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Quantum teleportation with infinite reference-frame uncertainty
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We present two schemes for quantum teleportation between parties whose local reference frames are
misaligned by the action of a compact Lie group G. These schemes require no prior alignment of reference frames
and are unaffected by arbitrary changes in reference-frame alignment during execution, suiting them to situations
of rapid reference-frame drift. Our tight scheme yields improved purity compared to standard teleportation, in
some cases substantially—this includes the case of qubit teleportation under arbitrary SU(2) reference-frame
uncertainty—while communicating no information about either party’s reference-frame alignment at any time.
Our perfect scheme performs perfect teleportation, but does communicate some reference-frame information.
The mathematical foundation of these schemes is a unitary error basis permuted up to a phase by the conjugation
action of a finite subgroup of G.
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I. OVERVIEW

A. Motivation

A shared reference frame is an important implicit assump-
tion underlying the correct execution of many multiparty
quantum protocols [1–7]. As quantum technologies move into
space [8–10] and into handheld devices [11–13], scenarios
where this assumption is violated are naturally encountered.
This problem has already received considerable attention
in the case of ground-to-satellite quantum key distribution
[10,14,15]; there is also a smaller body of work on quantum
teleportation without a shared reference frame [16–18], a
subject which is increasingly important as quantum repeaters
[19] and ground-to-satellite quantum teleportation [8] become
experimentally viable.

Prior alignment of reference frames [1,20–23] may become
impractical in the case of time-varying misalignment, or
where the parties are far apart; prior alignment also involves
communication of reference-frame information, which may
be cryptographically sensitive [4,24,25]. Another approach
involves the use of decoherence-free subspaces [26]; because
this requires larger Hilbert spaces, practical implementation
can be nontrivial, although experimental solutions have been
developed for optical systems [27].

B. Our approach

We use a classical channel whose configurations are inter-
preted with respect to the local reference frame, such as might
be used for prior alignment. Indeed, such a channel could be
used to align frames by observing how a preagreed configura-
tion transmitted by Alice is perceived by Bob. However, this

*dominic.verdon@bristol.ac.uk
†j.o.vicary@bham.ac.uk

does not occur in our schemes; in particular, our schemes work
when rapidly varying reference-frame alignment renders prior
alignment impossible, and our tight scheme in fact communi-
cates no information about either party’s frame configuration
at any time. Rather, in our schemes, Alice communicates the
measurement result itself using this channel. If the parties’
frames are not aligned, Bob will perform correction operations
with respect to his own frame; these may not correspond to the
measurement Alice performed, causing error. In our approach,
however, the misalignment also causes errors in transmission
of the measurement result; Bob may receive a different index
to that sent by Alice. These errors are correlated, and our key
idea is to construct schemes where they cancel out.

C. Equivariant unitary error bases

A standard teleportation protocol can be described math-
ematically in terms of a unitary error basis (UEB) [28], a
basis of unitary operators on a Hilbert space Cd which are
orthogonal under the trace inner product. Let G be a finite
reference-frame transformation group; we define a UEB to be
G-equivariant when its elements are permuted up to a phase
under conjugation by ρ(g) for any g ∈ G, where ρ : G →
U (d ) is the representation of G on Bob’s system [1].

Equivariant UEBs are the mathematical foundation of our
teleportation schemes. In previous work we exhaustively clas-
sified these for qubit systems [29, Theorem 4.1]; they exist
precisely when the image of the composite homomorphism
G

ρ→ U(2)
τ→ SO(3) is isomorphic to 1, Z2, Z3, Z4, D2, D3,

D4, A4, or S4, where τ is the obvious projection. We also
provided constructions in higher dimension, and a method for
proving nonexistence in some cases.

D. Tight scheme

For any finite subgroup H ⊆ G admitting an H-equivariant
UEB, we construct a tight teleportation scheme immune to
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FIG. 1. Effective channel for a conventional protocol with uni-
form U(1) reference-frame uncertainty is a uniform average over the
channels induced by all misalignments θ ∈ [−π, π ). The cyclic sub-
group Z4 ⊂ U(1) possesses an equivariant UEB, allowing our tight
scheme to “quotient out” Z4 reference-frame uncertainty. Roughly,
this reduces uncertainty to the region θ ∈ (−π/4, π/4) highlighted
in the left subfigure; more precisely, the average over all misalign-
ments is now weighted by p(θ ), shown in the right subfigure.

reference-frame errors arising from H . When H = G, the pro-
tocol allows error-free teleportation. When G is larger than H ,
the protocol roughly allows us to “quotient” by the subgroup
H , restricting the error to a fundamental domain for H in G.
(See Fig. 1.) This can result in significant improvements in
channel purity [30] compared to conventional teleportation,
even for infinite compact Lie groups. For G = SU(2), for
example, corresponding to arbitrary reference-frame uncer-
tainty for a qubit system, standard teleportation yields an
average channel purity of 0.21; with our tight scheme for the
subgroup BOct ⊂ SU(2), where BOct is the binary octahedral
group, we obtain a channel purity of 0.44 ± 0.03, more than
double that for standard teleportation. The results are shown
in Table I.

The tight scheme additionally possesses the following de-
sirable properties.

(i) Dynamical robustness (DR). It is unaffected by arbitrary
changes in reference-frame alignment during transmission
of the measurement result, provided Bob’s frame alignment
remains approximately constant between his receipt of the
measurement result and his performance of the unitary cor-
rection.

(ii) Minimal entanglement (ME). The parties only require a
d-dimensional maximally entangled resource state.

(iii) Minimal communication (MC). Only 2 dits of classical
information are communicated from Alice to Bob.

(iv) No reference-frame leakage (NL). No information
about either party’s reference-frame alignment at any time

TABLE I. Qubit teleportation using a matched channel for U(1)
and SU(2) reference-frame uncertainty. The numbers shown are the
purities of the effective quantum channels.

Transformation Conventional
group purity New tight scheme purity

U(1) 0.59 0.65 (matched channel)
0.32 ± 0.02 (matched channel)

SU(2) 0.21
0.44 ± 0.03 (rod channel)

is communicated. (This property is of cryptographic signifi-
cance [4,24,25].)

E. Perfect scheme

The tight scheme yields an improvement in the quality of
the channel. Our perfect scheme, on the other hand, performs
perfect teleportation, up to a global phase, while retaining
properties (DR) and (ME) and without communicating full
information about Alice’s frame configuration at the time
of measurement. To achieve this, additional reference-frame
information is transmitted by Alice in the same package as
the measurement result, reducing reference-frame uncertainty
exactly to the finite group H , for which perfect teleportation is
possible. Our techniques allow us to “fold” the measurement
result in with the reference-frame information, obviating the
need to communicate it through a separate channel and,
importantly, maintaining the novel (DR) property.

F. Related work

Chiribella et al. [16] argued that, when the reference trans-
formation group is a continuous compact Lie group, there is
no teleportation procedure yielding perfect state transfer. They
did not consider transmission of the measurement result in a
reference-frame-dependent manner, and their no-go theorem
therefore does not apply to our results.

Some other approaches for finite G can be found in
the literature. These rely on a variety of techniques: using
additional preshared entanglement [16], sharing additional
entanglement during the protocol [4], and transmitting more
complex resources [1, Sec. V A]. None of these share the
(DR) property, and they all require additional resources and
additional quantum operations.

G. Outlook

Work has been done on reference-frame-independent quan-
tum key distribution between handheld devices sharing an op-
tical link [11–13]; such devices seem an obvious application
for our perfect scheme for U(1) uncertainty. There may also
be cryptographic applications for these results, as it has been
noted that a private shared reference frame may be used as
a secret key [4,24,25], and our tight scheme does not leak
reference-frame information.

II. EXAMPLES

We begin with two illustrative examples.

A. Example 1: Phase reference-frame uncertainty

1. Physical setup

Alice and Bob share an optical link along a line of sight;
through this link they can perform quantum or classical com-
munication, mediated by individual photons or beams of clas-
sical light. Alice transfers one-half of a polarization-entangled
pair of photons to Bob through the optical link, which can
be used to teleport the state σ of a qubit in her possession.
However, they do not share a Cartesian frame defining the
x- and y-polarization axes in the plane perpendicular to the
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axis of the link. Due to frame misalignment, Bob’s description
of the polarization state of the transmitted photon may differ
from Alice’s [14].

The reference-frame transformation group here is the two-
dimensional rotation group U(1). If θ ∈ [0, 2π ) is the angle
of a clockwise rotation of the 2D Cartesian frame, U(1) acts
as follows on the polarization state:

θ �→ ρ(θ ) =
(

1 0
0 e−iθ

)
. (1)

Here the vector acted on by the matrix is (vL, vR)T , where vL

is the left and vR the right circular polarization coefficient. The
transformation g(t ) ∈ U(1), which relates Alice and Bob’s
frames at time t is unknown, and may vary non-negligibly
on time scales shorter than the message transmission time
between the parties, rendering prior alignment impossible.

2. Conventional scheme

Alice creates a polarization-entangled photon pair

η = 1√
2

( |00〉 + |11〉).

She communicates one photon to Bob through the optical
link, and measures the other, together with the state σ , in the
maximally entangled orthonormal basis |φi〉 = (1 ⊗ U T

i ) |η〉,
where Ui are the Pauli matrices:

U0 =
(

1 0
0 1

)
, U1 =

(
0 1
1 0

)
,

U2 =
(

0 −i
i 0

)
, U3 =

(
1 0
0 −1

)
.

(2)

She communicates the result to Bob through an ordinary
classical channel, who applies the correction Ui to his half
of the entangled state. Should both parties’ reference frames
be aligned, Bob’s system will finish in the state σ ; this is
because the Pauli matrices form a unitary error basis (UEB),
a structure we will define later.

However, if Bob’s frame is related to Alice’s by a nontrivial
transformation g ∈ U(1), then from the perspective of Alice’s
frame, Bob will not perform the intended correction Ui, but
rather the conjugated unitary [31]

ρ(g)†Uiρ(g). (3)

The transformation g is unknown, so we must average over
the whole of U(1) to find the effective channel, yielding the
following expression:

Ti(σ ) =
∫

U(1)
dg[ρ(g)†Uiρ(g)U †

i ](σ ). (4)

Here dg is the Haar measure on U(1), and we have used
the notation [X ](σ ) for the conjugation XσX †. Averaging
over the four equiprobable measurement results, we find
(Appendix C 2) that the effective channel for a conventional
scheme has the following effect on an input density matrix:(

a b
c d

)
�→

(
a b/2

c/2 d

)
.

R1

RR2

R1

R2

R1

φ = π/2

φ = 0

φ = −π/2

FIG. 2. Regions R1 and R2. The polarization axis of a beam of
light linearly polarized at angle θ = π/4 is shown in the figure.

3. Tight scheme

Alice measures as before, but now transmits her measure-
ment result using a beam of polarized classical light sent along
the optical link, according to the following prescription. If
she measures zero or 3, she transmits a beam of clockwise
or counterclockwise circularly polarized light, respectively;
since the direction of circular polarization is preserved under
reference-frame transformations, Bob will receive the mea-
surement result as it was sent. If she measures 1 or 2, she
sends the measurement result encoded in the polarization axis
of a beam of linearly polarized light, which is chosen using the
regions in Fig. 2: if she measures 1 or 2, she sends the light
linearly polarized along an axis selected uniformly at random
from the region R1 or R2, respectively. Bob then observes the
polarization direction of the light he receives respective to his
own frame and decodes in the inverse manner, performing
the correction as before. The rationale behind this choice of
encoding will be made clear in Sec. III.

This scheme is tight. In particular, we highlight two of the
properties listed in Sec. I as follows.

(i) (NL). To an observer outside Alice’s laboratory, the
information she communicates is uniformly random. This
follows from the fact that her measurement outcomes are
equiprobable, and given the measurement outcome i all polar-
ization directions in the corresponding region are equiproba-
ble. Therefore, nothing can be deduced from her transmission
about her reference-frame orientation.

(ii) (MC). There are four messages Bob can receive: left
or right circularly polarized light, or light linear polarized
through an axis in the region E1 or E2. All four messages
are equiprobable. He therefore obtains precisely two bits of
classical information.

We will see (Appendix C 2) that the effective channel—
averaging over Alice’s equiprobable measurement results—
has the following action on an input density matrix:(

a b
c d

)
�→

(
a b

(
2
π2 + 1

2

)
c
(

2
π2 + 1

2

)
d

)
. (5)
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The quality of the channel has increased, despite the fact
that no reference-frame information has been transmitted. In
particular, the final state is now asymmetric even when Alice
measures 1 or 2.

4. Perfect scheme

For perfect teleportation, Alice need not transmit full in-
formation about the frame in which she measured, as shown
by the following scheme. If Alice measures zero or 3, she
transmits a beam of left or right circularly polarized light,
respectively. If she measures 1 or 2, she transmits linearly
polarized light with polar angle zero or π/4, respectively. If
Bob receives circularly polarized light, he decodes as before.
If he receives linearly polarized light in the region E1 with
respect to his own frame, he rotates his frame actively or
passively so that the light is polarized along the axis with polar
angle zero in his frame, and performs the correction U1. If the
polarization direction is in the region E2, he rotates his frame
actively or passively so that the light is polarized along the
axis with polar angle π/4 in his frame, and performs the cor-
rection U2. We will see (Proposition III.5) that this procedure
results in perfect teleportation. However, the reference-frame
information communicated by this protocol is only sufficient
to reduce reference-frame uncertainty to a finite subgroup Z4.

B. Example 2: Spatial reference-frame uncertainty

1. Physical setup

Alice and Bob are spatially separated; their qubits are spin-
1
2 particles. Alice plans to teleport a state σ to Bob. They each
possess half of the following maximally entangled pair [32]:

|η〉 = 1√
2

( |01〉 − |10〉).

However, the Cartesian frame according to which Alice’s x-,
y-, and z-spin axes are defined is related to Bob’s by some un-
known three-dimensional rotation. The reference-frame trans-
formation group is SU(2), which acts on a qubit Hilbert space
H by its standard matrix representation ρ : SU(2) → B(H ).
Again, the transformation g(t ) ∈ SU(2) which relates Alice’s
and Bob’s frames at time t is unknown, and may vary on time
scales shorter than the message transmission time between the
parties.

2. Conventional scheme

Alice and Bob use the entangled state |η〉 to attempt a
standard teleportation protocol [33], again based on the Pauli
matrices (2). Alice measures the state σ together with her
entangled qubit in the maximally entangled orthonormal basis
|φi〉 = [1 ⊗ −i(UiU2)T ] |η〉 [34] and communicates the mea-
surement result to Bob through an ordinary classical channel;
Bob then applies the correction Ui. We must average over
all misalignments in SU(2) to find the effective channel. For
measurement result i we obtain the following expression:

Ti(σ ) =
∫

SO(3)
dg[ρ(g)†Uiρ(g)U †

i ](σ ). (6)

Here dg is the Haar measure on SO(3). Averaging
over the four equiprobable measurement results, we find

TABLE II. Tight encoding scheme for the rod channel. Alice
chooses the precise orientation of the rod uniformly at random from
the set of all orientations satisfying the intersection condition.

Measurement
result Classical transmission

0 Featureless sphere
1 Rod oriented along any axis intersecting the 1-faces
2 Rod oriented along any axis intersecting the 2-faces
3 Rod oriented along any axis intersecting the 3-faces

(Appendix C 3) that the effective channel purity is approxi-
mately 0.21.

3. Tight scheme

Alice considers a cube centered at the origin of her frame,
oriented so that the x, y, and z axes form normal vectors
to its faces; we call the faces intersected by the x, y, and z
axes the 1-, 2-, and 3-faces, respectively. She measures in
the basis { |φi〉}, and transmits her measurement result using
the encoding scheme given in Table II, and illustrated in
Fig. 3, which we summarize as follows. If Alice receives
measurement result zero, she sends a spherically symmetric
object (in other words, a sphere) to Bob. Otherwise, if she
receives measurement result n ∈ {1, 2, 3}, she prepares a rigid
rod in an arbitrary orientation in space, centered at the origin
of her frame, such that it intersects the n-faces of the cube.
She then sends this object to Bob by parallel transport.

When Bob receives the object from Alice, he performs
the reverse of Alice’s encoding scheme. If he receives the
spherically symmetric object he performs correction U0. If he
receives a rod, he moves it by parallel transport to his origin,
and observes which faces of the cube it intersects. Bob’s cube
will of course in general be oriented differently to Alice’s, and
so he may observe a different intersection than that encoded
by Alice. Having observed an intersection with the n-faces, he
then performs correction Un.

In Appendix C 3 we numerically calculate the purity of
the effective channel as 0.44 ± 0.03, approximately double
the value for a conventional scheme.

This scheme is tight, possessing in particular the (NL) and
(MC) properties, for exactly the same reasons as the previous
example.

4. Perfect scheme

Again, transmission of a full reference frame is unneces-
sary for perfect teleportation. We call the following family of
unitary matrices the tetrahedral qubit unitary error basis [29]:

V0 =
(

1 0
0 e2π i/3

)
, V2 = 1√

3

(
1

√
2e2π i/3√

2 e5π i/3

)
,

V1 = 1√
3

(
1

√
2e4π i/3√

2e4π i/3 e5π i/3

)
, (7)

V3 = 1√
3

(
1

√
2√

2e2π i/3 e5π i/3

)
.
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FIG. 3. Tight encoding scheme for the rod channel. Alice measures 1, chooses at random an orientation of the rod which intersects the
1-faces of the cube in her frame, and communicates the rod to Bob by parallel transport along a straight path. In Bob’s frame, related to Alice’s
by a π/4 rotation around the y axis, the rod intersects the 3-faces; he therefore performs the correction U3.

Let Tet ⊂ SO(3) be the subgroup preserving a regular tetra-
hedron centered at the origin with vertices:

v0 = ẑ, v1 = 1

3
(
√

8x̂ − ẑ), v2 = 1

3
(−

√
2x̂ + 2

√
3ŷ − ẑ),

v3 = 1

3
(−

√
2x̂ − 2

√
3ŷ − ẑ).

We identify the elements of Tet ∼= SO(3) with the permutation
they induce on these vertices.

Alice again measures in the basis { |φi〉}, where |φi〉 =
[1 ⊗ −i(ViU2)T ] |η〉. To perform the classical communication,
Alice uses a completely asymmetric classical object whose
orientation exactly determines a frame of reference. In order
to transmit the measurement result i, she aligns the asym-
metric object so that the frame determined by its orientation
matches her own Cartesian frame. She then rotates the object
by an element rA ∈ Tet, according to the prescription in
Table III, and sends it to Bob/ Bob observes the orientation of
the object according to his own Cartesian frame, and realigns
his frame (actively or passively) by the smallest possible angle
so that the rotation rB taking his frame onto that determined
by the orientation of the asymmetric object is in Tet. He then
uses Table III to decide which measurement result j to correct
for, and performs—in his own frame—the correction Vj .

While this procedure only reduces reference-frame uncer-
tainty to the binary tetrahedral subgroup of SU(2), it will be
shown in Proposition III.5 that it results in perfect teleporta-
tion. As before, it possesses the (DR) and (ME) properties, but
violates (MC) and (NL).

III. THEORY

We now explain the theory behind the examples in Sec. II.

TABLE III. Type C encoding scheme for the matched channel.

Measurement Alice’s
result rotation rA Bob’s observation rB

0 ( ) ( ) or (234) or (243)
1 (132) (142) or (132) or (12)(34)
2 (123) (13)(24) or (123) or (143)
3 (134) (134) or (124) or (14)(23)

A. Equivariant unitary error bases

We first recall the notion of a unitary error basis.
Definition III.1. A unitary error basis (UEB) for a d-

dimensional Hilbert space V is a basis of d2 unitary matrices
{Ui}i∈I in B(V ) (where I = {1, . . . , d2} is the index set), which
is orthonormal under the Hilbert-Schmidt inner product:

〈Ui|Uj〉 := 1

d
Tr(U †

i Uj ) = δi j . (8)

Theorem III.1 ([28, Theorem 1]). A teleportation protocol
satisfying the (ME) property corresponds to a choice of uni-
tary error basis for V , along with any other unitary matrix X .

Under this correspondence, the shared entangled state η

is the maximally entangled state
∑

i |i〉 ⊗ X |i〉 for a chosen
orthonormal basis { |0〉, |1〉, . . . } and some unitary X . (Any
bipartite maximally entangled pure state is of this form.)
Alice measures in the maximally entangled orthonormal basis
{ |φi〉}i∈I , where

|φx〉 =
∑

i

|i〉 ⊗ (UxX )T |i〉. (9)

Bob’s correction for measurement outcome x is Ux.
We now consider the effect of reference-frame misalign-

ment on such a procedure. Let G be a compact Lie group of
reference-frame transformations, with unitary representation
ρ : G → B(V ) on Bob’s system; here and throughout we
assume uniform reference-frame uncertainty, where the prob-
ability measure over G is the Haar measure dg. We assume
that the maximally entangled state |η〉 ∈ V ⊗ V is invariant
up to a phase under changes in frame, so that the entanglement
is not itself degraded by reference-frame uncertainty [35]. We
work in Alice’s frame. In this frame, Alice performs the mea-
surement correctly and sends the result i, but Bob performs
the correction ρ(g)†Uiρ(g) [36]. Since g ∈ G is unknown, the
effective channel when Alice measures i is

σ ′
i =

∫
G

dg[ρ(g)†Uiρ(g)U †
i ](σ ). (10)

For finite G, we can use an equivariant UEB together with
a classical channel carrying a G action to perform perfect
reference-frame-independent teleportation [37].

Definition III.2. Let a finite group H act on a Hilbert space
V of dimension d by the representation ρ : H → B(V ). We
say that a unitary error basis {Ui}i∈I for V is H equivariant

062306-5



DOMINIC VERDON AND JAMIE VICARY PHYSICAL REVIEW A 100, 062306 (2019)

when the right conjugation action of H permutes the elements
of {Ui}i∈I up to a phase. Explicitly,

ρ(h)†Uiρ(h) = α(i, h)Uσ (i,h) ∀ h ∈ H, i ∈ I,

where σ : I × H → I is a right action of H on the index set
I = {0, . . . , d2 − 1}, and α : I × H → U(1) is some phase.

Proposition III.1. ([29, Theorem 2.7]). Let H be a finite
group of reference-frame transformations with an equivariant
unitary error basis {Ui}i∈I and corresponding right action σ :
I × H → I . Let Alice communicate the measurement results
using a channel whose set of messages I carries the inverse
left action σ−1 : H × I → I . Then the teleportation protocol
with data {Ui}i∈I will function perfectly for all hAB ∈ H .

Proof. In Alice’s frame, for measurement result i and
any misalignment h ∈ H , Bob will perform the correction
ρ(h)†Uσ−1(h,i)ρ(h) ∼ Uσ (σ−1(h,i),h) = Ui. �

Here we consider actions of general (i.e., possibly infinite)
compact Lie groups G, for which equivariant UEBs generally
do not exist. Our approach here is to identify a finite subgroup
H ⊂ G such that there exists an equivariant UEB for H under
the restricted representation. We then choose an encoding of
the measurement result in the classical channel which carries
the inverse action in the sense of Proposition III.1, allowing
us to “quotient” the space of possible misalignments G by the
subgroup H .

Remark III.1. If the representation of G on the system to be
teleported is not faithful, we can consider the natural faithful
representation of the reduced reference-frame transformation
group G̃ := G/Ker(ρ). In Sec. II A, for instance, the reduced
transformation group was U(1)/Z2

∼= U(1), because the rep-
resentation (1) obeys ρ(2θ ) = ρ(θ ). For the faithful action,
we can use the results about existence of equivariant UEBs
from [29]. We cannot simply assume that G acts faithfully,
though, since when constructing a compatible classical chan-
nel it will be necessary to consider the physical rather than the
reduced transformation group.

Example III.1. (i) The UEB in both the tight and perfect
schemes for U(1) (Sec. II A) is the set of Pauli matrices, which
is equivariant for the subgroup Z4 < U(1) of the reduced
transformation group. A generator of Z4 acts as the swap (12)
on the index set of the UEB under conjugation.

(ii) In the tight scheme for SU(2) (Sec. II B) the Pauli UEB
is equivariant for the binary octahedral subgroup BOct ⊂
SU(2) preserving the cube.

(iii) In the perfect scheme for SU(2) (Sec. II B) the tetra-
hedral UEB is equivariant for the binary tetrahedral subgroup
BTet ⊂ SU(2) preserving the tetrahedron.

B. Compatible encoding of classical information

We now consider the other component of the scheme, a
classical channel carrying an action of the reference-frame
transformation group. The spaces of readings of all the classi-
cal channels we consider in this work carry a smooth manifold
structure with normalized measure dx, and all actions are
smooth and measure preserving.

Definition III.3. We say that a classical channel commu-
nicates unspeakable information [23], or is an unspeakable
channel, if its space of readings C carries a nontrivial action
of the reference-frame transformation group G.

We call a channel whose space of readings carries a trivial
G action a speakable channel.

Throughout this paper we make the simplifying assump-
tion that there is no channel noise, apart from that arising from
frame misalignment. A classical channel is therefore fully
described by its space of readings and the G action on that
space; for this reason we conflate the channel with its space
of readings, using the same letter C for both. Since we have
chosen the convention that the effect of a change of reference
frame on the states of a quantum system corresponds to a
left action of the transformation group (see Appendix A), the
action of G on the classical channel will be a left action.

Example III.2. (i) For the tight and perfect schemes in
Sec. II A, the space of readings was the linear polarization
direction of the light beam. As a smooth manifold, this is the
real projective line RP 1; it carries a nonfaithful smooth action
of U(1) with kernel Z2 (since a π rotation does not change the
polarization direction).

(ii) For the tight scheme in Sec. II B, the space of readings
was the space of possible orientations of a rod. As a manifold,
this is the real projective plane RP 2, carrying the obvious
smooth action of SU(2).

(iii) For the perfect scheme in Sec. II B, the space of read-
ings was the space of possible orientations of a completely
asymmetric object. As a manifold, this is the Stiefel (frame)
manifold V2(R3) ∼= SO(3), carrying the obvious smooth ac-
tion of SU(2).

We now specify a framework for encoding of measurement
values in such a channel.

Definition III.4 (Encoding scheme). Let C be an unspeak-
able channel and I be a finite set of values to be sent through
it. An encoding scheme for I is as follows.

(i) A set of open subsets {Ei ⊂ C | i ∈ I}, the encoding
subsets, where Ei are disjoint open sets.

(ii) A set of open subsets {Di ⊂ C | i ∈ I}, the decoding
subsets, where Di are disjoint open sets which cover C up to a
set of measure zero.

The encoding subset Ei is the set of all possible readings
Alice can send in order to transmit the value i ∈ I . The
decoding subset Di is the set of all possible readings upon
receipt of which Bob will record the value i ∈ I .

Recalling Proposition III.1, the success of our protocol
depends on encoding schemes which are compatible with the
right action of H on the index set of the UEB.

Definition III.5 (Compatible channel). Let C be an un-
speakable channel for a finite group H . Let σ : I × H → I be
a right action of H on an index set I . We say that an encoding
scheme for I is compatible with σ if (i) the decoding subsets
{Di}i∈I and the encoding subsets {Ei}i∈I are each permuted
under the action of H on C, inducing left actions τD, τE :
H × I → I , and (ii) the left actions τD, τE : H × I → I are
equal and inverse to the action σ : I × H → I of H on I . That
is, for all i ∈ I ,

τD(i,−) = τE (i,−) = σ−1(i,−).

In other words, given a right action of a finite reference-
frame transformation group on the UEB index set, a com-
patible encoding scheme transmits the indices through the
classical channel with the inverse left action.
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Example III.3. (i) In Sec. II A, the encoding and decoding
subsets for the tight scheme are the same, namely the regions
R1 and R2 (Fig. 2). In the physical (unfaithful) representation,
the Pauli UEB is equivariant for the subgroup Z8 < U(1),
where a generator of Z8 acts as the swap (12). Compatibly,
the regions R1 and R2 are swapped under the action of a
generator of Z8. For the perfect scheme, the encoding subsets
are singletons, namely the polar angles zero and π/4; the
decoding subsets are the regions R1 and R2.

(ii) In the tight scheme of Sec. II B, the encoding and
decoding subsets are the same: Di = Ei is the subset of
orientations of the rod through the i-faces of the cube. The
indices of the Pauli UEB are permuted inversely to the labels
on the cube’s faces under the conjugation action of BOct.

(iii) In the perfect scheme of Sec. II B, the encoding
subsets Ei are singletons, namely the orientations given by
rotating the object according to Table III. The decoding
subsets are Voronoi cells around these orientations [38]. The
indices of the tetrahedral UEB are permuted inversely to the
encoding and decoding subsets under the conjugation action
of BTet.

Construction of compatible encoding schemes

We now provide a general construction of a compatible
encoding scheme for any transitive action σ : I × H → I of
a finite subgroup of G. Since all actions split into transitive
actions on the orbits, this loses no generality, since we can
communicate the orbit index using speakable communication.
For the construction, we need an unspeakable classical chan-
nel of the following type. Recall that an action is free if all
stabilizers are trivial and transitive if it possesses only one
orbit.

Definition III.6. Let G be the reference-frame transforma-
tion group, with representation ρ on the system to be tele-
ported. Let C be an unspeakable classical channel, carrying
the action α : G × C → C. We say C is matched to ρ if
Ker(ρ) ⊆ Ker(α), and the reduced action G̃ × C → C, where
G̃ = G/Ker(ρ) is the reduced transformation group, is free
and transitive.

Example III.4. (i) In Sec. II A the kernel of the represen-
tation ρ is Z2, generated by the rotation through an angle
π . Likewise, the kernel of the action of U(1) on polarization
directions is U(2). The reduced group G/Ker(ρ) corresponds
to the rotations θ ∈ (−π/2, π/2], which clearly act freely and
transitively on the polarization directions.

(ii) The channel for the perfect scheme in Sec. II B, where
a completely asymmetric classical object was transmitted, is
a matched channel for the representation of SO(3). Here the
kernel of ρ is trivial, and the action of SO(3) on the set of
orientations is clearly free and transitive.

The readings of a matched channel C can be identified with
elements of the reduced transformation group G̃, by choosing
an “identity” reading [e] ∈ C based on their own reference-
frame configuration. All other readings in C are then identified
uniquely by [g] := g · [e], for any g ∈ G̃.

Example III.5. (i) For the channel of Sec. II A, the channel
reads [e] when the polarization axis is the x axis of the
observer.

(ii) For the perfect scheme of Sec. II B, the channel reads
[e] when the frame defined by the asymmetric object is
aligned with the Cartesian frame of the observer.

In general, Alice and Bob will have different labelings of
the channel, given that their reference frames are oriented
differently. We write [g]A, [g]B for the reading associated to
g ∈ G by Alice and Bob, respectively.

Proposition III.2. If Bob’s frame is related to Alice’s by
a transformation gAB ∈ G, then their labelings are related as
follows:

[g]A = [
gg−1

AB

]
B. (11)

We now construct the compatible encoding scheme. We
recall the following characterization of transitive actions.

Lemma III.1. Let H be a finite group. Any transitive right
H-set is isomorphic to a right coset space L\H for a subgroup
L ⊂ H under the right action (Lh2) · h1 = Lh2h1.

Our construction divides the matched channel C up into
regions {Rh ⊂ C | h ∈ H}, which are permuted by reference-
frame transformations in H according to the inverse left action
h2 · Rh1 = Rh1h−1

2
. We then identify these regions to obtain

the desired transitive action. To define the Rh, we choose a
fundamental domain for the finite subgroup H ⊂ G̃.

Definition III.7. A fundamental domain for a finite sub-
group H ⊂ G is an open subset F ⊂ G containing the identity
such that the H-translates Fh have empty intersection and
cover G up to a set of measure zero [39].

Example III.6. In the example of Sec. II A, the rotations
through an angle θ ∈ (−π/8, π/8) are a fundamental domain
for Z4 ⊂ G̃.

Definition III.8. Fix a subgroup H ⊂ G, and a fundamental
domain F for H in G. Then the regions {Rh | h ∈ H} are
defined as

Rh := {[ f h] | f ∈ F }.
Lemma III.2. Let Bob’s reference-frame configuration be

related to Alice’s by a transformation hAB ∈ H . Then

(Rh)A = (
Rhh−1

AB

)
B.

Proof. Immediate from (11). �
We can now construct a compatible encoding scheme for

the transitive action L\H by grouping regions Rh into cosets.
Let ci ∈ H be right coset representatives for L in H .

Definition III.9. The tight matched scheme for σ is defined
as

Di =
⊔
l∈L

Rlci , Ei = Di.

The perfect matched scheme is defined as

Di =
⊔
l∈L

Rlci , Ei =
{⊔

l∈L

[lci]

}
.

The reason for the nomenclature will become apparent in
the next section.

C. Teleportation schemes

We now specify and prove correctness for our teleportation
schemes. Throughout this section, let H ⊂ G be a finite
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subgroup, let {Ui}i∈I be an equivariant UEB for H , let σ :
I × H → I be the corresponding right action of H on the
index set of the UEB, let Ik ⊂ I be the orbits in I under σ ,
where k is some index for the orbits, and let σk : Ik × H → Ik

be the corresponding (transitive) restricted actions.

1. Tight scheme

Procedure III.1 (Tight teleportation scheme). Let C be an
unspeakable channel for G (and therefore also for H), and
let (Dk

i , Ek
i )i∈I be encoding schemes for Ik on C compatible

with σk : Ik × H → Ik and such that, for each k, the decoding
regions are the same as the encoding regions, that is, Dk

i = Ek
i

for all i, k.
Alice measures in the basis { |φi〉}i∈I (9) as in a standard

teleportation protocol, and obtains the result i ∈ Ik . The result
is transmitted as follows.

(1) Alice transmits the orbit label k through a speakable
channel.

(2) Alice sends a reading x chosen uniformly at random
from the region Ek

i .
(3) Bob receives g · x ∈ Dk

j and performs the correction Uj .
Here g is the reference-frame transformation taking Alice’s

frame at the time of measurement onto Bob’s frame at the time
of receipt.

We now derive an explicit expression for the effective
channel obtained using Procedure III.22. Recall that, for op-
erators M, σ ∈ B(H ), we write [M](σ ) for MσM†.

Theorem III.2 (Effective channel for Procedure III.1).
Suppose that Alice measures some result i ∈ Ik , where Di

k =
Ei

k for all i ∈ Ik . Then the channel induced by Procedure III.1
is

Tk (σ ) = |Ik|
μC

(
Ek

0

) [ρ(ci )] ◦
∫

G
(dg p(g) [ρ(g)†U0ρ(g)U †

0 ]

◦ [ρ(ci )
†] (σ )). (12)

Here 0 ∈ Ik is some fixed element of the orbit; the nor-
malizing factor μC (Ek

0 ) is the measure of Ek
0 in C; p(g) =∫

Ek
0 ⊂C dx 1Dk

0
(g · x), where 1Dk

0
is a continuous approximation

to the indicator function for Dk
0 ⊂ C; and {ci}i∈Ik , ci ∈ H are

such that ci · Ek
0 = Ek

i .
Proof. The proof is somewhat technical, so it has been

placed in Appendix B. �
Proposition III.3. Procedure III.1 satisfies (MC), (NL),

(ME), and (DR).
Proof. (NL) Alice has an equal probability of measuring

any i ∈ Ik , and chooses a reading with uniform probability
from the subsets {Ek

i = Di
k}i∈I , which have equal measure

and cover the space of readings up to a set of measure zero.
The message therefore communicates no information about
Alice’s frame configuration, since without prior knowledge
of the reading Alice sent, nothing can be learned from the
reading that is received.

(MC) The only useful information Bob learns from the
message he receives is which of his decoding subsets {Dk

i }i∈Ik

the reading he receives lies in; there are
∑

k |Ik| = |I| = d2

possible messages, which are equiprobable. In total, therefore,
he receives two dits of unspeakable classical information.

(ME) Obvious.

(DR) In Alice’s frame, reference-frame misalignment af-
fects Bob’s reading of the transmitted measurement result,
and his unitary correction. Provided that his frame configu-
ration remains approximately constant between these steps,
the effective channel (12) is unaffected by arbitrary changes
in reference-frame alignment throughout the rest of the
procedure. �

2. Perfect scheme

Procedure III.2 (Perfect scheme). Let C be an unspeakable
channel for G (and therefore also for H), and let (Dk

i , Ek
i )i∈I

be encoding schemes for Ik compatible with σk : Ik × H → Ik ,
and where Ek

i = X k
i , where X k

i ⊂ Dk
i is a finite set of readings

in C, and moreover H acts transitively on �iX k
i .

Alice measures in the basis { |φi〉}i∈I (9) as in a standard
teleportation protocol and obtains the result i ∈ Ik . The result
is transmitted as follows.

(1) Alice transmits the orbit label k through a speakable
channel.

(2) Alice sends a reading xk
i ∈ X k

i chosen uniformly at
random.

(3) Bob receives y = g · xk
i ∈ g · X k

i = X k
j ⊂ Dk

j and per-
forms the correction ρ(r j (y))Ujρ(r j (y))†, where r j (y) ∈ G is
any element such that r j (y) · xk

j = y for some xk
j ∈ X k

j .
In other words, Bob realigns his frame (actively or pas-

sively) so that the reading he receives is xk
j ∈ X k

j , and then
performs the correction Uj . Here g is the reference-frame
transformation taking Alice’s frame at the time of measure-
ment onto Bob’s frame at the time of receipt.

Proposition III.4 (Effective channel for Procedure III.25).
Suppose that Alice measures some result i ∈ Ik . Then the
quantum channel induced by Procedure III.2 is as follows:

Ti(σ ) =
∫

StabG(xi )
ds[ρ(s)†Uiρ(s)U †

i ](σ ). (13)

Here ds is the Haar measure on StabG(xk
i ).

Proof. Alice measures i ∈ Ik and communicates xk
i to Bob,

who receives y ∈ Dj , where y = g · xk
i = (r j (y)hi js) · xk

i for
hi j ∈ H such that hi j · xk

i = xk
j (this exists because H acts

transitively on �iX k
i ) and some s ∈ StabG(xk

i ).
The distribution over StabG(xk

i ) is uniform. We therefore
have the following expression for the effective channel:

Tk (ρ) =
∫

StabG(xk
i )

ds[ρ(r j (y)hi js)†ρ(r j (y))Ujρ(r j (y))†

× ρ(r j (y)hi js)U †
i ](σ )

=
∫

StabG(xk
i )

ds[ρ(hi js)†Ujρ(hi js)U †
i ](σ )

=
∫

StabG(xk
i )

ds[ρ(s)†Uiρ(s)U †
i ](σ ).

At each step, we used the fact ρ is a representation. For
the final equality, we used equivariance of the unitary error
basis. �

In particular, this produces perfect teleportation for
matched channels.
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Proposition III.5. Procedure III.2 with the perfect encod-
ing scheme on a matched channel (Definition III.9) results in
perfect teleportation.

Proof. The stabilizer of any reading is trivial, since the
action is free. �

The perfect scheme also possesses the (ME) and (DR)
properties, for exactly the same reasons as the tight scheme.
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APPENDIX A: REFERENCE-FRAME
TRANSFORMATION RULES

In this Appendix we briefly summarize the effect of
reference-frame transformations on measurements and op-
erations. Let F be the space of reference-frame configura-
tions. Let V be the d-dimensional Hilbert space of a system
whose states are described according to a reference frame.
The Hilbert space carries a unitary representation ρ : G →
B(V ), which encodes how states transform upon a change of
reference frame: a state with vector |ψ〉 in reference frame
f ∈ F will have vector ρ(g) |ψ〉 in reference frame g · f . Let
gAB ∈ G be the reference-frame transformation taking Alice’s
frame fA ∈ F onto Bob’s frame fB ∈ F ; that is, fB = gAB · fA.
We then have the following expressions.

Proposition A.1. A state with vector |ψ〉 in Bob’s frame
has vector ρ(g)† |ψ〉 in Alice’s frame. An linear map with
matrix M : V → V in Bob’s frame has matrix ρ(g)†Mρ(g)
in Alice’s frame. A general operation � : L(V ) → L(V ) in
Bob’s frame is the operation [ρ(g)†] ◦ � ◦ [ρ(g)] in Alice’s
frame.

Proof. By definition a state described in Alice’s frame as
|ψ〉 will be described in Bob’s frame as ρ(g) |ψ〉; the first
equation follows immediately.

For the linear maps, consider that a linear map is de-
fined by its matrix elements in some orthonormal basis.
Bob performs the operation with matrix elements Mi j in
his frame; that is, he performs the operation MB such
that 〈iB| MB | jB〉 = Mi j . Now note that |iB〉 = ρ(g)† |iA〉, so
Mi j = 〈iB| MB | jB〉 = 〈iA| ρ(g)MBρ(g)† | jA〉. In Alice’s frame,
therefore, Bob has performed the operation MB such that
ρ(g)MBρ(g)† = MA; this operation is therefore related to MA

by MA = ρ(g)†MBρ(g). The same argument can be extended
to general operations by considering the Kraus maps. �

APPENDIX B: PROOF OF THEOREM III.2

We now provide the postponed proof of this theorem.
Theorem B.1 (Effective channel for a general encoding

scheme). Suppose that Alice measures some result i ∈ Ik ,
where Di

k = Ei
k for all i ∈ Ik . Then the channel induced by

Procedure III.1 is as follows:

Tk (ρ) = |Ik|
μC

(
Ek

0

) [π (ci)] ◦
∫

G
(dg p(g)[π (g)†U0π (g)U †

0 ])

◦ [π (ci )
†](ρ). (B1)

Here 0 ∈ Ik is any element of the orbit, the normalizing factor
μC (Ek

0 ) is the measure of Ek
0 in C, p(g) = ∫

Ek
0 ⊂C dx 1Dk

0
(g · x),

where 1Dk
0

is a continuous approximation to the indicator

function for Dk
0 ⊂ C, and {ci}i∈Ik , ci ∈ H are such that ci ·

Ek
0 = Ek

i .
Proof. We define U (x) = Uj | x ∈ Dk

j . Then, in Alice’s
frame, Bob’s correction will be

π (gAB)†U (gAB · x)π (gAB),

where x ∈ Ek
i is the direction sent by Alice. Since both gAB ∈

G and x ∈ Ek
i are unknown and uniformly distributed, we

must average over both. When Alice measures i ∈ Ik , the
channel is as follows for input state σ :

T k
i (σ ) = 1

μC
(
Ek

i

) ∫
G×C

dgdx 1Ek
i
(x)

× [ρ(g)†U (g · x)ρ(g)U †
i ](σ ). (B2)

Here 1Ek
i

is a continuous approximation to the indicator func-
tion for the region Ei ⊂ C.

First we show that T k
i = [ρ(ci )] ◦ T k

0 ◦ [ρ(ci )†]; that is,
every measurement result in a given orbit produces a similar
channel. Indeed, since the product measure dgdφ is invariant
under the left G action g1 · (g2, x) = (g2g−1

1 , g1 · x) on G × C,
we can make the change of variables (g, x) �→ (gc−1

i , ci · x):

T k
i (σ ) = 1

μC
(
Ek

i

) ∫
G×C

dgdx 1Ek
i
(ci · x)

× [ρ(ci )ρ(g)†U (g · x)ρ(g)ρ(ci )
†U †

i ρ(ci )ρ(ci )
†](σ )

= 1

μC
(
Ek

0

) [ρ(ci )] ◦
∫

G×C
dgdx 1Ek

0
(x)

× [ρ(g)†U (g · x)ρ(g)U †
1 ] ◦ [ρ(ci )

†](σ )

= [ρ(ci )] ◦ T k
0 ◦ [ρ(ci )

†].

To obtain the first equality we changed variables and used the
fact that ρ is a representation. For the second equality we
used 1Ek

i
(ci · x) = 1Ek

0
, linearity, and the fact that the action

of G on C is measure preserving. We can therefore restrict
our attention to the channel where Alice measures the index
0 ∈ Ik .

We will now express the integral for the channel T k
0 as a

sum over integrals where Bob performs a definite correction.
The action ν : (g, x) �→ g · x is continuous; it follows that the
preimages of the open sets Dk

i under ν are open and therefore
measurable. That the open sets ν−1(Dk

i ) cover G × C up to a
set of measure zero follows immediately from the fact that the
Dk

i cover C up to a set of measure zero and ν is a submersion.
We may therefore split the domain of integration over the
ν−1(Dk

i ):

T k
0 (σ ) = 1

μC
(
Ek

0

) ∑
i∈Ik

∫
G×C

dgdx 1Ek
0
(x)1Dk

i
(g · x)

× [ρ(g)†Uiρ(g)U †
0 ](σ ).
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Now we observe that the integrals over ν−1(Dk
i ) are identical

for all i ∈ Ik:

T k
0 (σ ) = 1

μC
(
Ek

0

) ∑
i∈Ik

∫
G×C

dgdx 1Ek
0
(x)1Dk

i
(g · x)

× [
ρ
(
c−1

i g
)†

U0π
(
c−1

i g
)
U0

]
(σ )

= |Ik|
μC

(
Ek

0

) ∫
G×C

dgdx 1Ek
0
(x)1Dk

0
(g · x)

× [ρ(g)†U0ρ(g)U0](σ ).

The first equality uses that Ui = ρ(ci )U0ρ(ci )†; in the second
we performed the change of variables (g, x) �→ (cig, x) and
noted that 1Dk

i
[(cig) · x] = 1Dk

0
(g · x), since Dk

i = Ek
i for all

i, k. By Fubini’s theorem this may be evaluated as an iterated
integral, where x is integrated over first:

T k
0 (σ ) = |Ik|

μC
(
Ek

0

) ∫
G

dg
∫

C
dx 1Ek

0
(x)1Dk

0
(g · x)

× [ρ(g)†U0ρ(g)U0](σ ).

This produces a weighting for g ∈ G which is precisely the
measure in C of the set Dk

0 ∩ (g · Ek
0 ). The result follows. �

APPENDIX C: CALCULATIONS

In this appendix we derive the numerical results presented
in Table I.

1. Map purity and its calculation

The measure we use to evaluate the success of the protocol
is the map purity [40–42]. Recall that the Choi-Jamiołkowski
(CJ) state ρT of a channel T on a Hilbert space of dimension
d is

ρT = 1
2 (1 ⊗ T )(ω),

where ω is the density matrix of the state 1√
d

∑d−1
i=0 |i〉 ⊗ |i〉.

(For calculations, recall that the density matrix of the CJ state
can be obtained by “reshuffling” the entries of the superoper-
ator matrix of the channel [40].)

Definition C.1. The map purity P(T ) of a channel T on a
Hilbert space of dimension d is the normalized purity of its CJ
state; that is,

P(T ) := 1 − S(ρT )

ln(d2)
= 1 + Tr[ρT ln(ρT )]

ln(d2)
. (C1)

For numerical optimization we will additionally use the
linear map purity.

Definition C.2. The linear map purity PL(T ) of a channel
T on a Hilbert space of dimension d is defined as the linear
purity of its CJ state; that is,

PL(T ) = Tr
(
ρ2
T
)
.

The map purity in the qubit case, which we consider in our
examples, is very similar to minimum purity over pure state
inputs [41].

By (10), the channels we consider are of the following sort.

Definition C.3. A random unitary channel is a channel of
the form

σ �→
∫

X
dx[U (x)](σ )

for some label space and probability measure (X, dx), where
each U (x) is a unitary matrix.

In particular, our random unitary channels are

σ �→
∑

i

∫
G

dg p(i)q(g)[U (i, g)](σ ),

where U (i, g) are the unitaries, the label space is I × G, and
the probability measure on the label space is p(i)dg; this is
the product of the probability p(i) of measurement result i
(which is uniform), and the Haar measure dg over the group
G of reference-frame misalignments. A little straightforward
algebra yields the following useful expression for the linear
map purity of these channels.

Proposition C.1 (Linear map purity of a random unitary
channel). Let T be a random unitary channel on a Hilbert
space of dimension d . Let the random unitaries be indexed
by a discrete index I = {0, . . . , n − 1} with probability dis-
tribution p(i) and a continuous index g ∈ G with probability
measure dg. Then

PL(T ) = 1

d2

n−1∑
i, j=0

∫
G×G

p(i)p( j)dgdg′|Tr[U (i, g)†U ( j, g′)]|2.

(C2)
We now consider teleportation of quantum systems carry-

ing fundamental representations of the reference-frame trans-
formation groups U(1) and SU(2). For each of these groups,
we first find the UEB, which optimizes the linear map purity
of the quantum channel resulting from a conventional protocol
(10), and then calculate the map purity of the quantum channel
arising from that UEB, obtaining the numbers in the second
column of Table I. We then calculate the map purity for
certain of our tight schemes, obtaining the numbers in the third
column of that table.

2. Calculations for U(1)

Here we consider the case G = U(1), where the group
of reference-frame transformations acts on the qubit state as
follows:

θ �→
(

1 0
0 eiθ

)
. (C3)

a. Conventional scheme

We begin by finding the UEB which optimizes linear map
purity for a conventional protocol. A general qubit UEB
may be expressed as UEV , where U,V are arbitrary unitary
matrices and E = {X0, X1, X2, X3} is the Pauli UEB (2). Since
we ignore global phase, we need only consider unitaries up
to their induced rotation of the Bloch sphere. Let Rn̂(θ ) be
a Bloch sphere rotation through an angle θ around the x̂
axis, let Xi be a Pauli rotation (that is, a rotation through an
angle π around the x, y, or z axis), and let x̂, ŷ be two unit
vectors which correspond to the choice of UEB. Then the
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equiprobable unitaries are as follows:

Uig = gV †XiU
†g†UXiV (C4)

∼ V gV †XiU
†g†UXi (C5)

= Rx̂(θ )RXi (ŷ)(−θ ). (C6)

We write ∼ to indicate that replacing unitaries (C4) with uni-
taries (C5) will yield a channel with the same purity, because
of cyclicity of the trace in (C2). The second equality follows
by the fact that conjugating a rotation Rx̂(θ ) by another
rotation Q gives QRx̂(θ )Q−1 = RQ(x̂)(θ ). By Proposition C.4
we therefore have the following expression for the effective
channel:

P(T ) = 1

256π2

∑
i, j

∫ 2π

0

∫ 2π

0
dθ1dθ2

× ∣∣Tr
[
RXj (ŷ)(−θ2)RXi (ŷ)(θ1)Rx̂(θ2 − θ1)

]∣∣2
. (C7)

Here the choice of UEB corresponds to a choice of
two unit vectors (x̂, ŷ) or equivalently a choice of angles
(ψx̂, ψŷ, φx̂, φŷ) ∈ [0, π ]2 × [0, 2π ]2. The factor in front of
the integral is a product of the normalization factors for the
parametrization of U(1) and the 1/4 probabilities for mea-
surement results i and j. The simplicity of the integral allows
us to numerically evaluate it for given x̂, ŷ with negligible
error. We performed Nelder-Mead maximization over x̂, ŷ and
found optimality of the Pauli UEB, corresponding to angles
(0,0,0,0). The normalized map purity for this UEB is

1 + 1

ln(4)
[0.75 ln(0.75) + 0.25 ln(0.25)] � 0.59.

b. Tight scheme

We must choose a finite subgroup H ⊂ U(1) for which
an equivariant UEB exists. In [29] the largest such subgroup
was shown to be H � Z4, with a two-parameter family of
equivariant UEBs:

U0 = Rẑ(θ − π ), U1 = Rẑ(φ)XRẑ(−φ),

U2 = Rẑ(φ)Y Rẑ(−φ), U3 = Rẑ(θ ).

The Pauli UEB is the member of this family with parameters
θ = π, φ = 0. The tight reference-frame encoding scheme for
this family of UEBs was given in Fig. 2.

We use Theorem III.2 to calculate the superoperator for the
effective channel. Because the group is Abelian, conjugation
by π (ci) is irrelevant, so the channel will be identical for
measurements 1 and 2. For a similar reason we need only
consider the Pauli UEB, since all UEBs in the family yield
identical channels. It is easy to derive an analytic expression
for p(θ ):

p(θ ) =
∣∣∣∣ (θ + π/2)

π
−

⌊
1

2
+ (θ + π/2)

π

⌋∣∣∣∣. (C8)

The effective channel when Alice measures 1 is

4
∫ π

−π

dθ p(θ ) [ρ(θ )†U1ρ(θ )U †
1 ](σ ), (C9)

and the channel for result 2 is similar. Since measurement
results zero and 3 yield perfect teleportation, we obtain the
action (5) of the effective channel on input density matrices.
The normalized map purity for this effective channel is

1 + 0.5 ln(0.5) � 0.65.

3. Calculations for SU(2)

We now consider the case G = SU(2), acting on a qubit
state by its defining representation.

a. Conventional scheme

We have a channel of the form (C2), which involves
integration over SU(2). In order to obtain a parametrization
and measure for the integral, we use the isomorphism between
SU(2) and the unit quaternions. These quaternions, being
diffeomorphic to the 3-sphere S3, may be parametrized by hy-
perspherical coordinates (θ, ψ, φ) ∈ D, where D = [0, π ] ×
[0, π ] × [0, 2π ]. This parametrization is inherited by SU(2),
along with the Haar measure d� on S3, as follows:

g(θ, ψ, φ) =
(

cos(θ ) + i sin(θ ) sin(ψ ) sin(φ)
[
cos(ψ ) + i cos(φ) sin(ψ )

]
sin(θ )

−[
cos(ψ ) − i cos(φ) sin(ψ )

]
sin(θ ) cos(θ ) − i sin(φ) sin(ψ ) sin(θ )

)
,

d� = 1

2π2
sin2(θ ) sin(ψ ) dθ dψ dφ.

We consider the integrand. Expanding the UEB elements in the form UEV , where U,V are arbitrary unitary matrices and
E = {X0, X1, X2, X3} is the Pauli UEB, we see that the unitaries of the channel will be, for all Y ∈ SU(2) and i ∈ I = {1, . . . , 4},

U (Y, i) = YV †X †
i U †Y †UXiV ∼ VYV †X †

i U †Y †UXi,

where the equivalence is again a consequence of the cyclicity of the trace in (C2). We therefore obtain the following equation
for the map purity:

P(T ) = 1

32

∫
D×D

d�1d�2|Tr[XiY1XiŨY †
1 Y2Ũ

†XjY
†

2 Xj]|2. (C10)

Here we performed a change of variables from Yi to Ỹi =
VYiV †, using the invariance of the measure; we omit the tilde

on the new variable. We also wrote Ũ := VU ; note that this is
the only significant element in our choice of UEB.
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There are only three relevant angle variables in the choice
of UEB, corresponding to a choice of a single unitary Ũ :=
VU . We performed random sampling of 100 angle triples;
none of these UEBs outperformed the Pauli matrices, whose
normalized map purity is

1 − 1

2 ln(4)

[
ln

(
1

2

)
+ ln

(
1

6

)]
� 0.21.

b. Tight scheme with rod channel

The action on the rod channel considered in Sec. II B can
be most easily expressed using the inner product-preserving
isomorphism of SU(2) spaces

S2 ⊂ R3 α→ B(C2),

(nx, ny, nz ) �→ I + (nx, ny, nz ) · (X,Y, Z )

2
,

(C11)

where I, X, Y , and Z are the Pauli matrices, S2 carries the
obvious quotient left action of SU(2), and B(C2) carries
the left action of SU(2) by conjugation. The encoding and
decoding regions are then made up of Voronoi cells for the

cardinal points under the metric derived from the Hilbert-
Schmidt inner product.

Using the above identification, we calculated p(g) and
the integral (6) using Monte Carlo integration with rejection
sampling [43], took the average over the four measurement
results, and found normalized map purity 0.44 ± 0.03.

c. Tight scheme with reference-frame channel

Again, we choose the largest possible subgroup H ⊂
SU(2) for which an equivariant UEB exists; in previous work
[29] this was shown to be H � BOct, where BOct is the
binary octahedral group, which has order 48. The Pauli UEB
is, up to phase, the unique UEB equivariant for this subgroup.

We choose the encoding and decoding regions to be
Voronoi cells for the elements of BOct < SU(2) under the
Frobenius distance function.

We evaluated the integral in Theorem III.2 using Monte
Carlo integration with rejection sampling, took the average
over the four measurement results, and calculated the normal-
ized map purity of the effective channel as 0.32 ± 0.02.
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