therefore, it seems that such a result can be obtained
in other topological CSS codes which are related to classical
spin models by the dual correspondence [12]. It means that we
have a useful tool for finding error thresholds in topological
CSS codes; by using the hypergraph duality which was intro-
duced in Ref. [12], one is able to find the classical spin model
that is associated with an arbitrary topological CSS state.
Then, one should numerically calculate the magnetization
of the corresponding random-bond spin model to find the
transition point on the Nishimori line. To clarify this point,
let us give some examples as follows:

As it has been shown in Ref. [12], using duality of hyper-
graphs one can show that dual of color code on a D-colex
(D-dimensional color complex) is an Ising model with (D +
1)-body interactions on a D-simplicial lattice. Consequently,
to find the error threshold of the color code on a D-colex, it
suffices to find the transition point in a random-bond Ising
model with a (D + 1)-body interaction on the D-simplicial
lattice. Interestingly, this problem has recently been studied in
Ref. [32] where the authors have shown that the error thresh-
old of the color code defined on a three-colex is mapped to the
transition point of an Ising system with four-body interactions
defined on a three-simplicial lattice, which confirms our state-
ment. For another example, Ref. [12] has shown that the dual
of the Toric code defined on an arbitrary graph in arbitrary
dimension is an ordinary Ising model on the same graph.
Therefore, the transition point of random-bond Ising models
defined on an arbitrary graph leads to the error threshold of
the Toric code on the same graph. We should emphasize that
such correspondence has already been introduced for two-
and three-dimensional examples, while our result holds for
any dimension. Furthermore, we note that the above duality
is held for all CSS codes and it is not limited to archetypical
examples including Toric codes and color codes. For example,
a different quantum CSS code is the X -cube model, which
has attracted much attention because of its properties that are
more exotic than those of topological codes [39]. This code
is defined on a cubic lattice with qubits living on links of
the lattice; see Fig. 7(a). X -type stabilizers of this code are

FIG. 7. (a) X-cube model is defined on a cubic lattice with qubits
living on links of the lattice. Corresponding to each cell of the lattice
denoted by yellow (light) color, an X type stabilizer is defined by
the product of X operators for the 12 qubits belonging to the cubic
cell. (b) In a dual picture, one should insert spins in the center of each
cell. Since each original qubit belongs to four cells of the lattice, each
edge of the dual hypergraph involves four spins.

defined by 12-body interaction terms corresponding to each
cubic cell of the lattice. According to Ref. [12], we can define
a hypergraph H corresponding to this code where each cubic
cell is equal to an edge of H connecting the 12 qubits (vertices
of H) of the cell. To find the dual of the above hypergraph, we
should exchange the role of vertices and edges in H . To this
end, we insert new vertices in the center of each cubic cell of
the lattice. The dual hypergraph H̃ is defined with these new
vertices and the set of edges that correspond to the vertices of
H . Since each vertex of H (each link of the cubic lattice) is
a member of four edges of H (four cells of the cubic lattice),
we conclude that each edge of H̃ has to involve four vertices
corresponding to those cells; see Fig. 7(b). Consequently, the
dual hypergraph H̃ can be represented as a three-dimensional
lattice with vertices living on nodes of the lattice and each
plaquette of the lattice corresponds to an edge of H̃ . Then
we can define a classical spin model corresponding to such
a hypergraph where spins live on vertices and there is a
four-body interaction for each plaquette of the 3D lattice.
Finally, one can study the ferromagnetic phase transition in
such a classical model with random couplings to find the error
threshold of the X -cube model. We should emphasize that
the concern of this study is not to find the error threshold
for different topological CSS states. The aim of the above
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FIG. 8. A schematic of a phase diagram for the noisy Toric
code model where transition point to the noncoherent phase denoted
by qth decreases by increasing quenched noise p in a sense that,
corresponding to the transition curve, qth is a decreasing function of
p. The line p = q refers to the Nishimori line and the transition point
on the Nishimori line is called Nishimori point, which determines the
error threshold qth(pc ).

examples is to show how the hypergraph duality can be used
to find the classical spin models corresponding to different
topological CSS states.

VI. DISCUSSION

Although mapping the error threshold of topological codes
to the phase transition of random-bond Ising models has been
established in the past decade, in this paper, we tried to reveal
another aspect of those connections by using the quantum
formalism of partition functions. First, we introduced a dif-
ferent interpretation for the transition point of the random-
bond Ising model in the quantum side as a quantum phase
transition from a coherent to a noncoherent phase in a noisy
Toric code model. Specifically, since there are two quenched
and annealed noise parameters (p, q) in the model, we find a

richer phase diagram for the coherence phase of the model
compared with the homogeneous model. In particular, the
phase diagram, which has been plotted schematically in Fig. 8,
shows that the quenched noise is more destructive to the
coherence than the annealed noise, i.e., pc < qc. Moreover,
the maximum level of the quenched noise that the coherence
can tolerate is not very sensitive to the strength of the annealed
noise up to the Nishimori point qth(pc). On the other hand,
the threshold value of the annealed noise goes abruptly to
zero at the Nishimori point pc, which coincides with the error
correction threshold.

Next, we showed that the problem of finding the error
threshold of topological CSS codes is hidden in the quan-
tum formalism of partition functions. Therefore, the duality
correspondence between the partition functions of classical
spin models and the quantum CSS states can be used to
study the error threshold of topological CSS codes. As we
explained in a few examples, by using the hypergraph duality
correspondence, one would be able to find the classical spin
model corresponding to an arbitrary CSS code. Therefore, our
result provides a useful tool for the study of error thresholds
in different CSS codes.

Finally, we would like to note that our results reveal the
importance of studying different thermodynamic quantities
in the framework of the quantum formalism of partition
functions. While most studies had been done on partition
functions, we showed that quantum formalism for the order
parameter can also provide important insights about quantum
stabilizer states. Therefore, it would be interesting to consider
quantum formalism for other thermodynamic (well-known)
quantities.
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