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Measurement of a charge qubit using a single-electron transistor based on a triple quantum dot
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A scheme for determining an arbitrary pure state of a charge qubit by measuring a steady-state current through
a single-electron transistor is proposed. In order to increase the sensitivity of the transistor its operating part
consists of three quantum dots, the energy levels of which form a symmetrical configuration. Such a choice
makes it possible to realize high-precision measurements in a nonresonant steady-state regime when a maximum
distance of the qubit from this structure is several hundreds of nanometers. Time-dependent populations of
the structure states are obtained; a current and a measurement contrast are calculated as functions of system
geometric parameters and the optimal values of these parameters are found.
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I. INTRODUCTION

A necessary condition for a quantum system to be a poten-
tial candidate for a quantum bit (qubit) is the possibility of its
scaling, since only a full-scale quantum computer consisting
of a large number of qubits will surpass up-to-date classical
supercomputers. Ones of the most suitable systems for this
purpose are that of solid-state nanostructures. They can be
manufactured using micro- and nanotechnologies of the mod-
ern semiconductor industry which have a great potential for
further development. Nanostructures formed on the basis of
quantum dots (QDs) are of particular interest [1]. Especially,
a structure consisting of two QDs [double QD (DQD)] and
containing one electron is often proposed as a solid-state
scalable charge qubit [2,3]. Orbital states of the electron
localized in different QDs serve as the logical states of such
a qubit. Experiments clearly demonstrate the principles of the
coherent control of a single-electron DQD dynamics by means
of the dc voltage applied to metal gates located on a dielectric
layer directly above the structure or near it [4–6].

An ability to measure the qubit states reliably is also one
of the main requirements for the implementation of quantum
algorithms. Usually the charge qubit state is measured by
use of a single-electron transistor (SET)—a quantum detector
operating in the Coulomb blockade regime [7]. The SET
sensing element (an island), the susceptibility of which to
the external field sets the measurement precision, is ordinarily
represented by a QD or a metal particle. Its electronic energy
spectrum has a high discreteness. The charge carriers are
transferred from the source to the SET central region where
the QD is located and further move into the drain due to
electron tunneling. In this case, the energy of the Coulomb
interaction of the QD electrons is so large that the injection
of the second electron shifts the energy of the transport level
above the source Fermi energy. This immediately leads to a
drop of the current through the QD and thus only one electron
can be inside the QD. The name of this device reflects that
circumstance. The field created by the qubit electron located
in the vicinity of the SET also shifts the energy of the QD
transport level due to the Stark effect. Here, the magnitude of

the SET current depends on the spatial position of the electron
in the DQD. Consequently, by measuring the current through
the detector it is possible to determine the qubit state. The
charge sensitivity of the SET depends on the ratio of zero-
frequency noise to the differential conductance according to
the general formalism of the quantum measurement theory
[8]. Consequently, the optimized operation condition of a SET
is the maximal conductance-to-noise ratio. SET can operate
near the quantum limit: Amplification can be accomplished
with a back action close to that required by the uncertainty
principle. Its charge sensitivity is ultimately limited to about
10−6 e/Hz1/2 [9] or even 10−7 e/Hz1/2 [10] by the shot noise
in the source-drain current. In practice, the sensitivity limit
for the SET depends on the temperature, noise intensity, and
island or gate geometry. Despite considerable efforts, the shot-
noise limit has yet to be reached.

In this paper we propose an alternative SET design in
order to improve its measuring properties. We replace a single
QD with a linear structure—a “molecule” of three tunnel-
connected single-level QDs. As will be shown, in this case the
current is more sensitive to the electric field change associated
with the electron movement inside the qubit. For this purpose
one should use a nonresonant tunneling regime shifting the
energy level of the central QD by an amount significantly
exceeding the tunneling energy, while the energy levels of
the outer QDs stay equal. This makes it possible to carry out
measurements in the regime when the SET tunneling channel
is open only for one logical qubit state.

Time-dependent populations of the states are obtained by
numerical simulation of electron dynamics in an open struc-
ture. The current through the SET in a steady-state regime
demonstrates stability with respect to fluctuations of some
quantities, which usually lead to a breakdown of the electronic
coherent transport in a closed structure. In order to improve
the quality of measurements, which are based on the fact that
the interaction energy between the electrons of the SET and
the qubit depends on the state of the latter, a planar structure of
the measuring chip with a specified configuration of the QDs
was developed. Optimization of the SET measuring properties
(sensitivity, contrast, current) is possible over each system
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parameter. We study the behavior of these characteristics vary-
ing the geometry of the chip and the QD energy levels. One of
the interesting features inherent in the measurements with use
of the proposed chip is the possibility of compensating for the
technological asymmetry by creating a controlled asymmetry
of the energy levels of the SET QDs.

II. MODEL OF THE CHARGE QUBIT COUPLED
TO THE SINGLE-ELECTRON TRANSISTOR
BY THE ELECTROSTATIC INTERACTION

We use a charge qubit model based on a single-electron
DQD consisting of two QDs A and B, which for simplicity are
considered identical [2]. Let us assume the presence of two
ground orbital states |A〉 and |B〉 of the electron with wave
functions ψA(r) = 〈r | A〉 and ψB(r) = 〈r | B〉 localized in the
QD A and the QD B, respectively. If the quantum-state energy
of an electron in the isolated QD is significantly larger than
the matrix element V0 of tunneling between the ground states
of neighboring QDs, then one can apply the tight-binding
approximation for the Hamiltonian of an electron being in one
of these states (or their superposition):

Hqubit = εA|A〉〈A| + εB|B〉〈B| − V0(|A〉〈B| + |B〉〈A|), (1)

where εA and εB are energies of the ground single-electron
states |A〉 and |B〉 of the isolated QDs. The Hamiltonian
parameters smoothly depend on time. Let us choose the
ground states |A〉 and |B〉 of the electron in the QD A and
the QD B, respectively, as the qubit logical states 0 and 1. An
electron-state vector |�(t )〉 can be represented as

|�(t )〉 = cA(t )|A〉 + cB(t )|B〉. (2)

Quantum operations leading to the required set of probability
amplitudes are realized under external electric fields that
affect the parameters of the Hamiltonian (1). The qubit state
is measured when the control field is turned off, εA,B = const.
and V0 = 0.

Now consider a quasi-one-dimensional SET nanostructure,
consisting of two metal contacts, which are electron reservoirs
(source S and drain D), and a chain of three QDs (L, C, and
R). Due to a configuration of the Fermi levels εS(D) of the
contacts and the QD levels (Fig. 1) the movement of electrons

FIG. 1. Top: a SET scheme with a central part represented by
three tunnel-coupled QDs. Bottom: the SET potential profile and
energy levels of QDs. The dotted line indicates the energy of the
central QD state |C〉.

through the structure from left to right is possible. To describe
the process of the electron injection from the source into the
left QD L and from the right QD R to the drain, we use a
realistic and conventional model of incoherent tunneling [11].
Inside the nanostructure the electron tunnels between the QDs
in a coherent manner.

We assume the presence of bound states |L〉 in the left QD,
|R〉 in the right QD, and |C〉 in the central QD with energies εL,
εR, and εC , respectively. It is convenient to introduce energy
differences (detunings) between the ground states of the outer
QDs and one of the central QD, δL = εL − εC and δR = εR −
εC . They are determined by a shape and a chemical compo-
sition of the QDs during a fabrication and can be controlled
using external electrical gates [4–10]. The states |L(R)〉 and
the state |C〉 are interconnected by single-electron tunneling
VL(R). For shallow QDs, the second electron injection leads
to pushing of the level into a continuous spectrum and, as a
result, to the electron transport termination. Therefore, two-
particle effects are restricted to the charge configurations in
which electrons occupy levels in different QDs. The energy of
the Coulomb interaction of the two electrons in the SET state
| j, k〉 ( j, k = L,C, R) is denoted by Uj,k . The Hamiltonian of
the three-QD linear structure is

HSET = H0 + HV + Hcoul, (3)

H0 = εL|L〉〈L| + εR|R〉〈R| + εC |C〉〈C|, (4)

HV = −VL(|C〉〈L| + |L〉〈C|) − VR(|C〉〈R| + |R〉〈C|), (5)

Hcoul = UL,R|L, R〉〈L, R| + UL,C |L,C〉〈L,C|
+ UR,C |R,C〉〈R,C|. (6)

Choosing the energy εC of the state |C〉 as a reference, one
can rewrite the Hamiltonian (4) in the form H0 = δL|L〉〈L| +
δR|R〉〈R|.

The Coulomb interaction of the charge qubit electron with
electrons tunneling through the SET results in shifts of the
system-state energies:

Hqubit−SET = WA,L|A, L〉〈A, L| + WA,C |A,C〉〈A,C|
+ WA,R|A, R〉〈A, R| + WB,L|B, L〉〈B, L|
+ WB,C |B,C〉〈B,C| + WB,R|B, R〉〈B, R|, (7)

where Wi, j is a pair interaction of the qubit electron in the state
|i〉 (i = A, B) with the SET one in the state | j〉 ( j = L,C, R).

In order to study the evolution of the system state, repre-
sented by the density matrix ρ, we use the Lindblad equation,
which includes dissipative components:

dρ

dt
= −i[Hqubit + HSET+Hqubit−SET, ρ] + �LD(|L〉〈vacL|)

+ �RD(|vacR〉〈R|)+γrel,LD(|C〉〈L|)+γrel,RD(|C〉〈R|)
+ γdeph,LD(|L〉〈L| − |C〉〈C|) + γdeph,RD(|R〉〈R|
− |C〉〈C|) + γdeph,qD(|A〉〈A| − |B〉〈B|). (8)

Such approach makes it possible to consider the open structure
in the current regime. The electrons enter the left QD from
the source S at the rate �L (provided that the state |L〉 is
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not populated) and leave the right QD to the drain D at the
rate �R. These processes are irreversible and are simulated by
Lindblad operators D(O) = OρO† − [O†O, ρ]/2. The state
|vacL(R)〉 describes the QD L(R) without electrons.

Similarly, dissipative processes that affect the dynamics of
charge carriers, i.e., relaxation and dephasing, are introduced.
During the measurement, the logical states |A〉 and |B〉 of the
qubit are isolated from each other, and electron relaxation
is suppressed. However, coupling of the DQD to thermal
phonons of a crystal lattice causes stochastic fluctuations of
the logical states’ energies leading to qubit dephasing with the
rate γdeph,q. The geometry of the SET considered is such that
the state energies of the outer QDs are about the same, and the
state energy of the central QD is less by an amount of δL(R)

exceeding the tunneling VL(R). Then the electron can relax
from the state |L(R)〉 to the state |C〉 by emitting a phonon with
a frequency δL(R). The electron relaxation rate is γrel, L(R) and
the relaxation mechanism depends on the transition frequency.
In GaAs QDs at frequencies below 1 meV the relaxation is
associated with acoustic phonons, but above 10–15 meV it is
due to processes of the polaron decay, which is a correlated
(entangled) state of the electron and some set of degenerate
optical phonon modes [12]. At nonzero temperature T , a re-
verse process is also possible (incoherent phonon absorption).
We consider T � δL(R) that makes the phonon absorption
unlikely. We neglect these processes in Eq. (8). Similar to the
qubit, thermal fluctuations of the phonon field cause dephas-
ing of the outer SET states relative to the central one with
rates γdeph,L and γdeph,R. Since the rate �L of SET incoherent
pumping is much larger than the phonon relaxation and de-
phasing ones, then level broadening is mainly determined by
�L. The dissipation effect on the coherent evolution of the QD
qubits prevents the implementation of quantum operations;
however, in the steady state it can increase the measurement
rate [13].

Equation (8) is integrated over a sufficiently large time
interval tSS ≈ 1/�L(R); after that the system goes into the
steady state. We choose the vacuum state |vac〉 with no
electrons in the structure as the SET initial state. The density
matrix of the initial state of the “qubit + SET” system has
the form ρ(0) = |vac〉〈vac| ⊗ |�〉〈�|. The final result of the
calculations is the population ρ̃RR(t ) of the state |R〉 of the
SET right QD. The matrix ρ̃(t ) = Trqubitρ(t ) is the reduced
SET density matrix, which is obtained by taking a partial trace
of the matrix ρ(t ), being a solution of Eq. (8) with the initial
condition mentioned above, over the qubit states. The output
current in the steady state,

I = 2πe�Rρ̃SS
RR

/
h̄, (9)

is proportional to ρ̃SS
RR = ρ̃RR(tSS). As one shall see, it depends

on various factors and, first of all, on the qubit state. As mea-
surement units we take the effective atomic units, assuming
1 a.u. = Ry∗ = m∗Ry/meε

2 for energy and 1 a.u. = a∗
B =

aBmeε/m∗ for length, where Ry = 13.6 eV is the Rydberg
energy, aB = 0.52 × 10−10 m is the Bohr radius, me (m∗) is
the free (effective) electron mass, and ε is the permittivity of
the semiconductor. For GaAs (ε = 12 and m∗ = 0.067me) one
has Ry∗ = 6 meV and a∗

B = 10 nm.

The principle of measuring of the charge qubit state using
the SET is based on the fact that each state (2) corresponds to a
certain magnitude of the steady-state current flowing through
the SET. Optimization of the measurement procedure is to
choose the relative position of the qubit and the SET, at which
the current difference for the basis qubit states is maximum.
Below we represent the results of the SET and qubit dynamics
simulation, illustrating features and benefits of this scheme.

III. MEASUREMENT OF AN ARBITRARY PURE
CHARGE QUBIT STATE

The interaction of the qubit and the SET leads to the en-
tanglement of their quantum degrees of freedom. The density
matrix of the system in the steady state is diagonal:

ρSS = ρ̃SS(A) ⊗ ρ ′
AA|A〉〈A| + ρ̃SS(B) ⊗ ρ ′

BB|B〉〈B|, (10)

where ρ ′
AA and ρ ′

BB are the populations of the basis qubit states.
Taking the trace over the qubit states gives the reduced density
matrix of the SET:

ρ̃SS = Trqubitρ
SS = ρ̃SS(A)ρ ′

AA + ρ̃SS(B)ρ ′
BB. (11)

If the qubit at the start of measurements is in an arbitrary pure
state |�〉 = cA|A〉 + cB|B〉 then, provided that the relaxation
of the qubit can be neglected and ρ ′

AA = |cA|2 and ρ ′
BB = |cB|2

in Eq. (11), the expression (9) for a stationary current through
the SET acquires a simple form:

I (� ) = |cA|2IA + (1 − |cA|2)IB, (12)

where Ik = 2πe�Rρ̃SS
RR(k)/h̄ is the current associated with the

qubit basis state |k〉 (k = A, B). Thus, the absolute values of
the probability amplitudes are

|cA| =
√

I (� ) − IB

IA − IB
, |cB| =

√
1 − |cA|2. (13)

In order to determine the phase difference 
φ =
arg cA − arg cB of the qubit basis states, it is
necessary to apply the Hadamard gate Had =
(|A〉〈A| + |A〉〈B| + |B〉〈A| − |B〉〈B|)/√2 to the initial state,
that converts the initial state phase into amplitude, and to
measure the current I (�H ) of the qubit being in the state
|�H 〉 = Had|�〉. It is easy to show that the phase difference
is calculated by


φ = arccos

{
1

2

[2I (�H ) − IA − IB][IA − IB]√
[I (� ) − IB][IA − I (� )]

}
. (14)

Therefore, to determine the qubit state three operations are
sufficient: two measurements of the current through the SET
and the Hadamard gate applied to the qubit.

An important characteristic of a measuring device is the
ability to distinguish between two states of a measured object
that are close in physical properties. The derivative dI/d|cA|
characterizes the possibility of experimental resolution of two
qubit states with close probability amplitude distributions. For
example, if the error of indication of the ammeter is δI , the
qubit states from the range δ|cA| ≈ δI/[dI/d|cA|] cannot be
resolved. Therefore, at some fixed instrumental error (here
δI) this derivative should be sufficiently large to achieve the
measurement accuracy required by a given quantum algorithm
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FIG. 2. A scheme of the measuring chip, consisting of the SET
(top) and the charge DQD qubit (bottom); see text.

or state tomography process. Quantitatively this property is
associated with the measuring contrast (visibility):

CI = |(IA − IB)/(IA + IB)|, (15)

since dI/d|cA| = 2CI (IA + IB)|cA|. Hence, in order to op-
timize the detection procedure with use of the SET it is
necessary to find system parameters at which CI is maximum.
Below we analyze the geometric parameters and point out the
conditions that ensure a high reliability of measuring the qubit
state.

Consider the scheme of the measuring chip shown in Fig. 2.
We place the origin at the center of the QD C with the X
axis passing through the centers of the QDs L, C, and R, and
the Y axis is directed vertically downwards. The center of the
qubit QD A is located at the position with coordinates (Lx, Ly),
and the distance between the centers of the QDs A and B (the
“qubit length”) is l . The characteristic size (width) of the QD
k is equal to ak , the distance between the centers of the QDs C
and L (R) is bL (bR), and the angle between the qubit axis and
the SET axis is ϕ. The energies of the Coulomb interaction of
two electrons in the QDs j and k with known wave functions
in Hamiltonians (6) and (7) are calculated by the formula

U (W ) j,k = 2
∫∫ |ψ j (r1)|2|ψk (r2)|2dr1dr2

|r1 − r2| . (16)

If the electron density in the QD ground state is assumed
to be concentrated in its central area, then one can consider
electrons as point charges. In this case, the energies of the pair
interaction are U (W ) j,k = 2/r j,k , where r j ,k is the distance
between the centers of the QDs j and k. To validate the charge
point approximation the Coulomb interaction energies U and
W have been computed (a) according to the exact formula
(16) by Monte Carlo simulation and (b) within the point
charge framework. The results obtained for two-dimensional
squarelike QDs have demonstrated that the approximation
works with very good accuracy if the distance r j ,k is twice
as large or larger than their typical size. The exchange and
cotunneling energies have been also numerically estimated but
their values are three orders of magnitude smaller than single-
electron tunneling energy. Thus, one can safely neglect them

in this study. To estimate the tunneling energies in expression
(5) we use the approximation

V (b) = V (b1) exp

{
−

[
ln

V (b1)

V (b2)

]
b − b1

b2 − b1

}
, (17)

constructed from two known values of V (b1) and V (b2),
which is found in the framework of the microscopic model
of two-dimensional QDs [14]. Here b is the distance between
the centers of neighboring QDs, which is the sum of the
barrier width and a half of the sum of the QD widths.
The magnitudes describing the dissipative effects (including
tunnel coupling between the QDs and the reservoirs) are
considered as phenomenological parameters that take values
from a certain interval. The arrangement of the chip functional
elements shown in Fig. 2 makes it possible to realize the
measurement in the nonresonant tunneling regime, which, as
we see further, turns out to be more advantageous than the
convenient resonant scheme.

The phenomenological parameters of the system are
extracted from experimental works in which such structures
have been studied. The current magnitude I measured at the
SET output is usually several nanoamperes, which gives an es-
timate of �L,R ≈ 10−4 in effective atomic units. Experiments
are carried out in the temperature range T = 0.1−1 K, which
corresponds to the energy interval 10−3−10−2. The times
of electronic relaxation and dephasing, as mentioned above,
depend on the geometry and the material of the nanostructure.
We assume that for all dissipative processes the characteristic
times are hundreds of picoseconds, and γdeph,q, γrel, L(R) as well
as γdeph,L(R) turn out to be about 10−4−10−3. In what follows
we set �L,R = 8 × 10−5, γrel, L(R) = γdeph,L(R) = γdeph,q =
16 × 10−5, and use these parameters throughout the paper.
These estimates are in good agreement with the results of the
theoretical model and the experimental studies [4–10]. Note
that the dissipation rate values used here have not changed
significantly during almost two decades. In particular, the
reason is concerned with the charge noise caused by the
electrostatic gates being rather complex to be filtered out
(e.g., by the geometry and material optimization). However,
even at these dissipation rates the current actively flows
through the SET thus enabling the measurement. Only when
the tunneling becomes ineffective does the relaxation localize
an electron in the deeper QD C and the current is stopped.
Therefore, one should take the tunneling rate V to meet the
condition VL(R) 
 max(γk ). The measurement technique for
single-electron DQDs was described and applied in Ref. [6].
There the GaAs/AlGaAs-based heterostructure contained a
two-dimensional electron gas with a density of 2 × 1011 cm−2

and a mobility of 2 × 105 cm2/s V at a depth of ∼100 nm
from the surface. Twelve metal (Ti/Au) Schottky electrodes
(gates), deposited on the surface of the chip, formed the DQD
qubit as well as a highly sensitive detector determining the
amount of electrons with a measuring current of 1 nA. The
variation of voltages led to the injection (ejection) of electrons
into (from) the DQD that changed the current through the
detector. In this setup the measuring current flows through
the quantum point contact, i.e., a quasi-one-dimensional
constriction formed in two-dimensional electron gas by long
electrodes. Two contacts were formed at 500 nm from the left
and right QDs of the charge DQD qubit. This geometry of
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FIG. 3. Populations of the QDs L, C, and R (a) and number of electrons (b) in the SET vs time for two logical states of the qubit associated
with an electron in the QDs A or B. (The values are given in effective atomic units for GaAs; see text.)

measurement devices has enabled us to independently
probe the electron populations in both QDs. Since the
size-quantization energy of this DQD was 1 meV, the qubit
dynamics in the single-electron regime was described by the
Hamiltonian (1) with good accuracy. The authors estimated a
qubit dephasing time of more than 400 ps at a temperature of
135 mK.

The population of the QD R (and, therefore, the current
through the SET) depends on a large number of parameters
included in Eq. (8), which, in turn, depend on the chip
geometry and material. At sufficiently small distance between
the QDs L, C, and R, the size and the shape of which are nearly
the same, δL(R) � VL(R) and tunnel coupling between the QDs
turns out to be resonant. This results in strong hybridization
of the individual QD states and in the creation of a triplet of
states that are delocalized over the structure. According to
the tight-binding model of the electron tunneling in the QD
chain, the width of the hybridized state subband is VL(R) if
the energies of all QDs are equal or close to each other. Thus
the current through the QD chain can flow unless the state
energy difference of neighboring QDs becomes substantially
larger than VL(R). In this case, the electron transport through
the SET turns out to be stable with respect to small Stark
energy shifts of the QDs caused by the qubit. This naturally
leads to a sharp decrease of the contrast, if the qubit is
located at a significant distance from the SET. To increase
the sensitivity of the device, it is possible to switch to the
nonresonant tunneling regime by detuning the state energy of
the central QD from the state energies of the outer QDs by
an amount essentially exceeding tunneling: δL(R) 
 VL(R). In
the three-QD chain considered here the off-resonant tunneling
regime is possible due to the structure symmetry relative
to the central QD. In the off-resonant case the width of
the hybridized states is V 2

L(R)/|δL(R)|. Then the current flows
through the SET only if the symmetry condition δL = δR is
met, and even small deviations of the order of V 2

L(R)/|δL(R)| �
VL(R) from the symmetry of the detunings cause the current
to be blocked. Thus our approach based on the off-resonant
regime for triple QD structure, compared to the resonant one,
provides more sensitive detection of energy shifts caused by
the qubit electron position. In this regime the outer QDs L and

R are coupled by nonresonant tunneling. The CI optimization
can be carried out either by increasing the detuning, or by re-
ducing the tunneling energy. However, one should remember
that the condition CI ≈ 1 alone does not guarantee reliable
measurement. The steady-state current must be large itself.
A typical dependence of the diagonal elements of the SET
density matrix on time for two qubit basis states, illustrating
the system transition to the steady-state nonresonant regime,
is shown in Fig. 3(a). The average number of electrons in the
SET (vacuum, one-, two-, and three-electron configurations)
is presented in Fig. 3(b).

First of all, note that the SET evolution has a pronounced
dissipative character: There are no oscillations inherent in the
coherent electron dynamics. The system goes into a steady
state at tSS ≈ 1/�L(R). Since at Lx = 0 the qubit QD A is
equidistant from the QDs L and R of the SET, then WL,A =
WR,A and the equality of the detunings is preserved for the
basis state |A〉 at any Ly, ensuring a large current. On the
other hand, couplings the electron of the QD B to ones of the
QD L and R is different, creating an imbalance of detunings.
If |WR,B − WL,B| � V 2

L(R)/|δL(R)| (i.e., the imbalance is greater
than the off-resonant tunneling peak width), then the current
drops to zero. As for a distribution of the average population
over the particle number in the structure, in the current regime,
when the qubit electron is in the state |A〉, there are 22%−23%
of total population for one-electron and three-electron com-
ponents, and about 55% for a two-electron component. The
probability of detecting the SET in a vacuum state tends to
zero. For the qubit with an electron in the QD B a two-particle
component is 100%. In this case, the first electron entering the
QD L from the source passes into the QD C and remains in it
as a result of the irreversible relaxation process. The second
electron populates QD L and, not being able to go to the al-
ready occupied QD C, blocks the flow of electrons to the SET.
It should be mentioned that for the parameters used, the off-
resonant tunneling rate, V 2

L(R)/|δL(R)|, while much smaller than
the resonant tunneling rate VL(R), is still larger than the dephas-
ing rates. Thus, the off-resonant tunneling rate is what sets the
sensitivity of the proposed device, and not the dephasing rates.

We investigate the tunneling influence on the SET mea-
suring properties by simultaneously varying the distances
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FIG. 4. The population of the QD R of the SET (current strength) for the qubit in states |A〉 and |B〉 (a) and the measuring contrast (b)
as functions of the distance between the centers of the neighboring QDs in the SET in the steady-state (tSS = 105) nonresonant regime.
(The values are given in effective atomic units for GaAs; see text.)

bL = bR between the centers of the QD C and the QDs
L(R). The value of VL(R) depends on bL(R) exponentially,
which causes a fast monotonous decrease of the current with
increasing the thickness of the potential barrier between the
QDs. This is due to a suppression of tunnel coupling starting at
bL(R) = 6 for the qubit in the state |A〉 and at bL(R) = 4−4.5 for
the state |B〉 [Fig. 4(a)]. The curves for a symmetric electronic
configuration with k = A practically do not change for differ-
ent Ly, but for an asymmetric configuration with k = B such
an effect exists. One can note that as the ratio l/Ly decreases,
the curve ρSS

RR(B) tends to ρSS
RR(A), which causes decreasing

of the contrast (more strictly, leads to narrowing the large CI

interval). The latter is directly related to the minimization of
the detuning imbalance, which makes it possible to determine
the position of an electron in the qubit for large distances Ly.

A decrease in CI at bL(R) < 5.5 is associated with a rapid
enhancement of VL and VR as well as with a transition to the
resonant regime, which is characterized by a large current
for both qubit states. Comparing Figs. 4(a) and 4(b) one can
specify the region 5.5 < bL(R) < 6.5, where the measurement

conditions for the qubit are optimal for the set of other
parameters indicated in the figures.

The detunings δL and δR of QD energies in the SET
are obviously the main parameters of the system since their
choice sets the tunneling regime and realizes the measurement
principle based on the fulfillment or violation of the symmetry
condition δL = δR. However, this condition in itself does not
yet guarantee the large contrast and current through the SET.
Figure 5 shows the dependences of the current and the contrast
on the detuning in the symmetric case for three values of the
distance Ly between the SET and the qubit.

It can be seen that in the resonant regime at δL(R) � 0.05
the measurement is possible, but with less contrast than in the
nonresonant one. The appearance of a wide interval, where
CI drops to zero, is associated with compensation of the
energy level asymmetry in the SET for the qubit electron
position in QD B due to partial recovery of resonant coupling.
The active transport regardless of the qubit state is observed.
In this case, the SET density matrix is in the superposition
of one-, two-, and three-electron components with weights

FIG. 5. Dependencies of the current (a) and the measuring contrast (b) of the SET at a symmetrical case of the detunings for three distances
between the SET and the qubit. (The values are given in effective atomic units for GaAs; see text.)
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FIG. 6. The current through the SET (a) and the contrast (b) vs detuning δR at fixed detuning δL . (The values are given in effective atomic
units for GaAs; see text.)

of 0.23, 0.54, and 0.23, respectively. The position and the
size of this interval depend on the distance from the qubit,
indicating the interplay among the Coulomb energies, the
tunneling energies, the detunings, and the relaxation rates.
Besides, the electron’s transport from QD L into QD R un-
der the discussed conditions is observed only at large times
t > γ −1

k , �−1
L(R) in the steady-state regime. Hence the dissi-

pation effects (incoherent tunneling and relaxation from QD
L to QD C) participate in the transport as well. The given
explanation reveals the existence of specific parameter com-
binations for which the transport properties of SET should
be treated at a more profound level. The search algorithm of
those parameter combinations is to be developed in further
study. The detuning choice from the interval δL(R) = 0.3−0.6
guarantees simultaneously the large measured current and
contrast. A further synchronous increase of detunings does not
change the contrast, but for δL(R) > 0.6 leads to the current
suppression due to weakening of the coupling between the
QDs. A drop of CI with increasing Ly, as has been already
found, is associated with vanishing of the effect of the qubit
internal geometry on the current as the qubit is moved far from
the SET.

Even more information can be obtained from the analysis
of the current strength ρSS

RR and the contrast CI for the de-
tunings δL and δR, changing independently (Fig. 6). Let us
consider the behavior of these quantities on the interval of
detunings δR for several values δL and Ly. At first glance, the
choice of a geometry should distinguish the symmetric case
δL = δR as the only possible one for obtaining a reasonable
current through the SET, if the qubit is loaded into the state
|A〉 (point δR = δL = 0.4). However, as follows from Fig. 6,
there is another value δ′

R �= δL for which a large contrast is
due to the presence of an electron in the qubit state |B〉. Such
a change in the roles of the logical states is associated with
compensating the imbalance of the detunings due to the im-
balance of the energies of the Coulomb interaction of the qubit
and SET electrons, δ′

R = δL + 
W (Ly). This is confirmed by
the dependence of the δ′

R position on the distance Ly and by
the independence of the compensation energy 
W (Ly) on
the choice of δL for a fixed Ly. For the qubit located at a
large distance from the SET one has 
W (Ly) → 0 and both

peaks merge, making the measurement impossible. Recall that
the presence of such special points (sweet spots), in which
the symmetry is restored, is inherent in complex systems
with a tunnel or optical connection between components. We
also point out that the asymmetry of the tunneling energy
associated with the barrier thickness difference also implies
the existence of such a set of geometrical parameters for
which the Coulomb energy compensates it.

The geometry of the measuring chip remains important
in practical terms. As one has just seen, when the qubit is
moved far from the SET the Stark QD shifts, associated with
the different basis states, come closer and the measurement
contrast decreases. A partial compensation for this drop is
possible by increasing the linear size of the SET and the
qubit, i.e., the widths of the QDs and the thicknesses of the
barriers separating them. However, as shown above, varying
the barrier thickness within 1–2 units of length (10–20 nm
for GaAs) causes a sharp slowdown of the electron transport
through the structure and the current suppression. This also
applies to the DQD qubit, where fast coherent electron oscilla-
tions (quantum operations) can be realized under a sufficiently
high barrier transparency that limits its thickness (and a qubit
length). The use of wide QDs as well as SETs with a large
number of QDs will be analyzed in further papers. As follows
from Fig. 7(a), at distances of Ly < 20 the contrast exceeds
90%, and at Ly > 30 it decreases rapidly. Enhancement of the
distance l between the qubit QDs A and B by one unit of length
gives only a slight improvement in the contrast. Thus, there is
a limitation on the measurement precision due to the finite
sizes of the qubit and the SET.

The contrast also depends on the mutual orientation of
the axes of the SET and the qubit [Fig. 7(b)]. If the axes
are parallel to each other (ϕ = 0 or π ), then the qubit basis
states are maximally distinguishable. If they are perpendicular
(ϕ = π/2 or 3π/2), then, as the condition δL = δR is now
satisfied for each basis state due to the geometry, IA = IB and
СI = 0. As the distance Ly increases, the areas of contrast
minima become wider. In addition, one can notice a slight
asymmetry of СI with respect to the point ϕ = π , which is
associated with the direction of an irreversible current flow
through the SET.
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FIG. 7. The measuring contrast as functions of the distance Ly between the qubit and the SET for two qubit lengths (a) and of the angle
between axes of the SET and the qubit (b). (The values are given in effective atomic units for GaAs; see text.)

The qubit in one of its logical states was considered above.
Next we obtain the current through the SET for the qubit in
a state with an arbitrary population distribution, when |cA|
changes from 0 to 1. To get the current for high, medium, and
low contrast, we choose the distance Ly = 10, 20, 30, 40, and
50 between the qubit and the SET. Figure 8 demonstrates the
complete coincidence of the curves found by the numerical
integration of Eq. (8) and by formula (12) that was derived
with use of the assumption (10) about the structure of the
system density matrix in the steady state. A low contrast
corresponds to more smooth current dependencies for which
the resolution dρSS

RR/d|cA| is small. Recall that for Ly 
 l this
reduction is caused by a decrease in the difference of the
coupling energies between the SET and the qubit being in its
two logical states. In addition, at |cA| � 1 the derivative tends
to zero for any CI value. In order to improve the measuring
precision in this limit one can invert the qubit and carry out
measurements in the vicinity of the point |cA| ≈ 1 where the
derivative dρSS

RR/d|cA| is maximum.

FIG. 8. The SET current vs the amplitude of the qubit basis state
|A〉 for several values of the distance Ly between the SET and the
qubit. (The values are given in effective atomic units for GaAs; see
text.)

The sensitivity is another measure that characterizes the
ability of SET to distinguish between two ultimate charge
states, corresponding to the presence or absence of an elec-
tron in a single QD or to the electron position in a double
QD. Following general formalism, we consider the differ-
ential conductance of the SET, gm = dI/dV , to quantify
the SET current change caused by qubit electron transpo-
sition between QD A and QD B [15,16]. It is easy to de-
rive the expression for the differential conductance gm =
CI e(IA + IB)/|WA,R − WB,R| in terms of the measurement con-
trast, or gm = 2π�R|ρ̃SS

RR(A) − ρ̃SS
RR(B)|/|WA,R − WB,R| in e2/h̄

units. At large distances between the SET and the qubit (Lx =
0, Ly 
 l) the interaction energy difference is approximated
by the expression WA,R − WB,R ≈ 1

Ly
( l

Ly
)2. Taking from Fig. 5

ρ̃SS
RR(A) = 0.45 and ρ̃SS

RR(B) = 0.001 at Ly = 20 and δL(R) =
0.4 we obtain gm ≈ 1.3 × 10−2 e2/h̄ and the sensitivity 5 ×
10−6 e/Hz1/2 [8,17]. The corresponding peak at Fig. 6 gives
one the signal-to-noise ratio S/N ≈ 20 (in Ref. [15] S/N = 3).
The value of gm is slightly lower (by 2.4 times) than in
Ref. [15] because of the large difference in QD sizes (a =
10 nm in our structure and a = 100 nm in [15]). The sensitivi-
ties in both cases are close to each other. The further growth of
gm can be achieved by an increase of the incoherent tunneling
rate �R. However, this increase may stimulate cotunneling and
exchange processes whose influence on the SET current was
neglected here. Therefore, the SET properties optimization is
to be done in further investigations.

At the end of the analysis, let us return to the qubit and
show that its coupling to the SET leads to its dephasing dur-
ing the time τ� ∼ 1/ max(�L, �R), using an equal-weighted
superposition |�(0)〉 = (|A〉 + |B〉)/

√
2 as an example. The

time dependence of the off-diagonal component ρ ′
AB(t ) of

the qubit reduced density matrix ρ ′(t ) = TrSETρ(t ), where the
trace is now taken over the SET states, clearly illustrates the
effect of dephasing (Fig. 9).

If the current does not flow through the SET, then the qubit
loses coherence because of coupling to phonons. This does
not affect the amplitude measurement precision; however, in
order to determine the phase the Hadamard gate should be
implemented as soon as possible with the aim of preserving
its initial value.
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FIG. 9. The time dependence of the off-diagonal component
of the qubit density matrix (coherence). (The values are given in
effective atomic units for GaAs; see text.)

To compare quantitatively the efficiencies of single-QD
and triple-QD SETs we note that in the resonant tunneling
regime both structures demonstrate close dynamics and sim-
ilar values of the measurement contrast. However, the off-
resonant regime exists only for a triple-QD SET with symmet-
ric three-level configuration. Therefore, to obtain estimations
required it is suitable to compare resonant and off-resonant
regimes for a triple-QD SET. As follows from Fig. 5 the
contrast for the resonant regime is less than 80% whereas
for the off-resonant regime it achieves values 0.99% or even
higher (at 100–200 nm SET-qubit distances).

IV. DISCUSSION

In this section we briefly discuss our model in relation to
other schemes of the qubit state measurement. Note that two
alternative approaches to the quantum register engineering
exist. The first one assumes the high level of integration where
many qubits reside in the same chip [18]. All qubits are
connected by a common quantum (photon, phonon, plasmon)
network with the external control at single-quantum level.
Usually, in that approach the single read-out device included
in the network is exploited for measurement of each qubit in
the register. At first glance, this design looks like a compact
and economic one. However, it is easy to see that, for exam-
ple, the simultaneous measurement of all qubits is impossi-
ble (perhaps except some trivial many-qubit states). Further,
the quantum states of qubits placed closely to each other are
spoiled by undesirable interconnections (cross talks) and, as
the result, there are additional quantum errors that one needs
to correct.

The second approach is based on the concept that each
qubit should be supplied by its own circuitry including an
individual measurement device. This design is free from the
cross-talk problem and allows one to calibrate and to ma-
nipulate each qubit at an individual control level. Now one
is able to measure all qubits simultaneously. As an example
we mention two nitrogen-vacancy сenter qubits, each of them

placed in individual setups, separated by a distance of 3 m
and connected by a photon network (the single-mode optical
cable) [19]. Such scheme allowed the authors to obtain robust
entangled states of center spins, due to cross-talk absence and
fine individual center tuning and measurement. Of course,
the problem of the space resource arises. However, as we
expect, a compromise between compactness and robustness
will be found. The scheme where the qubit is fabricated
with individual control architecture (and being maximally
isolated from neighboring qubits due to a wide distance) may
have several advantages when compared to high-integration
schemes, especially for solid-state qubits. Therefore, in view
of manufacturing such qubits with closed-up control circuitry
one needs, in particular, to elaborate and to optimize an
individual measurement device. Our model of the triple-QD
SET serves for this purpose.

Now consider other measurement techniques for compar-
ison with the proposed scheme. One of them, namely, that
with a superconducting microwave resonator, is quite pop-
ular and was successfully applied to detect an electron in a
double-dot charge qubit (see, e.g., Ref. [20]). The geometric
constraints related to the qubit placement in the mode antinode
are much weaker than in our model. On the other hand,
the semiconductor-superconductor interface requires involved
technology whereas a fully semiconductor-QD chip can be
fabricated in simpler way. Further, the Jaynes-Cummings
electron-photon coupling that serves to monitor the charge
qubit by microwave photons is weaker than Coulomb cou-
pling between the charge qubit and an electron tunneling
through the SET. This rough and brief qualitative analysis
indicates the existence of advances and shortcomings inherent
to each variant. Depending on technological opportunities and
purposes, one can use the scheme more appropriate to date.

Meanwhile, the resonator scheme has a deeper connec-
tion to the proposed QD SET scheme. Both exploit photon
or electron transport via an auxiliary object presented by a
resonator or QD chain. There exists a general approach for
transport property optimization that relates to the discretiza-
tion of the auxiliary system spectrum. Concerning optical
[21,22] or microwave [23] systems it assumes the use of a
single or several active modes whereas others have to be
turned off by appropriate frequency selection. This spectrum
discretization in rather long systems is usually achieved by
the spatial discretization of system volume: The waveguide
initially presented by the continuous cable is now replaced
by the resonator chain. Besides, this replacement has another
consequence: The transport becomes more sensitive to the
external perturbations. From a theoretical point of view both
photon and electron transports are described by the widely
known tunneling Hamiltonian. Even more, any QD can be
treated as an “electronic resonator” confining Bloch waves in
analogy with photonic resonators confining electromagnetic
waves. The perturbations influence the system via detunings
and tunneling energy fluctuations. In the photonics such
objects are coupled resonator optical waveguides (CROWs)
[21]. They are extensively studied for quantum information
applications such as individual optical addressing, entangling,
and measurements of solid-state qubits. In the nanoelectron-
ics the replacement single (possibly large) island by three
QDs arranged in a linear chain has the same effect on the
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electron dynamics, particularly, the sensitivity growth to ex-
ternal charge motion in the nonresonant symmetric regime.
Particularly, the high sensitivity of the spatially discretized
electron transport channel (here the linear QD array or the
chain) to external electrical perturbations can be explained
as follows. If one operates with a small number of quantum
states coupled to the neighboring states by tunneling, it is very
important to conserve high coupling strengths between all
pairs of neighboring states during operation. Those strengths
strongly depend on the tunneling matrix elements and energy
level separations (detunings). Even if the energy of only one
state is shifted by some external perturbation, the transport
properties of the whole chain are influenced by that local
perturbation. To interrupt the transport via a large extended
system with a continuous spectrum one has to substantially
modify it by the energy shift of the order of the manifold
bandwidth. This shift is much larger than that stopping the
tunneling in the discretized analog (QD chain). In our model
we vary the energy level position in the central QD (relative
to energies of the outer QDs). It provides the choice of the
tunneling regime (resonant or off-resonant) by the external
control of the relation V/|δL(R)|. As one can expect there
are many ways to design the electron spectrum in the one-
dimensional (1D) or two-dimensional (2D) arrays of QDs by
the local QD control. Systems which are characterized by a
continuous spectrum cannot be engineered in a similar way.

In this paper we consider a three-QD 1D chain whereas
multi-QD 2D or even 3D complexes can be built up in layered
semiconductor heterostructures. Nevertheless, the dynamical
properties of the proposed structure illustrate the general prin-
ciple according to which any several-electron tunnel-coupled
QD system can be exploited as the highly sensitive charge
sensor. Loading the SET structure in the steady-state current
regime conditioned by geometric and energetic symmetry,
one makes it extremely susceptible to external charge motion.
The long-range character of electron-electron interactions (in
contrast to the electron-photon one) as well as the fragility
of nonresonant tunneling are expected to help one to detect
an electron dynamics in the charge qubit. Perhaps, more
sophisticated designs involving tens or even hundreds QDs
will form “quantum antennas” that will be able to overcome
the difficulties of several QD schemes (e.g., strong depen-
dence of the contrast on the SET-qubit distance). Only further
investigations would help one to clarify this question.

Finally, as we have already seen, the measurement schemes
based on the electronic transport possess a large degree
of universality. They can also be exploited to measure the
single-QD spin qubit, as was described in Refs. [24,25], where
an electron moves along a quantum wire in proximity of the
measured QD. One of the possible optimizations of such a

scheme could be the replacement of the quantum wire by
the chain of QDs as it was described in the paper for the
QD charge qubit. One may expect that spin-spin interaction
between the measuring and qubit electrons will also strongly
depend on geometry, symmetry, and so on, that will give one
additional tools to control and measure the QD spin qubit as
well.

V. CONCLUSIONS

Quantum computational schemes that use information cod-
ing to electron orbital degrees of freedom in semiconductor
QDs are of great interest from both experimental and theo-
retical points of view. The high speed of quantum operations
and scalability make them very attractive for manufacturing
and studying prototypes of quantum computers. In addition,
a procedure for measuring a quantum state using a SET has
been developed and tested. However, the conditions that en-
sure the reliability of quantum algorithms and measurements
impose certain requirements for a chip design. For example,
minimization of the Coulomb interaction of two neighboring
qubits implies an increase of the distance between them,
whereas it is better to choose a small distance between the
SET and the qubit. Hence, each charge qubit must be equipped
with an individual measuring device. The increased sensitivity
of the measurements can be achieved both by the chip manu-
facturing technology improvement and by the search for new
design solutions.

In this paper we propose to carry out measurements in
the nonresonant regime of electron tunneling through the
SET, consisting of three QDs. Such a three-level system,
in contrast to a single-level system, provides more effective
response to small changes of the electric field. The results
can be applied to both electrically formed nanostructures and
crystalline ones. Calculations carried out within the frame-
work of a dynamic model, that takes into account various
physical processes, indicate the possibility of high-precision
qubit measurements. There are sets of parameters for which
both large current and reasonable contrast are achievable at
the same time. Further studies will focus on the effect of de-
viations of structural and dynamic parameters from symmetry
on the transport properties of the SET, as well as on analyzing
alternative geometries of the measuring chip.
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Vučković, Phys. Rev. B 85, 195301 (2012).

[14] A. V. Tsukanov and I. Yu. Kateev, Russ. Microelectron.
(to be published).

[15] C. Barthel, M. Kjærgaard, J. Medford, M. Stopa, C. M. Marcus,
M. P. Hanson, and A. C. Gossard, Phys. Rev. B 81, 161308(R)
(2010).

[16] T. Fujita, H. Kiyama, K. Morimoto, S. Teraoka, G. Allison, A.
Ludwig, A. D. Wieck, A. Oiwa, and S. Tarucha, Phys. Rev. Lett.
110, 266803 (2013).

[17] A. N. Korotkov, D. V. Averin, K. K. Likharev, and S. A.
Vasenko, in Single-Electron Tunneling and Mesoscopic Devices,
edited by H. Koch and H. Lübbig (Springer, Berlin, 1992).

[18] H. J. Kimble, Nature 453, 1023 (2008).
[19] H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok,

L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L.
Childress, and R. Hanson, Nature 497, 86 (2013).

[20] C. H. Wong and M. G. Vavilov, Phys. Rev. A 95, 012325 (2017).
[21] A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Opt. Lett. 24, 711

(1999).
[22] M. Notomi, E. Kuramochi, and T. Tanabe, Nat. Photon. 2, 741

(2008).
[23] L. Zhou, Z. R. Gong, Y.-X. Liu, C. P. Sun, and F. Nori,

Phys. Rev. Lett. 101, 100501 (2008).
[24] V. Vyurkov, A. Vetrov, and A. Orlikovsky, Proc. SPIE 5128,

164 (2003).
[25] T. Otsuka, E. Abe, Y. Iye, and S. Katsumoto, Physica E

(Amsterdam, Neth.) 42, 809 (2010).

062305-11

https://doi.org/10.1103/RevModPhys.64.849
https://doi.org/10.1103/RevModPhys.64.849
https://doi.org/10.1103/RevModPhys.64.849
https://doi.org/10.1103/RevModPhys.64.849
https://doi.org/10.1063/1.112862
https://doi.org/10.1063/1.112862
https://doi.org/10.1063/1.112862
https://doi.org/10.1063/1.112862
https://doi.org/10.1063/1.2388134
https://doi.org/10.1063/1.2388134
https://doi.org/10.1063/1.2388134
https://doi.org/10.1063/1.2388134
https://doi.org/10.1023/A:1004625530034
https://doi.org/10.1023/A:1004625530034
https://doi.org/10.1023/A:1004625530034
https://doi.org/10.1023/A:1004625530034
https://doi.org/10.1103/PhysRevB.90.125402
https://doi.org/10.1103/PhysRevB.90.125402
https://doi.org/10.1103/PhysRevB.90.125402
https://doi.org/10.1103/PhysRevB.90.125402
https://doi.org/10.1038/nmat2511
https://doi.org/10.1038/nmat2511
https://doi.org/10.1038/nmat2511
https://doi.org/10.1038/nmat2511
https://doi.org/10.1103/PhysRevB.85.195301
https://doi.org/10.1103/PhysRevB.85.195301
https://doi.org/10.1103/PhysRevB.85.195301
https://doi.org/10.1103/PhysRevB.85.195301
https://doi.org/10.1103/PhysRevB.81.161308
https://doi.org/10.1103/PhysRevB.81.161308
https://doi.org/10.1103/PhysRevB.81.161308
https://doi.org/10.1103/PhysRevB.81.161308
https://doi.org/10.1103/PhysRevLett.110.266803
https://doi.org/10.1103/PhysRevLett.110.266803
https://doi.org/10.1103/PhysRevLett.110.266803
https://doi.org/10.1103/PhysRevLett.110.266803
https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nature12016
https://doi.org/10.1038/nature12016
https://doi.org/10.1038/nature12016
https://doi.org/10.1038/nature12016
https://doi.org/10.1103/PhysRevA.95.012325
https://doi.org/10.1103/PhysRevA.95.012325
https://doi.org/10.1103/PhysRevA.95.012325
https://doi.org/10.1103/PhysRevA.95.012325
https://doi.org/10.1364/OL.24.000711
https://doi.org/10.1364/OL.24.000711
https://doi.org/10.1364/OL.24.000711
https://doi.org/10.1364/OL.24.000711
https://doi.org/10.1038/nphoton.2008.226
https://doi.org/10.1038/nphoton.2008.226
https://doi.org/10.1038/nphoton.2008.226
https://doi.org/10.1038/nphoton.2008.226
https://doi.org/10.1103/PhysRevLett.101.100501
https://doi.org/10.1103/PhysRevLett.101.100501
https://doi.org/10.1103/PhysRevLett.101.100501
https://doi.org/10.1103/PhysRevLett.101.100501
https://doi.org/10.1117/12.517910
https://doi.org/10.1117/12.517910
https://doi.org/10.1117/12.517910
https://doi.org/10.1117/12.517910
https://doi.org/10.1016/j.physe.2009.10.034
https://doi.org/10.1016/j.physe.2009.10.034
https://doi.org/10.1016/j.physe.2009.10.034
https://doi.org/10.1016/j.physe.2009.10.034

