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Client-friendly continuous-variable blind and verifiable quantum computing
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We present a verifiable and blind protocol for assisted universal quantum computing on continuous-variable
(CV) platforms. This protocol is experimentally friendly to the client, as it only requires Gaussian-operation
capabilities from the latter. Moreover, the server does not require universal quantum-computational power either,
its only function being to supply the client with copies of a single-mode non-Gaussian state. Universality is
attained based on state injection of the server’s non-Gaussian supplies. The protocol is automatically blind
because the non-Gaussian resource requested to the server is always the same, regardless of the specific
computation. Verification, in turn, is possible thanks to an efficient non-Gaussian state fidelity test where we
assume identical state preparation by the server. It is based on Gaussian measurements by the client on the
injected states, which is potentially interesting on its own. The division of quantum hardware between client
and server assumed here is in agreement with the experimental constraints expected in realistic schemes for CV
cloud quantum computing.
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I. INTRODUCTION

Quantum computers promise computational speedups for
crucial classically intractable problems. This includes the
simulation of complex many-body quantum systems [1–3],
searching through unstructured databases [4], machine learn-
ing and artificial intelligence [5–8], and cryptography [9,10].
Similarly to the early classical computers, full quantum-
computing capabilities are initially expected only at a few
remote locations. Cloud quantum computing will then offer
a means for clients to delegate their computations to a distant
server with more powerful quantum hardware.

Delegating a computation, however, raises important secu-
rity and privacy issues, which motivated verifiable and blind
assisted quantum computing. Ideally, the client, Alice, would
like to delegate a computation to an untrusted server, Bob,
while maintaining the privacy of her computation. At the
same time, Alice needs a reliable certificate of the correctness
of the computational output. The former property is known
as blindness and the latter as verifiability [11]. After the
first proposals [12–14], which required repeated rounds of
interaction between Alice and Bob, several improvements
and variations followed [13,15–27]. Importantly, preliminary
experimental studies of assisted quantum computing have also
been conducted [28–31].

All of these developments have taken place in the qubit
regime. In contrast, blind quantum computing on continuous-
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variable (CV) hardware is a much less explored territory
[32,33]. To the best of our knowledge there is a single proposal
reported [32] that allows the client to hide her input, output,
and her computation 1. CV degrees of freedom offer a com-
petitive alternative to encode quantum information [34–36],
with some remarkable advantages over qubit-based platforms
with highly desirable features for assisted computations 2.
CV schemes have also been explored in a variety of settings
[37–43]. Unfortunately, the seminal protocol of [32] puts a
huge burden on Alice’s shoulders in terms of experimental
requirements and, in addition, requires repeated interaction
between Alice and Bob.

More precisely, the protocol of [32] requires that Alice
performs single-mode non-Gaussian operations, while dele-
gating the Gaussian entangling gates to Bob. However, single-
mode non-Gaussian operations are among the most experi-
mentally challenging ones [44–47]. On the contrary, Gaussian
operations—including maximally entangling gates—are the
most experimentally accessible ones for CV systems [36,48].
They play a role analogous to Clifford operations in qubit
systems. Like Clifford group operations on stabilizer states,
any Gaussian CV computation can be efficiently simulated
classically [49], while any single non-Gaussian operation is
enough to boost Gaussian quantum computations to universal
ones [50]. Up to now, no CV scheme for blind quantum

1We note that the scheme in [33] shows only the encryption of the
input.

2For instance, CVs offer higher detection efficiencies and can be
integrated into existing optical-fiber networks [36].
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computing has been reported which is experimentally friendly
to the client.

In this article we fill this gap. We derive a verifiable
and blind scheme for universal quantum computation on CV
systems that requires only Gaussian quantum hardware on Al-
ice’s side. In addition, it requires neither repeated interaction
between Alice and Bob nor universal quantum hardware on
Bob’s side. Bob only needs to prepare one kind of single-mode
non-Gaussian state, e.g., the celebrated cubic phase state cre-
ated by applying cubic phase gates [44–47] onto the vacuum.
We assume an honest Bob is restricted to preparing identical
copies of the cubic phase state. The difference in quantum
hardware between Alice and Bob considered here reflects
more fairly the actual constraints of real-life experiments.
With this, our protocol lays the theoretical groundwork for
realistic CV quantum cloud computing schemes.

II. BACKGROUND

For a multimode CV state, let x̂k and p̂� be the position and
momentum operators of the kth and �th modes, respectively.
These then satisfy the commutation relations [x̂k, p̂�] = iδk,�.
A quantum operation is said to be Gaussian when it is gener-
ated by a unitary U = exp(−iH ), where the Hamiltonian H is
a second-order polynomial in the mode operators. An example
is single-mode squeezing S(s) = ei ln(s)(x̂ p̂+p̂x̂) for s ∈ R. Gaus-
sian states are created by applying Gaussian operations onto
the vacuum state. Gaussian measurements are an important
subset of Gaussian operations and yield Gaussian distributed
outcomes when applied to Gaussian states. These include
homodyne detection which consists of the measurement of the
quadrature x̂ or p̂ of a mode.

To implement an arbitrary U , acting on an m-mode state
|�in〉, one requires only the set of Gaussian operations G,
including Gaussian measurements M, and just one type of
non-Gaussian operation [50]. Thus, U can be divided into
sequences of Gaussian operations and non-Gaussian gates of
the form 1k ⊗ C(γ ) ⊗ 1m−k−1, where 0 � k � m − 1. Here
1k ≡ 1⊗k where 1 is the single-mode identity operator.

An example of a non-Gaussian operation that is needed for
universality is the single-mode cubic phase gate C(γ ) = eiγ x̂3

,
where γ ∈ R. When |0〉 is the single-mode vacuum state, this
gives rise to the following non-Gaussian state:

|γ̃ 〉s = C(γ̃ )S(s)|0〉 = eiγ̃ x̂3
e−x̂2/(2s2 )

√
sπ1/4

∫
dx|x〉. (1)

This is a finitely squeezed variant of the originally proposed
cubic phase state [51]. We will later employ these as Bob’s
resource states for our assisted computation protocol.

We now discuss three important notions for an assisted
computation protocol: correctness, blindness, and verifiabil-
ity. In contrast to the discrete-variable case, here even if Bob
is honest and there is no noise, the outcome is intrinsically
probabilistic due to the fact that the resource state is finitely
squeezed. Hence, we must adapt the following definitions of
correctness and verifiability to account for this.

Definition 1 (δ correctness). Let |�out(y)〉 denote the m-
mode state that is the outcome of the intended computation
that Alice wants to perform, where y denotes the string
of measurement results of the computation device that the

outcome could depend on. Then �correct = |�out(y)〉〈�out(y)|
is the projector onto the correct outcome of Alice’s com-
putation. Let σout(y) be the outcome of Alice’s computation
when she delegates part of her computation to Bob and Bob
is honest. Then we say our delegation protocol is δ correct
for 0 � δ � 1 3 when the average probability of σout(y) being
projected onto the correct outcomes satisfies∫

dyTr[�correctσout(y)]P(σout(y)) � δ, (2)

where P(σout(y)) is the probability of obtaining measurement
result y if Bob is honest. So if Bob is honest, Alice obtains the
correct outcome to her computation with high probability if δ

is large.
Definition 2 (blindness). A delegation protocol is said to

be blind if the input state, the operations performed, and the
output state remain hidden from Bob (see [11] and references
therein for a formal definition).

Definition 3 (ε verifiability). Let ρout(y) be the resulting
outcome of this computation. The probability of ρout(y) pro-
jecting onto incorrect outcomes of the computation is de-
noted P(incorrect) = Tr(�incorrectρout(y)), where �incorrect =
1m − |�out(y)〉〈�out(y)|. Let P(accept) be the probability that
Alice accepts the resource state given by Bob, according to
her verification test. Then the assisted computation is said
to be ε verifiable (for 0 � ε � 1) if the average joint prob-
ability

∫
dyP(incorrect ∩ accept)P(y) � ε, where P(y) is the

probability of obtaining measurement result y for the accepted
resource state.

III. BLIND DELEGATION AND VERIFICATION
PROTOCOL

Alice wishes to perform an arbitrary CV quantum compu-
tation with output U |�in〉, where U is a generic CV unitary
operation and |�in〉 the m-mode Gaussian input state. Alice
only requests the same cubic phase state from Bob. Thus,
blindness is an intrinsic, built-in feature of the scheme and
only an upper bound on the number of cubic phase gates in
the computation is revealed to Bob. Verification, in turn, is
based on a novel non-Gaussian state fidelity witness specially
tailored for the cubic phase state, inspired by the witnesses of
[52]. This is measured by Alice on a subset of Bob’s supplied
states, used as test set. Remarkably, the witness requires only
Gaussian measurements on at most four homodyne-detection
bases per test mode, which is interesting in its own right. In
addition, to estimate the expectation value of the witness, we
use importance sampling techniques [53], which allow the
test-set size required for verifiability to scale only quadrati-
cally with the number of cubic phase states consumed by the
computation. Hence, our protocol is not only experimentally
friendly to Alice but also efficient in the number of single-
mode non-Gaussian resource states required. We summarize
our blind delegation and verification protocol below.

Protocol 1. Verified and blind assisted CV quantum com-
putation.

Alice’s resources are as follows.

3Similar to definition in [68].
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FIG. 1. Universal CV quantum computation. To implement an
arbitrary CV computation U |�in〉, one requires only Gaussian oper-
ations and at least one non-Gaussian operation. The non-Gaussian
operation can be implemented by Alice when she uses Bob’s non-
Gaussian state resource ρ and applies unitary Gaussian operations
G and Gaussian measurements M. See Fig. 2 and the text for more
details.

(a) A m-mode Gaussian state, |�in〉 which is the input
state for her computation.

(b) A circuit description representing Gaussian mea-
surements and a unitary operation U that is decomposed
into Gaussian gates and M cubic phase gates.

(c) Parameters chosen for the verification test: thresh-
old fidelity FT < 1 (minimum fidelity permitted for the
fidelity between states σ and ρ defined below), significance
level β (i.e., maximum failure probability of the test), and
an estimation error η (with respect to the quantity Flow

defined below) that satisfies η � (1 − FT )/2.
(1) Alice requests (N + 1) copies of the pure state σ =

(|γ̃ 〉s〈γ̃ |s)⊗M from Bob. We will see later how N scales with
M, β, and η.

(2) Bob sends to Alice (N + 1) copies of an M-mode state
ρ. If he is honest, ρ = σ . If Bob is dishonest, he sends Alice
the state ρ⊗(N+1) where ρ 	= σ and we assume he cannot send
more general states.

(3) Alice retains the state ρ for her computation and runs
the verification test on the remaining N copies of ρ. For the
verification test, Alice makes an estimate F (est)

low of the quantity
Flow ≡ Tr(Wρ). The observable W is a fidelity witness for the
state σ , given in Eq. (5). The quantity Flow is a lower bound
on the fidelity F (σ, ρ) between ρ and σ . It can be estimated
up to precision η with homodyne detection on ρ⊗N , following
the details of the importance sampling method in Appendix
D. We say Alice rejects ρ⊗N if F (est)

low < FT + η and accepts
otherwise.

(4) If Alice accepts, she uses the remaining state ρ for
her computation. More precisely, she uses ρ to perform M
cubic phase gates on her input state |�in〉 by means of a gate
teleportation protocol 4. See Figs. 1 and 2.

When Bob is honest, gate teleportation and Gaussian oper-
ations allow Alice to approximately implement C(γ ) on any
desired mode of her input state |�in〉. This protocol is both δ

correct and blind as shown by the following theorem.
Theorem 1. Our assisted computation protocol is δ correct

with δ = 1 and reveals to Bob only an upper bound on the
number of cubic phase states used.

Proof. Our assisted computation protocol relies on the gate
teleportation protocol in Fig. 2. If the m-mode input state in

4See [51,54] for similar circuits.

FIG. 2. Alice’s circuit to implement a cubic phase gate. Alice
implements an approximation to the cubic phase gate 1k ⊗ C(γ ) ⊗
1m−k−1 acting on the state |�in〉 by using the resource state |γ̃ 〉s

given by Bob. Here C(γ ) acts on the (k + 1)th mode of |�in〉
and the resource state is on the (m + 1)th mode. Here S(r) is the
single-mode squeezing operator with r = (γ /γ̃ )1/3, where the value
r is only known to Alice. The initial gate S1 ≡ 1k ⊗ S(r) ⊗ 1m−k−1

and final gate S2 ≡ 1k ⊗ S†(r)G−1(y) ⊗ 1m−k−1 acting on the top
register are used to hide the value of γ from Bob. Here G−1(y) =
e−iγ̃ y3

e−3iγ̃ yx̂(x̂+y) is a Gaussian operator and y is the measurement
outcome on the lower register of the operator x̂.

the top register is |�in〉, then the m-mode output state in the
top register is |�out〉s = (1k ⊗ gs/r (y/r)C(γ ) ⊗ 1m−k−1)|�in〉,
where gs(y) = e−(x̂+y)2/(2s2 ) and y is the measurement re-
sult in the bottom register. The gate teleportation protocol
thus enables the application of a non-Gaussian operation
on |�in〉. More specifically, it applies a cubic phase gate
on the (k + 1)th mode of |�in〉 up to a Gaussian factor for
k = 0, 1, ..., m − 1 [51,54]. For this protocol we can write
�correct = |�out〉s〈�out|s. Thus Tr(�correct|�out〉s〈�out|s) = 1.
Then

∫
dyTr(�correctσout(y))P(σout(y)) = 1 and we have per-

fect correctness, i.e., δ = 1 in Eq. (2). See Appendix A for
more details.

We note that if Bob’s resource state is the infinitely
squeezed version of the cubic phase state, the output state of
Fig. 2 becomes exactly the cubic phase gate applied to the
initial state |�in〉, since s → ∞ implies gs(y) → 1. Although
finite s gives a correction term to the cubic phase gate, this
does not change our correctness argument since we only de-
sire to perform a fixed non-Gaussian gate and not necessarily
exactly the cubic phase gate.

To show blindness in the sense that Bob can only learn
the upper bound on the number of cubic states used, we
first note that Bob has no access to any Gaussian part of
the computation, which includes the input state |�in〉 and
the results of the (Gaussian) measurements. Furthermore, he
cannot reconstruct the exact value of the parameters γ used
by Alice during the computation since Alice decides the
squeezing parameter r = (γ /γ̃ )1/3 used. This means the only
useful information Bob obtains is the number of resource
states that Alice requests, which is an upper bound on the size
of the computation. �

Now we describe Alice’s verification test, which is based
on the notion of fidelity witnesses [52,53,55,56]. These wit-
nesses bypass the need for full state tomography [57] of Bob’s
state. They allow for verification in the general setting of
independent and identically distributed (i.i.d) states and also
non-i.i.d scenarios in the discrete-variable setting [58]. We
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assume that Alice has access to identical copies of Bob’s
resource state (the i.i.d setting). Our specific test relies on
two ingredients. The first is to show a relationship between
the fidelity between the final ideal and real m-mode states of
Alice’s computation and the fidelity between the ideal and real
injected M-mode resource states. The second is to obtain a
tight lower bound on the latter fidelity by means of a proper
fidelity witness W using only Gaussian measurements, which
Alice can perform. Finally, Alice’s accept or reject decision is
based on whether the value of the latter lower bound is high
enough in comparison with the chosen threshold FT .

We start with the first ingredient. We call the initial ideal
state that Alice possesses (on both input and injected modes)
σin = |�in〉〈�in| ⊗ σ , where σ = (|γ̃ 〉s〈γ̃ |s)⊗M is the ideal
resource state. The outcome of Alice’s intended computation
consists of an m-mode pure state (for each measurement out-
come) that can be expressed as σout(y) = Ey(σin)/Tr(Ey(σin)).
If Bob gives Alice ρ, her real initial state is ρin = |�in〉〈�in| ⊗
ρ and her output state would be ρout(y) = Ey(ρin )/Tr(Ey(ρin )).
Linearity of Ey then implies the following lemma, proved in
Appendix B.

Lemma 1. The fidelity between the final states σout(y) and
ρout(y) satisfies the bound,

F (σout(y), ρout(y)) � F (σ, ρ)
Tr(Ey(σin))
Tr(Ey(ρin))

. (3)

Here we note that, in the case of finite squeezing, in
general Tr(Ey(σin))/Tr(Ey(ρin)) 	= 1. However, as we will see
later from Theorem 2, this inequality is sufficient to imply ε

verifiability independent of the amount of squeezing s.
We now focus on the second ingredient: efficient estima-

tion the observable lower bound Flow ≡ Tr(Wρ) to the fidelity
F (σ, ρ) by measuring an adequate fidelity witness W . A
Hermitian observable W is a fidelity witness with respect to
the target state σ if it has the properties that

Flow ≡ Tr(Wρ) � F (σ, ρ), (4)

for all ρ (universal lower bound) and Flow = 1 for ρ = σ

(tightness). Our specific witness is given by the following.
Lemma 2. The observable

W =
(

1 + M

2

)
1M −

M−1∑
k=0

1k ⊗ wk+1 ⊗ 1M−k−1, (5)

is a fidelity witness with respect to the target state σ ,
where wk+1 = (s2/2)(x̂2

k+1 + 9γ̃ 2x̂4
k+1) + (1/(2s2))( p̂2

k+1 +
2γ̃ p̂3

k+1) + (1/(2s2))γ̃ ((x̂k+1 − p̂k+1)3 − (x̂k+1 + p̂k+1)3).
Thus W is composed entirely of O(M ) terms accessible
through Gaussian measurements alone 5.

Proof. See Appendix C. �

5For example, homodyne detection in quantum optics is sufficient
to achieve this. Here the expectation value of a linear function of x̂,
p̂ is related to the expectation value of the photon number difference
detected in the two arms of a homodyne detection setup. Thus higher
powers of the expectation values of x̂, p̂ can be found by detecting
the differences in the powers of the photon number operators. For
example, see [69].

Finally, we consider the accept or reject criterion of the
verification test. A threshold fidelity 0 < FT < 1 and a signifi-
cance level 0 < β < 1 means that Alice must, with probability
at least 1 − β, reject the state ρ if F (σ, ρ) < FT . To this end,
the number N of copies of ρ she asks Bob for must be high
enough for her to estimate Flow up to precision η and with
failure probability at most β. In other words, the probabil-
ity obeys P(|F (est)

low − Flow| < η) � 1 − β. With this, she then
rejects whenever F (est)

low < FT + η and accepts otherwise. This
guarantees the desired reject condition above. Conversely, if
ρ is accepted (i.e., if F (est)

low � FT + η), she knows that, with
probability at least 1 − β, that F (σ, ρ) � FT .

The exact scaling of N with respect to M, η, and β

defines the so-called sample complexity of the test, which
depends on the specific measurement scheme chosen. Our
method of directly estimating Flow is to use importance sam-
pling techniques [53,59,60]. The basic idea of the importance
sampling method is to choose the observables to measure
probabilistically according to their importance for W . The
relative importance of each observable, given by the size of
the coefficients λi, dictates the frequency with which it is
measured, with less important observables measured less
frequently. This optimizes the total number of measurements
required.

We begin by inserting Eq. (5) into Eq. (4) to find Flow =
1 + M/2 + ∑6M

j=0 λiTr( f̂iρ), where λi are coefficients depend-

ing only on s and γ̃ and f̂i = 1k ⊗ x̂′n
k+1 ⊗ 1M−k−1, where

n = 1, 2, 3, 4 and x̂′ = x̂, p̂, x̂ ± p̂ 6. We can always rewrite
f̂i = ∫

df f P̂i where f = (x′
k+1)n, P̂i = |x′

1, ..., x′
M〉〈x′

1, ..., x′
M |

is the projection onto quadratures x̂′
l in modes l = 1, ..., M,

x′
k+1 is the eigenvalue of the operator f̂i, and df ≡ dx′

1...dx′
M .

We note that even though f̂i are operators up to fourth order
in the quadratures x̂′, Gaussian measurements are sufficient
to find the eigenvalues f = (x′

k+1)n since the eigenvalues x′
k+1

can be found by Gaussian projective measurements P̂i.
Then to estimate Flow, we can rewrite

∑6M
j=0 λiTr( f̂iρ) =∑6M

j=0

∫
df p(i, f )Fi, f ≡ 〈F〉 where F is a random variable

taking the value Fi, f = ∑6M
j=0 |λ j |sgn(λi) f with probabil-

ity p(i, f ) = Tr(P̂iρ)|λi|/
∑6M

j=0 |λ j |. See Appendix D for a
derivation. To sample from F, we begin by sampling the index
i with probability |λi|/(

∑6M
j=0 |λ j |). Then given this i, we

find the eigenvalue f corresponding to f̂i, which occurs with
probability Tr(P̂iρ). From this f value, Fi, f can be sampled
with probability p(i, f ).

For the gth sampling trial, where g = 1, ..., N , let the value
of the corresponding Fi, f be denoted F (g). For each gth trial, a
single copy of ρ is consumed. We can then obtain the estimate
F (est)

low = (1/N )
∑N

g=1 F (g) by using N copies of ρ. In the limit

N → ∞, F (est)
low will output the exact value Flow. With this

method, we can obtain the following upper bound for N to
certify our cubic phase state.

Lemma 3. Sampling complexity of the verification proto-
col.

6For the exact coefficients see Appendix C.
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If the number of copies of ρ used in our verification test
satisfies

N ∼ O

(
M2

η2
ln

(
1

β

))
, (6)

then P(|F (est)
low − Flow| < η) � 1 − β.

Proof. We use Hoeffding’s inequality that leads to a sample
complexity exponentially better in β compared to previous
scalings based on Chebyshev’s inequality [52]. For details of
the proof see Appendix E. �

This result provides an upper bound to the sample com-
plexity of our verification test and relies on the physical
assumption of finite energy available per mode of ρ. This
also makes N efficient in the number of cubic phase states
consumed by the computation.

Next, we shall show that our assisted protocol is ε verifi-
able, given the above results.

Theorem 2. Let N , η, β, and FT be, respectively, the
number of copies of the M-mode state ρ, the precision, the
failure probability, and threshold fidelity used in Protocol 1.
Assuming finite energy available per mode of ρ, our assisted
protocol is ε verifiable, where ε = 1 − (1 − β )FT , where β

and N are related by Lemma 3.
Proof. Our aim is to bound

∫
dyP(incorrect ∩ accept)P(y),

which is the probability that Alice accepts ρ from Bob yet ob-
tains an incorrect outcome to her computation. From Bayes’
rule and P(accept) � 1, we have P(incorrect ∩ accept) =
P(incorrect|accept)P(accept) � P(incorrect|accept). This
means

∫
dyP(incorrect ∩ accept)P(y) �

∫
dyP(incorrect|

accept)P(y).
Thus, to show ε verifiability, it suffices to find an

upper bound for the average conditional probability
∫

dy
P(incorrect|accept)P(y) = ∫

dyTr(�incorrectρout(y))P(y),
where Tr(�incorrectρout(y)) = 1 − Tr(σout(y)ρout(y)) = 1 − F
(σout(y), ρout(y)), ρout(y) = Ey(|�in〉〉�in| ⊗ ρ), and
P(y) = P(ρout(y)) if Alice accepts ρ.

Suppose σout(y) = Ey(σin)/Tr(Ey(σin)) is the output state
of Alice’s circuit (with honest Bob) which includes projective
measurements. For finite squeezing this would also depend on
measurement results y. This is a pure state, so we can write

P(incorrect|accept) = Tr((1m − σout(y)))(Ey(ρin))

Tr(Ey(ρin))

= Tr((1m − σout(y))ρout(y)). (7)

This means
∫

dyP(incorrect|accept)P(y) = 1 − ∫
dyTr(σout

(y)ρout(y))P(y), where P(y) = Tr(Ey(ρin)) is the probability
of Alice’s outcome state having measurement outcomes y if
Alice accepts ρin.

We can now show the upper bound
∫

dyP(incorrect|
accept) � ε to demonstrate that our scheme is ε verifiable,
where ε = 1 − (1 − β )FT .

The first step is to compute P(incorrect|accept, y) by ex-
panding the RHS of Eq. (7),

P(incorrect|accept) = 1 − F (σout(y), ρout(y)). (8)

In our Lemma 1, we showed that, without any ex-
tra assumptions, the fidelity between the final states
σout(y) and ρout(y) satisfies the bound F (σout(y), ρout(y)) �
F (σ, ρ)Tr(Ey(σin))/Tr(Ey(ρin). To simplify notation, we can

write Tr(Ey(σin)) = py(σin) and Tr(Ey(ρin)) = P(y) which
correspond to the probabilities of the final states of the
device giving measurement results y for input states σin

and ρin, respectively. Then inserting Lemma 1 into Eq. (8)
we arrive at P(incorrect|accept) � 1 − F (σ, ρ)py(σin)/P(y),
which means∫

dyP(incorrect|accept)P(y)

�
∫

dy
(

1 − F (σ, ρ)
py(σin)

P(y)

)
P(y)

= 1 − F (σ, ρ), (9)

since
∫

dypy(σin) = 1. Alice’s accept condition implies that
F (σ, ρ) � FT with probability at least 1 − β. This means
we can now write ρ = (1 − β ′)(F ′σ + (1 − F ′)σ⊥) + β ′σ ′,
where F ′ � FT , β ′ � β, Tr(σσ⊥) = 0, and σ ′ is a quantum
state. This implies F (σ, ρ) = Tr(σρ) � (1 − β ′)F ′ � (1 −
β )FT . Thus from Eq. (9), we have∫

dyP(incorrect|accept)P(y) � 1 − (1 − β )FT .

Choosing ε = 1 − (1 − β )FT gives us the bound we need.
This is true for finite squeezing as well as infinite
squeezing. �

IV. DISCUSSION

As a final remark, it is important to point out that the i.i.d
assumption for Bob’s state preparation can actually be re-
moved. This relies on Serfling’s bound, which is an improve-
ment over Hoeffding’s bound as it does not require the i.i.d
assumption (it considers sampling without replacement) [61].
CV stabilizer states can be verified using a binary-outcome
test based on the fact that they are extremal on stabilizer oper-
ators [62]. Since such a test defines a two-dimensional random
variable, it can be handled with Serfling’s bound. Remarkably,
a similar test can be designed for the single-mode cubic phase
state, as it is extremal on the fidelity witness W = 3/2 − w in-
troduced in Eq. (5). More precisely, the cubic phase state is, by
construction, a unique eigenstate of W with (maximal) eigen-
value 1. This allows us to safely relax the i.i.d assumption. We
leave the details of this fascinating prospect for future work.
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APPENDIX A: GATE TELEPORTATION PROTOCOL
FOR THE CUBIC PHASE GATE

We begin with the circuit in Fig. 2 with initial state
(1m−1 ⊗ S(r) ⊗ 1)|�〉in ⊗ |γ̃ 〉s, where we choose k = m − 1
here for simplicity. The results generalize easily for any other
k = 0, .., m. Let x = (x1, . . . , xm). We can write the m-mode
state as |�in〉 = ∫

dnxψ (x)|x〉, for some bounded function
ψ (x), then (1m−1 ⊗ S(r))|�in〉 = ∫

dmxψr (x)|x〉. We apply
the control operator 1m−1 ⊗ exp(ix̂ ⊗ p̂) on the initial state,
and measure x̂ in the last register with outcome y. The final
state becomes

|�〉s ⊗ |y〉 (A1)

= (1m ⊗ |y〉〈y|)(1m−1 ⊗ eix̂⊗ p̂)

×(1m−1 ⊗ S(r) ⊗ 1)(|�in〉 ⊗ |γ̃ 〉s)

= 1m ⊗ |y〉〈y|√
sπ1/4

(1m−1 ⊗ eix̂⊗p̂)
∫

dmx
∫

dxψr (x)

×eiγ̃ x3
e−x2/(2s2 )|x, x〉

= 1m ⊗ |y〉〈y|√
sπ1/4

(1m ⊗ eixm p̂)
∫

dmx
∫

xψr (x)

×eiγ̃ x3
e−x2/(2s2 )|x, x〉

= 1m ⊗ |y〉〈y|√
sπ1/4

∫
dmx

∫
dxeiγ̃ x3

e−x2/(2s2 )ψr (x)

×|x, x − xm〉

= (1m−1 ⊗ G(y)eiγ̃ x̂3
gs(y)S(r) ⊗ 1)|�in〉 ⊗ |y〉√

sπ1/4
,

(A2)

where G(y) ≡ exp(iγ̃ y3) exp(3iγ̃ yx̂(y + x̂)) is a unitary
Gaussian correction in the operator x̂, and gs(y) = exp(−(x̂ +
y)2/(2s2)) is a smearing operation that applies a Gaussian
envelope, with width ∼1/s2 centered on y, onto the state it
acts upon.

Using S†(r)x̂S(r) = rx̂, we can rewrite the above state
as |�〉s = G(y)eiγ̃ x̂3

S(r)|�̃in〉, where |�̃in〉 = gs/r (y/r)|�in〉
is now a Gaussian-smeared state where the Gaussian envelope
has width ∼s/r centered on y/r. Note that this Gaussian
envelope is of the same type that appears in the usual CV
cluster state computation [63].

Then Alice applies a unitary Gaussian 1⊗(m−1) ⊗
S†(r)G−1(y) onto |�〉s to obtain

|�out(y)〉s = eiγ x̂3
gs/r (y/r)|�in〉, (A3)

where r = (γ /γ̃ )1/3.
Note that in the infinite squeezing s → ∞ limit, we obtain

the exact cubic phase gate operation |�out〉s→∞ = eiγ x̂3 |�in〉
which is independent of y.

Instead of the teleportation circuit in Fig. 2, it is also
possible to use either the passive linear optics circuit in [46]
or an alternative circuit in [64], which both have as inputs
cubic phase states as the non-Gaussian resource state. Since
our results only depend on having stand-alone cubic phase
states and Gaussian channels, our main results equally apply
for these circuits, too.

To clarify, for the finite squeezing scenario, the ideal out-
come is defined in Eq. (A3), which depends on measurement
outcomes. This in turn means that P(incorrect), which is
related to one minus the overlap between the actual and
ideal outcome, is generally not zero even if the probabil-
ity of getting a particular homodyne measurement outcome
has measure zero. The case is even simpler in the infinite
squeezing limit where the ideal outcome does not depend on
measurement outcomes at all.

We note that in continuous-variable quantum computation
it is possible for finite squeezing effects to limit the effective
length of the computation (e.g., see [65]), depending on the
amount of squeezing available. This is an important issue
concerning all continuous-variable schemes, certainly worth
future investigations, but it is outside the scope of this current
work.

Finally, we know that currently a high amount of squeez-
ing may not be necessarily easier to experimentally achieve
compared to non-Gaussian resources like single-photon states
and photon-number resolving detection. However, we do not
consider the latter non-Gaussian resources, as it is not obvious
how to design simple gates with them [54].

APPENDIX B: PROOF OF LEMMA 1

First, we show that, for any mixed state ρin and any pure
state σin, there exists a density matrix σ⊥ such that

ρin = F (σin, ρin )σin + (1 − F (σin, ρin ))σ⊥, (B1)

and F (σ⊥, σin ) = 0. In our delegation protocol, σin is an
m + M-mode state |�in〉〈�in| ⊗ σ , where σ is a pure M-mode
product state. Given that F (σin, ρin ) = Tr(σinρin ), we can in-
terpret this fidelity to be the projection of ρin onto the subspace
spanned by σin. This is because the trace of the product of two
matrices is a valid Hilbert-Schmidt inner product. All the other
components of ρin must be in the orthogonal subspace to σin,
σ⊥. Thus Eq. (B1) must hold while satisfying F (σ⊥, σin ) = 0.

Next, we demonstrate σ⊥ is a valid density matrix.
There are two requirements: Tr(σ⊥) = 1, and σ⊥ is positive
semidefinite. The first condition follows directly by taking the
trace on both sides of Eq. (B1). To show the latter, we rewrite
σ⊥ = OρinO†, where O = (1m+M − σin )/

√
1 − F (σin, ρin ),

which we note satisfies the requisite Tr(σinσ
⊥) = 0. Since ρin

is positive semidefinite, it can be written as ρin = A†A, for
some matrix A. Thus σ⊥ is also positive semidefinite because
we can write σ⊥ = (AO†)†(AO†).

Recall that σin = |�in〉〈�in| ⊗ σ , where σ is a pure state,
and the actual initial state to be tested is ρin = |�in〉〈�in| ⊗
ρ, where ρ is in general a mixed state. Then, using these in
Eq. (B1) gives us

ρin = F (σ, ρ)σin + (1 − F (σ, ρ))σ⊥, (B2)

where F (σin, σ
⊥) = 0. Applying the linear operator Ey that

represents the teleportation circuit to Eq. (B2),

Ey(ρin) = F (σ, ρ)Ey(σin) + (1 − F (σ, ρ))Ey(σ⊥). (B3)

Since σout(y) is a pure state (where in the case of performing a
single cubic gate σout(y) = |�out(y)〉s〈�out(y)|s), we can write
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the fidelity between σout(y) and ρout(y) as

F (σout(y), ρout(y)) = Tr(σout(y)ρout(y)). (B4)

The fidelity between the final states σout(y) and ρout(y) then
satisfies the bound,

F (σout(y), ρout(y))

= Tr(Ey(σin)Ey(ρin))
Tr(Ey(σin))Tr(Ey(ρin))

= F (σ, ρ)Tr(Ey(σin)2)+(1−F (σ, ρ))Tr(Ey(σin)Ey(σ⊥))
Tr(Ey(σin))Tr(Ey(ρin))

� F (σ, ρ)
Tr(Ey(σin)2)

Tr(Ey(σin))Tr(Ey(ρin))
= F (σ, ρ)

Tr(Ey(σin))
Tr(Ey(ρin))

.

(B5)

In the third line we used the fact that 1 − F (σ, ρ) � 0 and
Tr(Ey(σin)Ey(σ⊥)) � 0 and Ey(σ⊥) is positive semidefinite. In
the last equality we used the fact that Ey(σin)/Tr(Ey(σin)) is
a pure normalized state, so Tr(Ey(σin)2)/(Tr(Ey(σin)))2 = 1.
Note that in the infinite squeezing limit we have Tr(Ey(σin)) =
Tr(Ey(ρin)), so F (σout(y), ρout(y)) � F (σ, ρ).

APPENDIX C: DERIVING Flow

We can write our ideal M-mode resource state as σ =
(|γ̃ 〉s〈γ̃ |s)⊗M = V ⊗M |0〉M〈0|M (V †)⊗M , where V = C(γ̃ )S(s)
and |0〉M is the M-mode vacuum state. This means we can
rewrite the squared quantum fidelity as

F (σ, ρ) = Tr(σρ) = Tr(|0〉M〈0|M ((V †)⊗MρV ⊗M )). (C1)

To find a lower bound to this quantity, we first note that

|0〉M〈0|M � 1M −
M−1∑
k=0

1k ⊗ n̂k+1 ⊗ 1M−k−1, (C2)

where n̂k is the number operator acting on the kth mode.
We can see this inequality by acting the left- and right-hand
sides with the Fock states |n1, ..., nM〉, where n1, ..., nM are
non-negative integers. These Fock states form a complete
eigenbasis. When using the Fock state |0〉M , the inequality
above becomes an equality. Otherwise, the inequality implies
0 � 1 − (n1 + ... + nM ), which always holds.

Since (V †)⊗MρV ⊗M is positive semidefinite, then
Eqs. (C1) and (C2) give the lower bound to the fidelity,

F (σ, ρ) � Tr(Wρ) ≡ Flow, (C3)

where the fidelity witness W is

W = 1M −
M−1∑
k=0

1k ⊗ V †n̂k+1V ⊗ 1M−k−1. (C4)

The implication of this simple relation is that by writing V n̂V †

in terms of x̂ and p̂, we can find a lower bound on fidelity by
just measuring those quadratures of a given state ρ to find how
close it is to our true cubic phase state. Note that this is a tight
bound. This means if σ = ρ, then F = 1 = Flow.

To compute Flow, we find V n̂V † in terms of x̂ and p̂ by first
using

S(s)n̂S(s)† = a†a(2cosh2( log(s)) − 1)

+ cosh(log(s))sinh( log(s))(a†a† + aa)

+ sinh2( log(s))1, (C5)

where number operator n̂ = a†a can be defined in terms
of the creation and annihilation operators a† = (1/

√
2)(x̂ −

i p̂) and a = (1/
√

2)(x̂ + i p̂), respectively. By also us-
ing exp(iγ̃ x̂3)a† exp(−iγ̃ x̂3) = (exp(iγ̃ x̂3)a exp(−iγ̃ x̂3))† =
(1/

√
2)(x̂ + 3iγ̃ x̂2 − i p̂), we find

V n̂V † = − 1

2
1 + s2

2
(x̂2 + 9γ̃ 2x̂4) + 1

2s2
( p̂2 − 6γ̃ x̂ p̂x̂)

= − 1

2
1 + s2

2
(x̂2 + 9γ̃ 2x̂4) + 1

2s2
( p̂2 + 2γ̃ p̂3)

+ 1

2s2
γ̃ ((x̂ − p̂)3 − (x̂ + p̂)3), (C6)

where we used 2x̂ p̂x̂ = p̂x̂2 + x̂2 p̂ in the first line. Inserting
Eq. (C6) into Eq. (C4) we can write

W =
(

1 + M

2

)
1M −

M−1∑
k=0

1k ⊗ wk+1 ⊗ 1M−k−1, (C7)

where wk+1 = (s2/2)(x̂2
k+1 + 9γ̃ 2x̂4

k+1) + (1/(2s2))( p̂2
k+1 +

2γ̃ p̂3
k+1) + (1/(2s2))γ̃ ((x̂k+1 − p̂k+1)3 − (x̂k+1 + p̂k+1)3).

Then we can write Flow as the sum,

Flow = 1 + M

2
+

6M∑
i=0

λiTr( f̂iρ), (C8)

where λi are real coefficients and f̂i are tensor products
of quadrature operators with unit coefficients obtained
by inserting Eq. (C6) into Eqs. (C3) and (C4). Thus
λ1+6k = −s2/2, λ2+6k = −9γ̃ 2s2/2, λ3+6k = −1/(2s2),
λ4+6k = −γ̃ /s2, λ5+6k = −γ̃ /(2s2), λ6+6k = γ̃ /(2s2), and
f̂1+6k = 1k ⊗ x̂k+1 ⊗ 1M−k−1, f̂2+6k = 1k ⊗ x̂4

k+1 ⊗ 1M−k−1,
f̂3+6k = 1k ⊗ p̂2

k+1 ⊗ 1M−k−1, f̂4+6k = 1k ⊗ p̂3
k+1 ⊗ 1M−k−1,

f̂5+6k = 1k ⊗ (x̂k+1 − p̂k+1)3 ⊗ 1M−k−1, f̂5+6k = 1k ⊗
(x̂k+1 + p̂k+1)3 ⊗ 1M−k−1, where k = 0, 1, 2, ... with a
maximum value of M − 1.

We note that state certification can also be achieved us-
ing state tomography by implementing homodyne detection
[66,67]. However, this requires homodyning all (in principle
infinitely many) quadratures instead of just four of them per
mode as in our method here.

APPENDIX D: IMPORTANCE SAMPLING METHOD

Here we include more details on how Flow can be estimated
using importance sampling techniques [53,59,60].

From Eq. (C8) we defined Flow = 1 + M/2 +∑6M
i=0 λiTr( f̂iρ) and f̂i = 1k ⊗ x̂′n

k+1 ⊗ 1M−k−1, where
n = 1, 2, 3, 4 and x̂′ = x̂, p̂, x̂ ± p̂. Since M is known,
we only need to estimate the quantity

∑6M
i=0 λiTr( f̂iρ). We

then define a random variable F which takes the values
Fi, f ≡ ∑6M

j=0 |λ j |sgn(λi ) f , where f are the eigenvalues of
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the quadrature operators f̂i = ∫
df f P̂i, where f = (x′

k+1)n,
Pi = |x′

1, ..., x′
M〉〈x′

1, ..., x′
M | is the projection onto quadratures

x̂′
l in modes l = 1, ..., M, x′

k+1 is the eigenvalue of the operator
f̂i, and df ≡ dx′

1...dx′
M .

We can also define a probability density p(i, f ) =
p(i)p( f |i) for F, where p(i) = |λi|/

∑6M
j=0 |λ j |. The condi-

tional probability term p( f |i) = Tr(P̂iρ). This means we
can rewrite Flow − 1 − M/2 = ∑6M

i=0

∫
df p(i, f )Fi, f , which

we show below,

Flow − 1 − M/2

=
6M∑
i=0

λiTr( f̂iρ)

=
6M∑
i=0

|λi|∑6M
j=0 |λ j |

Tr

(
sgn(λi )

6M∑
k=0

|λk| f̂iρ

)

=
6M∑
i=0

|λi|∑6M
j=0 |λ j |

Tr

(
sgn(λi )

6M∑
k=0

|λk|
∫

df f P̂i, f ρ

)

=
6M∑
i=0

∫
df

|λi|∑6M
j=0 |λ j |

Tr(P̂i, f ρ)
6M∑
k=0

|λk|sgn(λi) f

=
6M∑
i=0

∫
df p(i, f )Fi, f ≡ 〈F〉. (D1)

In this way, we can consider Flow as the expectation value of
the random variable F which takes on the values Fi, f with
probability p(i, f ).

APPENDIX E: SAMPLE COMPLEXITY

We know from Appendix D that F is a random variable
which takes value Fi, f with probability p(i, f ). Due to finite

energy constraints in real experiments, this variable is always
bounded in the interval [minFi, f , maxFi, f ]. Then from Ho-
effding’s inequality, if we sample Fi, f values N times, the
probability |F (est)

low − Flow| � η is upper bounded by

P
(∣∣F (est)

low − Flow

∣∣ � η
)
� e−2Nη2/(minFi, f −maxFi, f )2

. (E1)

Thus the minimal number of copies of ρ required to ensure
P(|F (est)

low − Flow| < η) � 1 − β is N ∼ O(ln(1/β )(minFi, f −
maxFi, f )2/η2). In the following, we derive the upper bound to
(minFi, f − maxFi, f )2 � KM2, where K is a bounded constant
independent of M.

From Appendix D we know we can write
Fi, f = ∑6M

j=0 |λ j |sgn(λi) f , which means maxFi, f �∑6M
j=0 |λ j || f | � 6Mmax(|λ j |)max(| f |) and minFi, f �

−6Mmax(|λ j |)max(| f |). Thus

(minFi, f − maxFi, f )2 � 4(6M )2max(|λ j |)2max(| f |)2. (E2)

We note that λ j depends only on the squeezing s and γ̃ and
under physical assumptions of finite energy available to Alice
and Bob, |λ j | is bounded from above and is independent of
M. Also, f̂ j are all local quadrature operators polynomial
in x̂ and p̂ up to order 4. Since the operators are local, the
maximum values of | f | do not depend on M and can be related
to an upper bound of the energy of ρ per mode when the
quadrature operators are quadratic. Otherwise, we can assume
finite upper bounds of the higher moments of the quadrature
operators. So (minFi, f − maxFi, f )2 � KM2, where K is a
bounded constant independent of M. Therefore, if

N ∼ O
(

M2

η2
ln

(
1

β

))
, (E3)

then P(|F (est)
low − Flow| < η) � 1 − β.
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