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High-dimensional quantum teleportation under noisy environments
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We study the protocol of qudit teleportation using quantum systems subjected to several kinds of noise
for arbitrary dimensionality d . We consider four classes of noise: dit-flip, d-phase-flip, dit-phase-flip, and
depolarizing noise, each of them corresponding to a family of Weyl operators, introduced via Kraus formalism.
We derive a general expression for the average fidelity of teleportation in arbitrary dimension d for any
combination of noise on the involved qudits. Under a different approach we derive the average fidelity of
teleportation for a more general scenario involving the d-dimensional generalization of amplitude damping noise
as well. We show that all possible scenarios may be classified in four different behaviors and discuss the cases
in which it is possible to improve the fidelity by increasing the associated noise fractions. All our results are
in agreement with previous analysis for the case of qubits [R. Fortes and G. Rigolin, Phys. Rev. A 92, 012338
(2015)].

DOI: 10.1103/PhysRevA.100.062311

I. INTRODUCTION

Since its proposal in 1993 [1], the teleportation protocol
has represented one of the most known and widely studied
applications of quantum entanglement [2]. According to it,
if one has a source of maximally entangled qudits and a
measurement apparatus capable of discriminating the d2 ele-
ments of the generalized Bell basis, then it is possible to send
an arbitrary qudit state between two locations even without
prior knowledge of it. Nevertheless, in day by day experi-
ments some additional features arise from the unavoidable
interaction of the involved parts with the environment and/or
imperfections in the preparation of the system, leading to
losses of the resources responsible for the improvement in
the execution of the task over its classical analog. Thus, in
addition to adopting strategies aiming to diminish the action
of noise, one may also modify the scheme of measurements
and operations on the parts and consequently to improve the
performance of the protocol [3,4]. For this reason, in order
to effectively optimize the strategies to be implemented it
is important to have a general picture of the scenario. In
this respect, the problem of characterizing the protocol of
teleportation in the presence of noisy environments has been
addressed from several perspectives. In [5], Oh and collab-
orators employ the Lindblad operators formalism, obtaining
the fidelity of teleportation for several classes of noise in
the quantum channel. More recently, Fortes and Rigolin have
presented a set of results within the frame of Kraus operators
for some of the most known instances of noise in the literature
[6]. By using the same approach, the authors of [7] contrast
theoretical predictions with experimental results. In addition,
there are even some approaches to the problem of multipartite
noisy teleportation [8–10].

Apart from a few exceptions, most of the effort in de-
scribing quantum information protocols under noisy scenarios
has been focused on systems involving qubits; nevertheless
it has been shown that the performance of several tasks is

enhanced when high-dimensional systems are used instead
[11–15]. In fact, two independent groups have been able to
successfully implement the teleportation protocol of qutrits
recently [16,17]. Furthermore, because of the limited effi-
ciency in usual detectors, it is more convenient to use single-
qudit systems in the process of generation and manipulation of
high-dimensional entanglement, rather than multiqubit based
structures [18]. In this way, the exploration of quantum infor-
mation protocols employing qudits under realistic conditions
becomes an important aspect of quantum information science.

In this paper we present a characterization of the standard
protocol of qudit teleportation considering several sources
of imperfection, including nonmaximally entangled channel
and/or joint measurements and qudits susceptible to mod-
ifications of their states due to the interaction with their
environment. The paper is organized as follows. First we
present the protocol, derive general expressions for the fidelity
of teleportation, and study the noiseless case. In Sec. III we
introduce the Kraus operators used throughout this paper to
model the effect of noise in the system. Then we consider the
simplest case in which noise acts on a single qudit and extend
results to more general scenarios involving more than one part
affected. The last part is devoted to discuss our main results
and present some conclusions.

II. TELEPORTATION PROTOCOL

The standard teleportation protocol involves two parts: Al-
ice and Bob, as usual (see Fig. 1), sharing a pair of entangled
qudits the state of which may be described by a density opera-
tor ρ̂ch. Alice has an additional qudit prepared in an arbitrary,
not necessarily known, qudit state |φ〉 = ∑d−1

j=0 α j | j〉; her task
is to send it to Bob. For this, she carries out a d2-outcome joint
projective measurement on her pair of qudits in a generalized
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FIG. 1. Teleportation scheme: Alice and Bob share a channel
composed by two entangled qudits prepared in a state ρ̂ch (red
dashed). Alice performs a joint measurement on qudits I and A
(blue dotted). Under appropriate conditions (maximal entanglement)
and after LOCC (green dot-dashed), corresponding to transmission
of a pair of dits (m, n) using a classical channel and subsequent
application of a local unitary operation Ûmn on qudit B, it finally holds
in the initial state of the input qudit I .

Bell-like basis {|�mn〉}, with elements given by

|�mn〉 =
d−1∑
k=0

βkm |k, k ⊕ n〉 , (1)

where the symbol “⊕” denotes sum modulo d and the βkm

coefficients account for the extent of entanglement and satisfy
the relation

∑d−1
k=0 βkmβ∗

km′ = δmm′ . In this way, the usual max-
imally entangled joint measurements are recovered whenever
βkm = ωk·m

d /
√

d , where ωd = exp(2π i/d ) is the primitive dth
root of unity.

By employing a classical channel, Alice sends the infor-
mation about her measurement outcome (m, n) to Bob, who
applies a local unitary operation on his qudit, given by one
out of the d2 Weyl operators Ûmn, defined as [19]

Ûmn =
d−1∑
j=0

ω
jm
d | j〉〈 j ⊕ n|. (2)

After each run, the state of Bob’s qudit (up to normaliza-
tion) holds:

ρ̂mn = Ûmn trA{(|�mn〉〈�mn| ⊗ 1̂B)|φ〉〈φ| ⊗ ρ̂ch} Û †
mn,

where trA denotes the partial trace on the subsystem associated
to Alice.

The reliability of the protocol is usually assessed by cal-
culating the fidelity of teleportation, i.e., how close the state
in Bob is after the process to that initially possessed by
Alice: Fmn = tr(ρ̂mn|φ〉〈φ|)tr(ρ̂mn)−1, where the normaliza-
tion factor tr(ρ̂mn)−1 is equal to the probability of occurrence
of the (m, n) output. By considering all possible measurement
results, the mean fidelity reads

F =
∑
mn

tr{|φ〉〈φ|ρ̂mn}. (3)

Given that our goal is to assess the quality of the protocol,
independent of the teleported state and due to the fact that

F typically depends on the coefficients α j , then it is more
convenient to calculate the average fidelity over the set of
input states

〈F 〉 = 1

Vd

∫
d
d F. (4)

General expressions for d
d and Vd are given in Appendix A.
For the sake of simplicity in what follows we will refer to 〈F 〉
as the fidelity instead of average fidelity of teleportation.

Noise-free environment

Let us assume the qudits composing the channel are ini-
tially prepared in a pure partially entangled state, i.e., ρ̂ch =
|ψ〉〈ψ |, with |ψ〉 = ∑d−1

k=0 γk |kk〉. After some calculations the
fidelity of teleportation is reduced to

〈F 〉 = fC

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + 1

d

d−1∑
m, n = 0
j > k = 0

Re
[
ω

m(k− j)
d β jmβ∗

kmγk⊕nγ
∗
j⊕n

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

where fC = 2
d+1 is known as classical fidelity and corresponds

to the maximal value attained by the fidelity of teleportation
after the usage of any classical strategy [20,21], e.g., by
using a classical channel, Alice sends to Bob the result of a
projective measurement carried out on the input qudit. Then,
based on this information he guesses the state his qudit has to
be prepared.

Remarkably, in the expression above the classical and
quantum contributions to the fidelity are made clear. Fur-
thermore, it is easy to see that whenever we have maximal
entanglement in the measurements and channel (γk = 1/

√
d )

the second term is reduced to (d − 1)/(d + 1), and in this way
the fidelity reaches its maximum value, 〈F 〉 = 1, as expected.

In order to have a qualitative picture of how the
amount of entanglement in the channel is related to the
quantum contribution to the fidelity of teleportation fQ =

2
d (d+1)

∑d−1
m, n = 0
j > k = 0

Re(ωm(k− j)
d β jmβ∗

kmγk⊕nγ
∗
j⊕n), we produced a

sample of random entangled states uniformly distributed in
the space of the Schmidt basis [22]. Results of the quantum
contribution to the fidelity of teleportation (normalized to
one), f ′

Q[= (d + 1) fQ/(d − 1)], as a function of the amount
of entanglement in the channel for the case in which the
measurement basis is maximally entangled, are presented in
Fig. 2. Note that d = 2 is the only case in which there is a one
to one relation between f ′

Q and the amount of entanglement. In
contrast, it is only possible to infer bounds on the extent of a
channel’s entanglement for a given value of the fidelity within
the high-dimensional case. It is not difficult to show that for
each dimensionality d such a boundary is fully described by
d − 1 families of states ϕμ:

|ϕμ〉 = aμ |00〉 +
√

1 − a2
μ

μ

μ∑
k=1

|kk〉 , (5)

where μ = 1, · · · , d − 1, with aμ ∈ [0, 1/
√

μ + 1] for μ =
1, · · · , d − 2 and aμ ∈ [0, 1] for μ = d − 1. It is possible to
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FIG. 2. Normalized quantum contribution to the fidelity f ′
Q[=

(d + 1) fQ/(d − 1)] as a function of the amount of entanglement in
the channel (normalized to log d), for a maximally entangled mea-
surement basis and a set of N random pure states of two entangled
qudits, for several values of d . (a) d = 2, N = 104. (b) d = 3, N =
105. (c) d = 4, N = 105. (d) d = 5, N = 106. Each line corresponds
to a particular family of “boundary” states ϕμ, given by Eq. (5): Red
dotted, μ = 1; green dashed, μ = 2; blue solid, μ = 3; and cyan
dash-dotted, μ = 4. Note also that any intersection point between
two family lines corresponds to a maximally symmetric ν-rank state
φν [Eq. (6)].

see that maximally symmetric ν-rank states,

|φν〉 = 1√
ν

ν−1∑
k=0

|kk〉 , (6)

with ν = 1, · · · , d − 1, are extremal cases of the families ϕμ.
It is worth remarking that the relation between fidelity of

teleportation and bounds of entanglement presented above
holds whenever the source is capable of providing entangled
pairs in pure states. Nevertheless, the previous analysis does
not hold when the channel is prepared in a mixed state, given
that as shown in the next section the classical contribution
is also modified in this case. In this respect, by employing
the recently introduced concept of nonclassical teleportation
witnesses [23,24], Šupić, Skrzypczyk, and Cavalcanti have
found that it is possible to infer lower bounds of channel
entanglement from teleportation data only [25], even for
scenarios in which Alice and Bob share pairs prepared in
some special families of mixed entangled states not capable
of attaining fidelity of teleportation values above the classical
limit, also known as bound entangled states [26].

III. NOISE AND KRAUS OPERATORS

In addition to the technical limitations in the preparation
of the system and realization of measurements in maximally
entangled states, noise is an unavoidable feature of real exper-
iments; for this reason it is very important to establish strate-
gies which lead to the improvement of the final results. In the
following sections we explore the influence of protecting one
or more qudits from noise on the fidelity of teleportation.

FIG. 3. Weyl operators Ûmn and their relation with Kraus opera-
tors for several kinds of noise on d-dimensional systems. The blue
row represents dit-flip-like operators, the yellow column represents
d-phase-flip-like operators, and the pink squares are related to ma-
trices corresponding to dit-phase-flip-like noise. Note that the three
classes mentioned before are employed to define depolarizing noise
(blue dashed line). In addition, the set of Pauli matrices corresponds
to the nontrivial operators for d = 2 (red dashed line).

To date there are several methods to study the evolu-
tion of the state ρ̂, associated to an open quantum system
[27]. One of the most widely used is the Kraus operators
formalism, in which the evolution may be modeled by a
trace preserving map ρ̂ → ρ̂ ′ = ∑

k Êk ρ̂Ê†
k , where the Êk’s

are known as Kraus operators and satisfy the completeness
relation

∑
k Ê†

k Êk = 1̂ [27]. Under this approach the Êk op-
erators contain information about the effects of the system-
environment interaction, without the necessity of deepening
into the involved physical processes behind it. Let us intro-
duce the relation between high-dimensional generalizations of
the most known classes of error in quantum systems and Weyl
operators.

A. Noise and Weyl operators

Kraus operators corresponding to some of the most known
instances of quantum noise, namely, bit-flip, phase-flip, bit-
phase-flip and depolarizing noise for d = 2 and 3, are pre-
sented in [27,28], respectively. In addition, it is not difficult
to see that arbitrary d-dimensional generalizations are pro-
portional to families of Weyl operators Ûmn [Eq. (2)]; such a
correspondence is illustrated in Fig. 3. This class of operators
represents a very important tool when dealing with quantum
information tasks based on high-dimensional systems. Among
them it is possible to highlight the quantum teleportation
protocol [1,21], representation of quantum states [19], ran-
dom unitary evolutions [29], quantum computing [30,31], and
quantum error correction [32]. In the latter case, the elements
of the set of Weyl operators (also known as the single-qudit
Pauli group) are often found in literature as products of the
form ωk

d X̂ mẐn, where X̂ and Ẑ correspond to the operators
Û01 and Û10, respectively, and 0 � k, m, n � d − 1 [31–33].
In addition, note that the set {Ûmn} constitutes a natural basis
for the d × d Hilbert-Schmidt space and that Weyl operators
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are proportional to the set of Pauli matrices for d = 2 (see
Fig. 3).

Let us briefly describe each particular noise and the cor-
responding expressions for the Kraus operators used in this
paper.

(1) Dit-flip noise. In analogy to bit-flip noise for d = 2, this
kind of noise considers perturbations that flip | j〉 either to the
state | j ⊕ 1〉, | j ⊕ 2〉, . . . , or | j ⊕ d − 1〉, with probability p.
The associated Kraus operators are Ê00 = √

1 − pÛ00, Ê01 =√
p

d−1 Û01, . . . , and Ê0,d−1 =
√

p
d−1 Û0,d−1.

(2) d-phase-flip noise. A qudit | j〉 subjected to d-phase-flip
noise may with probability p suffer one out of d − 1 phase
shifts of the form ωd | j〉, ω2

d | j〉 , . . . , ωd−1
d | j〉. The corre-

sponding Kraus operators are given by Ê00 = √
1 − pÛ00,

Ê10 =
√

p
d−1 Û10, . . . , and Êd−1,0 =

√
p

d−1 Ûd−1,0.
(3) Dit-phase-flip noise. This is a special case in which a

combination of both former kinds of noise may take place,
e.g., a qudit may suffer a flip and a phase shift at the same
time. The related Kraus operators are Ê00 = √

1 − pÛ00 and
Êmn =

√
p

d−1 Ûmn, with 1 � m, n � d − 1.
(4) Depolarizing noise. Under this, a system initially pre-

pared in an arbitrary state evolves to a maximally mixed state
1̂/d with probability p. The Kraus operators for this are given

by [30,31]: Ê00 =
√

1 − d2−1
d2 pÛ00 and Êmn =

√
p

d Ûmn, with
0 � m, n � d − 1, for (m, n) �= (0, 0).

It is important to mention that the present paper does not
refer to any particular implementation; for this reason the
noise models we have just described consider that possible
errors can occur with equal probability. For instance, a qutrit
under interactions with the environment leading to a dit-flip
noise may jump either one or two levels above, each with
probability p/2.

The Kraus operators for the classes of noise mentioned
above may be written as Êmn = amnÛmn, with coefficients
amn ∈ R, satisfying

∑
mn a2

mn = 1. Given an arbitrary system
initially prepared in a state ρ̂ = ∑

�k�l ρ�k�l |�k〉〈�l|, where N is the
number of subsystems, �k = (k1, ..., kN ), and 0 � k j � d − 1,
the action of a set of Kraus operators Ê�k�l = Êk1l1 ⊗ ... ⊗
ÊkN lN = ∏N

j=1 akj l jÛk1l1 ⊗ ... ⊗ ÛkN lN transforms ρ̂ into ρ̂ ′ =∑
�m�n ρ ′

�m�n | �m〉〈�n|, with ρ ′
�m�n given by

ρ ′
�m�n =

∑
�k�l

ω
�k·( �m−�n)
d ρ �m⊕�l,�n⊕�l

N∏
j=1

a2
k j l j

. (7)

This expression contains the information about noise acting
on the whole system and it is very useful in the calculation
of a general expression for the fidelity of teleportation (see
Appendix C).

An important class of noise related to losses in quantum
systems is known as amplitude damping noise. However, in
contrast to the previous cases, the related Kraus operators are
not proportional to single Weyl operators. For this reason,
calculations of fidelity involving amplitude damping noise
were carried out using the standard computational basis. Now
let us briefly present its corresponding Kraus operators and the
general expression for modified density operator coefficients.

B. Amplitude damping noise

Amplitude damping noise has been used to model a large
amount of phenomena including idle errors in quantum com-
puting [31], energy dissipation, spontaneous photon emission,
and attenuation, among others in two level systems [27]. A
d-dimensional generalization was recently introduced in [34];
the corresponding Kraus operators read

Ê0 = |0〉〈0| +
√

1 − p
d−1∑
j=1

| j〉〈 j| (8)

and

Ê j = √
p|0〉〈 j|, (9)

with j = 1, . . . , d − 1. This kind of noise may be interpreted
in the following way: A d-level system interacting with its
environment may with probability p lose population from the
excited levels, leading the system to the ground state |0〉.

In general terms, for a system composed by one part only,
we can write any Kraus operator as Êk = ∑

mn a(k)
mn|m〉〈n|,

with coefficients a(k)
nm ∈ C, satisfying

∑
kn a(k)

mna(k)∗
ln = δml

(due to the completeness relation). The N-party case
is a straightforward generalization ρ̂ → ρ̂ ′ = ∑

�k Ê�k ρ̂ Ê†
�k ,

where �k = {k1, . . . , kN }, as previously and the Kraus
operators are given by Ê�k = Ê (a1 )

k1
⊗ Ê (a2 )

k2
· · · ⊗ Ê (aN )

kN
=∑

�m�n (
∏N

j=1 a
(k j )
mj n j )| �m〉〈�n|. In this case the modified density

operator coefficients ρ ′
�p�q are reduced to

ρ ′
�p�q =

∑
�k �m�n

⎛
⎝ N∏

j=1

a
(k j )
p j mj a

(k j )∗
q j n j

⎞
⎠ρ �m�n. (10)

The coefficients a
(k j )
mn may be easily calculated for each partic-

ular case as usual: a
(k j )
mn = 〈m| Êk j |n〉.

We have performed calculations of fidelity of teleportation
for the cases in which the three qudits involved in the process
may be affected by arbitrary combinations of the classes of
noise described previously. For details, we refer the reader to
Appendix C. The following sections are devoted to present
results concerning some particular cases.

IV. NOISE ACTING ON A SINGLE QUDIT

A. Weyl-like noises

In this part we consider the case of two qudits fully
protected from noise, e.g., an experiment in which the pro-
duction of pairs of entangled qudits is carried out in Alice’s
location and Bob’s qudit is affected by interacting with the
environment during the transportation process.

By direct substitution into the expression for fidelity
[Eq. (C3)], it is easy to see that when noise is acting on
one qudit only the fidelity does not depend on the qudit
affected. Then, giving continuity to the example given above,
we consider that the affected qudit is that on Bob’s location. In
this case the general expression for the fidelity of teleportation
is reduced to

〈F 〉 = 1

d + 1

[
1 + dc2

p + c2
0 − c2

p + (d + 1)
(
c2

0 − c2
p

)
fQ
]
,
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which does not depend on the coefficient c f and for this reason
the fidelities corresponding to dit-flip 〈FF 〉 and dit-phase-flip
〈FFP〉 noises are both equal to

〈FF 〉 = 〈FFP〉 = 2

d + 1

(
1 − p

2

)
+ fQ(1 − p). (11)

For d-phase-flip noise, the fidelity is reduced to

〈FP〉 = 2

d + 1
+ fQ

(
1 − d

d − 1
p

)
; (12)

the classical fidelity is not affected because phase shifts are
exclusive elements of quantum systems. This feature will be
explored in more detail in the following subsection.

The corresponding fidelity for depolarizing noise is

〈FD〉 = 2

d + 1

(
1 − d − 1

2d
p

)
+ fQ(1 − p). (13)

Note that when we have a maximally entangled channel
and measurements the fidelities 〈FF 〉, 〈FP〉, and 〈FFP〉 are all
equal to

〈F 〉 = 1 − d

d + 1
p, (14)

and the corresponding to depolarizing noise reduces to

〈FD〉 = 1 − d − 1

d
p. (15)

The noise thresholds [critical noise fractions above which the
fidelity of teleportation acquires values below the classical
limit, fC = 2/(d + 1)], are given by p∗ = (d − 1)/d and
p∗

D = d/(d + 1).

B. Amplitude-damping noise

In this case it is not possible to write a closed expression
in terms of the quantum contribution to the fidelity of tele-
portation fQ, in the same way as in the previous section, for
arbitrary dimension, d . For a maximally entangled measure-
ment basis and channel, the fidelity reads

〈FAD〉 = 2

d + 1

[
d2 − d + 2

2d
− (d − 1)2

2d
p + d − 1

d

√
1 − p

]
.

The noise threshold p∗
AD in this case is given by

p∗
AD = d + 2

√
d

(
√

d + 1)2
.

Note that the above expression for the fidelity of teleportation
is valid whenever two parts are fully protected and only
one qudit is being affected by amplitude damping noise,
no matter which one. Nevertheless, this symmetry ceases to
appear when entanglement is not maximal and/or another
qudit suffers the action of any kind of noise.

C. Optimization of fidelity under d-phase-flip noise in one qudit

Besides the fact that the classical fidelity is not affected by
the presence of d-phase-flip noise acting on a single qudit, it is
possible to find some other interesting features. By analyzing
the expression for fidelity [Eq. (12)], we see that above a
noise threshold p∗ = (d − 1)/d the coefficient accompanying

FIG. 4. Solid: Optimal fidelity of teleportation for the case in
which only one of the qudits may suffer d-phase-flip noise. Dashed:
Classical fidelity. (a) Calculations of 〈Fp〉 for 2 � d � 5. (b) Optimal
fidelity of teleportation for arbitrary dimension d .

the quantum contribution becomes negative. This situation
may be overcome if we make a phase addition in the mea-
surement basis, as pointed out in [6] for d = 2. Without loss
of generality and in order to simplify calculations, assume a
channel initially prepared in a maximally entangled state and a
maximally entangled measurement basis with arbitrary phases
φ j : β jm = eiφ j /

√
d , with φ0 = 0. The fidelity then holds:

〈FP〉 = 2

d + 1

⎧⎨
⎩1 + 1

d

(
1 − pd

d − 1

)

×
(

d−1∑
k=1

cos φk +
d−1∑

k>l=1

cos(φl − φk )

)⎫⎬
⎭. (16)

The problem is thus reduced to an optimization procedure
in which we search for extremal values (maximum when
p < p∗ and minimum for p > p∗) of the quantum contribution
to the fidelity. We carried out analytical calculations up to
d = 3, obtaining the following results: For noise fractions
below the threshold p∗, the whole set of phases is null, as ex-
pected. For p > p∗, we got φ1 = π for d = 2 and (φ1, φ2) =
(2π/3, 4π/3) for d = 3. The resulting fidelities are plotted in
Fig. 4(a). Further numerical calculations were performed from
which we were able to infer the following expressions for the
optimized fidelity:

〈FP〉 =
{

1 − d p
d+1 for p < p∗

d p+d−1
d2−1 for p > p∗ . (17)

In conclusion, if somehow either Alice or Bob is capable
of estimating the associated d-phase-flip noise fraction on
the affected qudit, then she can improve the fidelity of the
teleported state by choosing one out of two measurement
bases. The results are summarized in Fig. 4(b) for arbitrary d .
As it can be seen, the best improvement is attained by systems
composed by qubits. As Fortes and Rigolin have shown [6],
this feature can be exploited if we permit a part of the system
to be strongly affected by phase-flip noise. Nevertheless it is
worth remarking that such a recovery in the fidelity of qubit
teleportation reported in [6] may be explained by the fact
that an increase in the noise fraction p leads to an effective
suppression of the mixedness in the final state as p → 1.
Unfortunately this is not the case for arbitrary dimension,
given that there are more than one phases involved; thus such
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FIG. 5. Fidelity of teleportation under a scenario in which the
qudits are affected by dit-phase-flip, dit-flip, and d-phase-flip noises,
respectively (FP, F, P), and d = 3, for configurations leading to
values above the classical limit, 〈F 〉 > fC = 1/2. It is possible to
notice that the larger the noise fraction the lower the fidelity of
teleportation, as expected.

a recovery becomes lower as we increase d , as it can be seen
in Fig. 4(a).

V. NOISE IN MORE THAN ONE QUDIT

In this section we explore the case in which protection
may be applied in at most one of the qudits [35]. In order
to have the best insight from the results, we assume maximal
entanglement in the channel and measurements.

Before examining several cases in detail let us sum-
marize some general results: When entanglement is max-
imal, given either one, two, or three classes of Weyl-
like noises acting on the system, the fidelity does not de-
pend on how those are distributed on the qudits. In this
way we have 〈FX,Y,Z〉(pX , pY , pZ ) = 〈FY,X,Z〉(pY , pX , pZ ) =
〈FZ,X,Y 〉(pZ , pX , pY ) = . . . , where 〈FX,Y,Z〉(pX , pY , pZ ) indi-
cates the teleportation fidelity given that X , Y , and Z noises
are acting on the input, Alice and Bob’s part of the channel,
with noise fractions pX , pY , and pZ , respectively. For instance,
any situation in which two qudits may be affected is equivalent
to that of having the input protected only, i.e., 〈FX,∅,Y 〉 =
〈FX,Y,∅〉 = 〈F∅,X,Y 〉, where the symbol “∅” stands for a noise-
free qudit.

In addition, some interesting results arise when
we consider dit-flip, d-phase-flip, and dit-phase-flip
noises: 〈FF,F,X 〉 = 〈FP,P,X 〉 with X = {∅, FP, D},
〈FX ′,Y ′,F 〉 = 〈FX ′,Y ′,P〉 = 〈FX ′,Y ′,FP〉 for X ′ �= Y ′ = {∅, D},
and 〈FX,Y,∅〉 = 〈FX,Z,∅〉 for X �= Y �= Z = {F, P, FP} explicit
expressions are not presented here, however all may be
obtained by direct substitution in Eq. (C4).

With the exception of some specific cases listed below,
we observed that whenever the system is subjected to the
instances of noise considered in this paper the fidelity of
teleportation exhibits quite the same behavior: The larger the
amount of noise, the lower the values attained by 〈F 〉. As an
illustration, we have plotted results of teleportation fidelity
as a function of the corresponding noise fractions for the
scenario (FP, F, P) and d = 3 in Fig. 5. Furthermore it was
observed that, as the dimension increases, the set of noise

configurations leading to a fidelity of teleportation above the
classical limit becomes larger. Nevertheless this is something
we expected, given that in most of the cases, despite the
teleportation fidelity showing a sharper fall as d increases, the
value of the classical limit decreases even more abruptly as
shown in Fig. 4(a).

Although in principle it is expected that the fidelity of
teleportation tends to decrease for high noise fractions, Fortes
and Rigolin [6] found a set of scenarios in which this is not
the case; even with no change in the measurement basis it is
possible to get fidelities above the classical limit for high noise
fractions. The following part is devoted to explore these cases
in detail.

Fighting noise with noise in qudit teleportation

We have performed an exhaustive search of scenarios in
which the addition of noise to the system leads to an enhance-
ment in the execution of the protocol without carrying out
a basis change, obtaining the following extremal scenarios:
(∅, F, F ), (∅, P, P), (∅, FP, FP) for d = 2 only, and com-
mutations. Under these, whenever both associated noise frac-
tions get values either lower or higher than the noise threshold
p∗ = 1 − 1/d , the fidelity attains values above the classical
limit, with 〈F 〉 → (2d − 1)/(d2 − 1) as the noise fractions
approach 1. Notice though that, given the dependency of the
classical fidelity on d [ fC ∼ O(d−1)], the larger the dimen-
sionality, the more negligible becomes the gap between 〈F 〉
and fC in the regime of high noise fractions. Moreover, note
that a perfect restoration in the fidelity (〈F 〉 = 1) is achieved
by d = 2 only. This happens because the error in one of the
qubits is globally corrected by the action of the same kind of
error in another part of the system, while such a correction
can be well succeeded for high-dimensional systems only
probabilistically, due to the fact that in this case there are
several possible final configurations (e.g., a qutrit | j〉 may
be flipped in two different ways: Either | j ⊕ 1〉 or | j ⊕ 2〉).
Furthermore, in the limit p → 1, d = 2 is the only case in
which there is just one Kraus operator acting on the state

FIG. 6. Fidelity of teleportation for the scenario in which all the
parts are affected by dit-flip noise, and d = 3. The axes represent the
noise fraction associated to each qudit involved in the teleportation
process. Note that fidelity of teleportation values above the classical
limit are obtained either if all the noise fractions are lower or if two
of them are higher than the noise threshold p∗ = 1 − 1/d .
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FIG. 7. Fidelity of teleportation for the scenario of one qutrit
affected by depolarizing and the other two affected by trit-flip noise,
for configurations leading to values above the classical limit. Note
that there is a region in which the fidelity attains values above fC ,
even for large noise fractions. See Table I for all possible noise
configurations presenting this behavior.

and in this way the purity of the subsystem is not altered.
Along with the scenarios we have just described, there are
some other instances for which, even adding noise to the third
qudit, the system is still able to exhibit fidelities beyond its
classical value, as shown in Fig. 6 for a system under the
action of dit-flip noise independently on its three components.
For this, the teleportation fidelity reaches a value above fC
whenever either the noise fractions are all below or two of
them are above a noise threshold p∗ = 1 − 1/d . It is impor-
tant to remark that the scenario (P, P, P) exhibits the same
behavior. The other relevant situations correspond to adding
an arbitrary class of noise to the input’s qudit and dit-flip or
d-phase-flip noise on the qudits in the channel. For all these
instances the fidelity of teleportation behaves in the same way.
In particular, results corresponding to the scenario (D, F, F )
are presented in Fig. 7. Note that there are two separated
regions satisfying 〈F 〉 > fC : The usual, corresponding to all
noise fractions below the threshold, and, on the other hand,
that in which both noise fractions associated to dit-flip errors
are above the threshold p∗ = 1 − 1/d , extended throughout

TABLE I. Scenarios in which the fidelity of teleportation 〈FX,Y,Z〉
attains values above the classical limit for pY , pZ > p∗ = 1 − 1/d ,
and corresponding maximal noise fractions p∗

X . The last column
indicates the cases where the fidelity does not change upon commu-
tation between affected qudits and noise, i.e., 〈FX,Y,Z〉 = 〈FZ,Y,X 〉 =
〈FY,X,Z〉 = · · ·.

X Y Z p∗
X Commutations?

P F F 1/d Yes
FP F F 1/d Yes
D F F d/(d2 − d + 1) Yes
AD F F p∗ = 2

√
2 − 2, for d = 2 No

F P P 1/d Yes
FP P P 1/d Yes
D P P d/(d2 − d + 1) Yes
AD P P p∗ = 2

√
2 − 2, for d = 2 No

FIG. 8. Fidelity of teleportation for a scenario in which all parts
are affected by amplitude damping noise (AD, AD, AD) and d = 3,
as a function of the noise fractions associated to each qudit in the
channel. Note that in the limit pI → 0 only a small region of noise
parameters leads to fidelities below its classical value, fC = 1/2.
Furthermore, as the amount of noise in the channel increases, the
fidelity approaches its classical limit.

the pD axis up to a maximal depolarizing noise fraction p∗
D

equal to d/(d2 − d + 1). All scenarios are summarized in
Table I, as well as the maximal noise fractions on the input’s
qudit and possible commutations among the involved parts.

Another interesting case, observed in [6] (also in [7], using
the singlet fraction instead [20]), is the scenario (∅, AD, AD),
for d = 2. In this, the fidelity of teleportation has an asymp-
totic tendency to the classical limit when the noise fractions
approach their maximal value, as it can be observed in Fig. 8
for d = 3. Another feature we were able to infer is that the
regions of noise parameters corresponding to 〈F 〉 < fC are
relatively small when compared to other scenarios involving
noise on two parts. As an illustration, for d = 2 the regions
cover 24.44% of the whole configurations and exhibit a ten-
dency to decrease with d; for instance, they are only about
15.4% for d = 5.

VI. CONCLUSION

We have carried out a characterization of the qudit tele-
portation protocol in realistic scenarios, generalizing the re-
sults recently obtained for the case of qubits [6]. Under
this approach, errors may be introduced to the system by
imperfections in the preparation and measurements and/or
by the unavoidable interaction with the environment. We
have been able to establish relations among the fidelity of
teleportation and the amount of entanglement in the channel
for the noiseless scenario. We performed an exhaustive search
of all possible kinds of behavior in the fidelity of teleporta-
tion, finding four predominant sets: (i) the most typical and
intuitive, which may be described as a decay in the fidelity
with the noise fractions, as depicted in Fig. 5; (ii) the scenario
(F, F, F ) or (P, P, P) (Fig. 6), in which the presence of noise
in one qudit leads to an effective partial correction of the
same kind of error on a different part; (iii) an intermediate
behavior between the previous scenarios, on the one hand
a decay in the fidelity and on the other one a partial error
correction, summarized in Table I and Fig. 7; and (iv) the
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corresponding to any kind of noise in the input and amplitude
damping in the channel, depicted in Fig. 8. Furthermore we
note that it is possible to partially correct errors by a basis
change, for a very specific case (P, ∅, ∅). It is left as an open
question whether considering special scenarios in which the
nature of the interactions favors some subclasses of noise can
lead to an improvement of the performance of the protocol of
high-dimensional quantum teleportation. As a final remark, it
would be very interesting to find further strategies leading to
the improvement of the protocol of high-dimensional quan-
tum teleportation, such as the presence of nonlocal memory
effects [36].
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APPENDIX A: PARAMETRIZATION
FOR PURE QUDIT STATES

Any arbitrary pure state of a qudit |φ〉 = ∑d−1
j=0 α j | j〉 may

be parametrized as

α j =
⎧⎨
⎩

cos θ0 for j = 0
sin θ0 . . . sin θ j−1 cos θ jeiφ j for 1 � j � d − 2
sin θ0 . . . sin θd−2eiφd−1 for j = d − 1

,

with 0 < θ j � π/2 and 0 < φ j � 2π .
Under this parametrization the invariant volume element

d
d is given by [37–39]

d
d = sin2d−3 θ0 . . . sin θd−2 cos θ0

. . . cos θd−2dθ0 . . . dθd−2dφ1 . . . dφd−1,

in a compact form:

d
d =
d−2∏
j=0

sin2d−2 j−3 θ j cos θ j dθ j dφ j+1. (A1)

The total volume Vd = ∫
d
d may be easily calculated and is

equal to

Vd = πd−1

(d − 1)!
. (A2)

APPENDIX B: CALCULATION OF 〈α jα
∗
kαlα

∗
m〉

The calculation of 〈α jα
∗
k αlα

∗
m〉 = 1

Vd

∫
d
d α jα

∗
k αlα

∗
m may

be facilitated if we take into account some symmetries. First
of all, note that the volume element d
d does not depend
explicitly on the phases φ j . Moreover, the state coefficients α j

are proportional to exp(iφ j ), thus the only way in which the
integration does not vanish is having both the coefficient and
its conjugate inside the argument in order to cancel the cor-
responding phases. In this way we must have 〈α jα

∗
k αlα

∗
m〉 ∝

(δ jkδlm + δ jmδkl ). Let us determine the proportionality con-
stant. For simplicity we only show calculations for 〈|α0|4〉;
nevertheless, as the generated states are uniformly distributed,
any choice is equivalent. The integration reads

〈|α0|4〉 = (d − 1)!

πd−1

∫ d−2∏
j=0

sin2d−2 j−3 θ j

× cos θ jdθ jdφ j+1 cos4 θ0.

It is not hard to show that integrations of the kind above have
the following solutions:

In
m =

∫ π/2

0
sinm x cosn+1 xdx

=
n/2∑
k=0

(−1)k
(

n
2

)
!

k!
(

n
2 − k

)
!

1

2k + m + 1
,

for n = 0, 2, 4, . . . , and m > 0. Thus 〈|α0|4〉 is reduced to

〈|α0|4〉 = 2d−1(d − 1)! I4
2d−3

d−2∏
j=1

I0
2d−2 j−3. (B1)

It is straightforward to see that I0
2d−2 j−3 = 1

2(d− j−1) and

I4
2d−3 = 1

(d+1)d (d−1) , thus

〈|α0|4〉 = 2d−1(d − 1)!
1

(d + 1)d (d − 1)

d−2∏
j=1

1

2(d − j − 1)
.

This expression reduces to

〈|α0|4〉 = 2

d (d + 1)
. (B2)

Back to the general case, it is possible to infer that the
proportionality factor must be equal to 1

d (d+1) . In this way we
have

〈α jα
∗
k αlα

∗
m〉 = 1

d (d + 1)
(δ jkδlm + δ jmδkl ). (B3)

The result above is very useful in the calculation of reduced
expressions for the average fidelity of teleportation (see Ap-
pendix C).

APPENDIX C: GENERAL EXPRESSIONS FOR FIDELITY
OF TELEPORTATION

This Appendix is devoted to present the derivation of gen-
eral expressions for the fidelity of teleportation within noisy
environments under two approaches. The first contemplates
the cases in which the Kraus operators associated to the
classes of noise involved are proportional to Weyl operators.
In the second part we consider Kraus operators written in the
standard computational basis in order to consider the cases in
which amplitude damping noise may take place in any part of
the system.

1. Weyl-like noises

The noise coefficient associated to the input qudit a jk may
be expressed as a superposition of the contributions of each
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region in Fig. 3: a0, the noiseless region (green); a f , the flip
region (blue); ap, the phase-flip region (yellow); and ac, the
combination of flip and phase-flip regions (red). In this way,
the squared noise coefficient reads

a2
jk = a2

0δ j,0δk,0 + a2
f δ j,0

d−1∑
n=1

δk,n

+ a2
pδk,0

d−1∑
m=1

δ j,m + a2
c

d−1∑
m,n=1

δ j,mδk,n. (C1)

Thus we have the following correspondences between noise
and reduced coefficients: dit-flip region, ap = ac = 0; phase-

flip region, a f = ac = 0; dit-phase-flip region, ap = a f = 0;
and a f = ap = ac for depolarizing.

After some steps, the fidelity of teleportation F =∑
mn Tr{|φ〉〈φ|ρ̂mn} takes the form

F =
d−1∑
jkmn

μν = 0

αmα∗
nβ jμβ∗

kμω
μ(n−m)
d ρ ′

k,k⊕ν,n⊕ν, j, j⊕ν,m⊕ν ;

using Eq. (7) and assuming a channel initially prepared in
a pure state |ψ〉 = ∑d−1

k=0 γk |kk〉, the fidelity of teleportation
holds:

F =
d−1∑

jkμνp1 p2 p3
q1q2q3 = 0

α j⊕q2�q3α
∗
k⊕q2�q3

α∗
j⊕q1

αk⊕q1β jμβ∗
kμω

(k− j)(μ+p1+p2+p3 )
d γk⊕ν⊕q2γ

∗
j⊕ν⊕q2

a2
p1q1

b2
p2q2

c2
p3q3

, (C2)

where bp2q2 and cp3q3 are the noise coefficients corresponding to the channel qudits, respectively. By using the result of
Appendix B [Eq. (B3)] and after calculations the average fidelity takes the form

〈F 〉 = 1

d + 1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + 1

d

d−1∑
jkμνp1 p2 p3
q1q2q3 = 0

β jμβ∗
kμω

(k− j)(μ+p1+p2+p3 )
d γk⊕ν⊕q2γ

∗
j⊕ν⊕q2

a2
p1q1

b2
p2q2

c2
p3q3

δq2,q1⊕q3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (C3)

Note that for the noiseless case the noise coefficients read apj q j = δp j ,0δq j ,0 (the same for bpj q j and cpj q j ), thus the fidelity
reduces to the equation obtained in Sec. II for a noise-free environment, as expected. By using analogous expressions for the
noise coefficients of the channel qudits bjk and c jk [Eq. (C1)], substituting into Eq. (C3), and after some calculations, the fidelity
of teleportation becomes

〈F 〉 = 1

d + 1

(
1 + d

{
b2

p

[
a2

0c2
0 + (d − 1)a2

f c2
f

]+ [
b2

0 + (d − 2)b2
p

][
a2

pc2
0 + a2

0c2
p + (d − 1)

(
a2

f c2
c + a2

cc2
f

)]
+ [

(d − 2)b2
0 + (d2 − 3d + 3)b2

p

][
a2

pc2
p + (d − 1)a2

cc2
c

]}
+ d (d − 1)

{[
(d − 2)b2

f + (d2 − 3d + 3)b2
c

][
a2

pc2
c + a2

cc2
p + (d − 2)a2

cc2
c

]+ b2
c

[
a2

f c2
0 + a2

0c2
f + (d − 2)a2

f c2
f

]
+ [

b2
f + (d − 2)b2

c

][
a2

cc2
0 + a2

0c2
c + a2

f c2
p + a2

pc2
f + (d − 2)

(
a2

f c2
c + a2

cc2
f

)]}
+ (

b2
0 − b2

p

)[(
a2

0 − a2
p

)(
c2

0 − c2
p

)+ (d − 1)
(
a2

f − a2
c

)(
c2

f − c2
c

)][
1 + (d + 1) fQ

]
+ (

b2
f − b2

c

)[(
a2

0 − a2
p

)(
c2

f − c2
c

)+ (
a2

f − a2
c

)(
c2

0 − c2
p

)+ (d − 2)
(
a2

f − a2
c

)(
c2

f − c2
c

)]
f̃
)
, (C4)

where fQ is the quantum contribution to the fidelity of teleportation in the absence of noise and f̃ is related to the channel and
measurement coefficients as

f̃ = 1

d

d−1∑
jkμν = 0

q = 1

β jμβ∗
kμω

μ(k− j)
d γk⊕ν⊕qγ

∗
j⊕ν⊕q, (C5)

attaining its highest value d (d − 1) when the entanglement in the channel and measurements is maximal.

2. Kraus operators in the standard computational basis

Let us calculate the fidelity of teleportation. Substituting Eq. (10) in Eq. (3), we have

F =
∑

jkmnμν

n1n2 p1 p2
k1k2k3

αmα∗
nαn1α

∗
p1

β jμβ∗
kμγn2γ

∗
p2

ω
μ(n−m)
d a(k1 )

k,n1
b(k2 )

k⊕ν,n2
c(k3 )

n⊕ν,n2
a(k1 )∗

j,p1
b(k2 )∗

j⊕ν,p2
c(k3 )∗

m⊕ν,p2
.
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Analogously to the previous treatment, using the results of Appendix B and after some calculations, the average fidelity of
teleportation holds:

〈F 〉 = 1

d (d + 1)

∑
jkmμν

n1n2 p2
k1k2k3

β jμβ∗
kμγn2γ

∗
p2

a(k1 )
k,n1

b(k2 )
k⊕ν,n2

b(k2 )∗
j⊕ν,p2

c(k3 )∗
m⊕ν,p2

[
a(k1 )∗

j,n1
c(k3 )

m⊕ν,n2
+ ω

μ(n1−m)
d a(k1 )∗

j,m c(k3 )
n1⊕ν,n2

]
. (C6)

It is worth mentioning that the expression for fidelity above [Eq. (C6)] reproduces the whole results of Fortes and Rigolin [6] for
the case of qubits (d = 2).
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