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The family of codeword stabilized codes encompasses the stabilizer codes as well as many of the best known
nonadditive codes. However, constructing optimal n-qubit codeword stabilized codes is made difficult by two
main factors. The first of these is the exponential growth with n of the number of graphs on which a code can
be based. The second is the NP-hardness of the maximum clique search required to construct a code from a
given graph. We address the second of these issues through the use of a heuristic clique finding algorithm. This
approach has allowed us to find ((9, 97 < K < 100, 2)) and ((11, 387 < K < 416, 2)) codes, which are larger
than any previously known codes. To address the exponential growth of the search space, we demonstrate that
graphs that give large codes typically yield clique graphs with a large number of nodes. The number of such nodes
can be determined relatively efficiently, and we demonstrate that n-node graphs yielding large clique graphs can
be found using a genetic algorithm. This algorithm uses a crossover operation based on spectral bisection that
we demonstrate to be superior to more standard crossover operations. Using this genetic algorithm approach, we
have found ((13, 18, 4)) and ((13, 20, 4)) codes that are larger than any previously known code. We also consider
codes for the amplitude damping channel. We demonstrate that for n < 9, optimal codeword stabilized codes
correcting a single amplitude damping error can be found by considering standard form codes that detect one of
only three of the 3" possible equivalent error sets. By combining this error-set selection with the genetic algorithm
approach, we have found ((11, 68)) and ((11, 80)) codes capable of correcting a single amplitude damping error

and ((11, 4)), ((12, 4)), ((13, 8)), and ((14, 16)) codes capable of correcting two amplitude damping errors.
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I. INTRODUCTION

Quantum codes can be used to protect quantum informa-
tion against the effects of a noisy channel. An n-qubit code
is a subspace Q C (C2)®" of dimension K. If Q can detect
any arbitrary error on fewer than d qubits, but not some
error on d qubits, then Q is said to have distance d and is
called an ((n,K)) or ((n, K, d)) code. Equivalently, a code
has distance d if it can detect the set £ of all Pauli errors
of weight less than d but cannot detect some weight-d Pauli
error [1]. A well-understood family of codes is the stabilizer
(additive) codes, which are codes defined using an Abelian
subgroup of the n-qubit Pauli group [2]. However, codes
outside of the stabilizer framework, called nonadditive codes,
can potentially encode a larger subspace while still detecting
the same error set [3—8]. Codeword stabilized (CWS) codes
encompass both the stabilizer codes and many of the best
known nonadditive codes [9,10]. In general, an ((n, K)) CWS
code is defined using an n-qubit stabilizer state, which is a
stabilizer code of dimension one, and a set of K n-qubit Pauli
operators called word operators [9]. A standard form CWS
code Q is one where the stabilizer state is defined by a simple
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undirected n-node graph G (that is, it is a graph state) and
the word operators are defined by a binary classical code
C € GF(2)" with |C| = K [9]. For Q to detect an error set &,
C must detect the classical error set Clg(£) € GF(2)" induced
by the graph. An appropriate classical code of maximum size
can be found by constructing a clique graph and performing a
maximum clique search [10].

The error set that must be detected by an ((n, K, d)) code
@ is invariant under any permutation of the Pauli matrices X,
Y, and Z on any subset of qubits. As a result of this symmetry,
we call ((n, K, d)) codes symmetric codes. This symmetry
also means that if Q' is local Clifford (LC) equivalent to Q
(that is, if @ = U Q for some LC operator U), then Q' is
also an ((n, K, d)) code. It follows from the LC equivalence
of every stabilizer state to a graph state [11-13] that every
CWS code is LC equivalent to one in standard form [9]. It
is therefore sufficient to consider only standard form codes
when attempting to construct an optimal ((n, K,d)) CWS
code. In fact, it is sufficient to consider only codes based on
graph states that are not LC equivalent up to a permutation
of qubit labels [10]. This corresponds to considering only
graphs that are not isomorphic up to a series of local comple-
mentations [11]. For n < 12, this set of inequivalent graphs,
denoted L, has been enumerated [14—16] and in theory can
be exhaustively searched to construct an optimal code. Such
a search of Lo has previously yielded the well-known ((10,
24, 3)) code [5]. For distance-two codes, searching £, quickly
becomes prohibitive with increasing n due to the rapidly
growing clique graphs and the NP-hardness of finding a max-
imum clique [17]. To address this, we employ the heuristic
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Phased Local Search (PLS) clique finding algorithm [18].
Using this approach, we have found ((9, 97 < K < 100, 2))
and ((11, 387 < K < 416, 2)) codes that are larger than the
best known nonadditive codes presented in Refs. [6] and [7],
respectively.

The apparent exponential growth of |£,| with increasing
n means that even if £, were enumerated for n > 13, an
exhaustive search would be prohibitive. As such, other search
strategies are required for constructing codes. To aid this
search, we demonstrate a relationship between the code size
and the order (number of nodes) of the clique graph yielded
by a given graph. In particular, we show that the clique
graph orders exhibit clustering and that the graphs yielding
the best codes tend to belong to the highest clique graph
order cluster. This reduces the search to finding graphs that
yield large clique graphs, and we show that such graphs can
be generated by using a genetic algorithm to search the set
of all distinct n-node graphs. This genetic algorithm uses a
crossover operation based on spectral bisection, which we
show to be significantly more effective than standard single-
point, two-point, and uniform crossover operations. Using this
genetic algorithm approach, we have found ((13, 18, 4)) and
((13, 20, 4)) codes. These codes are larger than an optimal
((13, 16, 4)) stabilizer code, and to the best of our knowledge
they are the first d > 4 codes to achieve this (we note that
there is a family of d = 8 nonadditive codes that are larger
than the best known, but not necessarily optimal, stabilizer
codes [8]).

For asymmetric codes, the error set £ that they detect
is no longer invariant under Pauli matrix permutation. This
means that if Q detects &, then there is no guarantee that
an LC-equivalent code Q' = U@ also detects £. However,
if Q detects the LC-equivalent error set U TEU, then Q' will
detect £. As a result, when attempting to construct an optimal
((n, K)) CWS code detecting &, it is sufficient to consider
standard form codes based on elements of £, that detect one
of the up to 6" possible LC-equivalent error sets [19] (the 6"
value stems from there being six possible permutations of the
Pauli matrices on each of the n qubits). Such an asymmetric
error set arises when constructing codes that correct amplitude
damping errors. In this case, a partial symmetry reduces the
number of LC-equivalent error sets to 3”; however, this is still
large enough to make an exhaustive search prohibitive for n >
10. Again, we therefore require different search strategies for
constructing codes. We demonstrate that for n < 9, optimal
CWS codes correcting a single amplitude damping error can
be found by considering only codes based on nonisomorphic
graphs that detect one of three LC-equivalent error sets. By
combining this error-set selection with the genetic algorithm
approach, we have found ((11, 68)) and ((11, 80)) codes
capable of correcting a single amplitude damping error. These
are larger than the best known stabilizer codes detecting the
same error set [2]. We have also found ((11, 4)), ((12, 4)),
((13, 8)), and ((14, 16)) stabilizer codes capable of correcting
two amplitude damping errors.

The paper is organized as follows. Section II gives an
introduction to undirected graphs, genetic algorithms, classi-
cal codes, and quantum codes. Section III details our search
strategies for symmetric codes and presents the best codes
we have found. This is then extended to asymmetric codes

FIG. 1. A drawing of a cycle graph where the circles correspond
to nodes and the lines to edges.

for the amplitude damping channel in Sec. IV. The paper is
concluded in Sec. V.

II. BACKGROUND

A. Undirected graphs

A simple undirected graph G = (N, E) of order n consists
of a set of nodes N = {vy, v, ..., v,} and a set of edges E C
{{vi,vj} s v, v; € N, v; #v;}. Anedge e = {v;, v;} € Eisan
unordered pair that connects the nodes v;, v; € N, which are
called the endpoints of e. A graph is typically drawn with the
nodes depicted as circles that are joined by lines representing
the edges. An example of such a drawing is given in Fig. 1. G
can be represented by the symmetric nxn adjacency matrix I'
where

) if{u, v € E,
ij = {0 otherwise. 1)

The neighborhood N (v;) = {v; : {v;, v;} € E} of some node
v; € N is the set of nodes to which it is connected. The degree
deg(v;) = |[N(v;)| of v; is the number of nodes to which it is
connected. The nxn degree matrix D has elements

b _ |des) ifi=
Y70 otherwise.

2

A subgraph Gg(Ng, Eg) of G = (N, E) is a graph with
nodes Ny € N and edges Eg € E. The subgraph induced
by a subset of nodes N; € N is the graph G; = G[N;] =
(Np, Er) where E; = {{v;,v;} € E : v;, v; € Nj} contains all
the edges in E that have both endpoints in N;. A walk
is a sequence whose elements alternate between connected
nodes and the edges that connect them. For example,
1, {1, 2},2,{2,3}, 3, {3, 4}, 4, {3,4}, 3 is a walk in the graph
shown in Fig. 1. The length of a walk is the number of edges
it contains. A path is a walk containing no repeated nodes or
edges with the exception that the first and last node can be the
same, in which case the path is called a cycle. A graph such
as the one shown in Fig. 1 where all nodes belong to a single
cycle is called a cycle graph. A graph is connected if there is a
path between any two of its nodes. A connected component of
G is a maximal connected subgraph Gs(Ns, Es) [maximal in
that there is no other connected subgraph G (N7, Er) where
Ng C Nr].

Two graphs G| = (N, E)) and G, = (V,, E,) are isomor-
phic if they differ only up to a relabeling of nodes. Formally,
they are isomorphic if there exists an isomorphism from G, to
G,, which is a bijection f : Ny — N, such that {v;, v;} € E; if
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TABLE I. The number of distinct, nonisomorphic, and non-LC-
isomorphic graphs with n < 12 nodes.

n 1Dl Gl 1£a]
1 20 1 1

2 2! 2 2

3 23 4 3

4 26 11 6

5 210 34 11

6 2B 156 26

7 22 1044 59

8 2% 12 346 182

9 2% 274 668 675

10 2% 12 005 168 3990
11 2% 1018997 864 45 144
12 266 165 091 172 592 1323363

and only if {f(v;), f(v;)} € E;. An isomorphism f : N — N
from a graph G = (N, E) to itself is called an automorphism.
The set of all all automorphisms of G forms a group Aut(G)
under composition. There are a number of packages, such as
NAUTY [20,21], available for determining the automorphism
group of a given graph. We denote the set of all distinct
n-node graphs with nodes N = {1, 2, ..., n} as D,, the size
of which grows exponentially with |D,| = 2CG). D, can be
partitioned up to isomorphism to give the set G,; |G,| also
grows exponentially with n [22], as shown in Table I for
n < 12. The size of some g € G, with representative G € D,
is n!/|Aut(G)| [22].

The complement G = (N, E) of a graph G = (N, E) has
an edge {v;, v;} € E if and only if {v;, v;} ¢ E. A local com-
plementation (LC) at node v; replaces the induced subgraph
G[N (v;)] with its complement (while we use LC for both
local Clifford and local complementation, its meaning should
be clear from the context in which it is used). If two graphs
Gi, G, € D, differ by a series of local complementations,
then we say they are LC equivalent. If a series of local comple-
mentations applied to G| yield a graph G that is isomorphic
to Gy, then we say that G| and G, are LC isomorphic. Parti-
tioning D, up to LC isomorphism gives the set L,,, which has
been enumerated for n < 12 [14-16] and also seems to grow
exponentially with n as shown in Table I. Any two graphs that
are isomorphic are necessarily LC isomorphic, and, therefore,
any element [ € £, is the union [ = U;g; of elements g; € G,.
These g; can be determined from any representative of / using
Algorithm 5.1 of Ref. [14]. If a subset A C D,, contains graphs
that are representatives of m different elements of G, (L,),
then we say m of the graphs in A are nonisomorphic (non-LC
isomorphic).

A graph G = (N, E) is complete if every node is connected
to every other node; that is, if E = {{v;,v;}:v;,v; €N,
v; # v;}. If an induced subgraph G[N] for some N C N is
complete, then N is called a clique. A clique of maximum
size in G is called a maximum clique. Finding a maximum
clique in a graph is is NP-hard [17]; however, there are a
number of heuristic algorithms that can find large, if not
maximum, cliques. One such algorithm is the Phased Local
Search (PLS) [18], which performs well compared to other
heuristic algorithms in terms of both speed and clique finding

ability [23]. The PLS algorithm constructs a clique by initially
selecting a node at random. It then iteratively selects nodes
to add to the current clique (potentially replacing an existing
node in the clique) until a maximum number of selections is
reached. To ensure good performance on graphs with varying
structures, PLS cycles through multiple different selection
methods. The search is repeated for a prescribed number of
attempts, after which the largest clique found is returned.

A bipartition of G = (N, E) divides the nodes into two
disjoint subsets Ny and N,. A bipartition is called a bisection if
|Ni| = |N;| foreven |N| orif ||Ny| — |N>|| = 1 for odd |N|. An
optimal bisection is one that minimizes the number of edges
connecting nodes in N; to those in ;. Finding such an optimal
bisection is NP-hard [24]; however, approximate heuristic
approaches are available. One such approach is spectral bisec-
tion [25-28], which is based on the graph’s Laplacian matrix
L =D —T. L is positive semidefinite and as such has real,
non-negative eigenvalues. The eigenvector u = (uy, ..., u,)
corresponding to the second smallest eigenvalue is called the
Fiedler vector [29]. The Fiedler vector can be used to bisect
N, with the indices of the |n/2]| smallest components of u
dictating the nodes in N| and N, simply being N, = N\N;.

B. Genetic algorithms

Suppose we wish to determine which element in a set A
is optimal in some sense. This can be expressed as finding
the a € A that maximizes a fitness function f : A — R. The
brute-force approach to this problem is to determine the fitness
of every element a € A. This is called an exhaustive search
and quickly becomes impractical if the search space A is large
and/or evaluating the fitness of elements is computationally
intensive. In such cases, heuristic search algorithms can be
used to find good, but potentially not optimal, elements of
A. The simplest such approach is a random search, where
fitness is calculated only for the elements in a randomly
selected subset B C A. Another heuristic search strategy is
the genetic algorithm, which is inspired by natural evolution
[30,31]. There are many genetic algorithm variants; a simple
implementation is as follows. Initially, the child population,
which is an N element subset of A, is randomly generated.
This is followed by a calculation of each child’s fitness
(a child being an element of the child population). The genetic
algorithm then iterates for some predetermined number of
maximum generations. In each generation, the previous gen-
eration’s child population becomes the current generation’s
parent population (whose elements are called parents). A new
child population is then formed by selecting two parents at a
time and producing two children from them. The parents are
selected according to their fitness, with high fitness parents
having a higher chance of selection. With probability p,., the
two children will be produced via crossover, which combines
attributes of the two parents; otherwise, they will simply be
duplicates of their parents. Each child is then subjected to
mutation (random alteration) with probability p,, before being
added to the child population. Once the child population again
contains N children, their fitnesses are calculated and a new
generation begins.

Tournament selection is a simple and commonly used
method of selecting parents based on their fitness. First, a
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subset of the parent population is chosen at random, and then
the fittest parent within this subset is selected. The size of the
subset chosen is called the tournament size; it controls the
selection pressure of the genetic algorithm, which is a measure
of how dependent selection is on having high fitness. If the
tournament size is large, then there is high selection pressure,
meaning that the highest fitness parents tend to be selected.
This exploitative approach gives faster convergence; however,
the search is more likely to become stuck at a suboptimal
local maximum [32]. Conversely, a small tournament size will
lead to greater exploration of the search space at the cost of
potentially slow convergence. A common modification to the
genetic algorithm is the inclusion of elitist selection, which
involves adding some number of the fittest parents to the child
population at the start of each generation. This preserves the
best elements; however, the increased selection pressure can
again increase the probability of convergence to a suboptimal
local maximum.

The crossover and mutation operations used depend on
how elements of A are represented. A standard representation
involves encoding elements as bit strings of fixed length
b. A common and simple mutation operation in this case
involves flipping any given bit in a child bit string with some
probability (this probability is often taken to be 1/b [31]).
Standard crossover methods include single-point, two-point,
and uniform crossover. In single-point crossover, an index
1 < i< b is chosen, and the values beyond this point are
exchanged between the two parent bit strings to form two
child bit strings. In two-point crossover, two such indices
are selected and all values between them are exchanged. In
uniform crossover, each individual bit is exchanged between
the two parents with some probability p,.

In some cases, representations other than bit strings are
more natural. For example, it may be possible to represent
elements as graphs. Crossover becomes more complicated
with such a representation. A potential method is presented
in Ref. [33] and is as follows. First, each of the parent graphs
P; and P, are each split into two subgraphs, called fragments,
to produce disconnected parents P;p and P»p. To split a parent
graph, first an edge {v;, v;} is chosen at random. In an iterative
process, the shortest path between v; and v; is determined,
and a randomly selected edge in this path is removed (in
the first iteration, this will simply be the edge {v;, v;}). This
continues until no path exists between v; and v;. The con-
nected component containing v; is the fragment Fj, and the
subgraph induced by the remaining nodes is the fragment
F>. In the next step, disconnected children Cp and Cyp are
formed by exchanging a fragment, say Fj, between each of
the parent graphs. The two fragments in each disconnected
child are then combined to produce children C; and C;. This
combination process involves iteratively selecting a node from
each fragment and joining them with an edge. The probability
of a node being selected is proportional to the difference in
its current degree to its degree in its initial parent graph. This
process of adding edges is repeated until all of the nodes in
one of the fragments, say Fj, have the same degree as they did
in their initial parent graph. If a node v; in F, has degree lower
than its initial degree by some amount §;, then in a process
repeated §; times, it will be connected to a randomly selected
node in F; with 50% probability. As outlined in Ref. [34],

the splitting process presented here has some undesirable
attributes. Firstly, it tends to produce two fragments with a
vastly different number of nodes. Secondly, it often removes a
large number of edges from within the larger fragment; these
are edges that did not have to be removed to split the parent
graph.

C. Classical codes

A classical channel is a map & : A, — A,, where A, is
the set of possible inputs and A, is the set of possible outputs.
We are concerned with channels where the input and outputs
are binary [that is, channels for which A, = A, = GF(2)]. In
this case, the action of the channel can be expressed as

P(x)=x+e=y, 3)

where x € GF(2) is the channel input, y € GF(2) is the chan-
nel output, and e € GF(2) is an error (or noise) symbol. A
code can be used to protect against the noise introduced by
the channel. A length-n binary code is a subset C € GF(2)"
whose elements are called codewords. Codewords are trans-
mitted as n sequential uses of ® or, equivalently, as a single
use of the combined channel ®", which is comprised of n
copies of ®. The action of " on some inputx € C is

O"(x)=x+e=y, )

where y € GF(2)" is the channel output and e € GF(2)" is an
error “vector.” The weight of an error is the number of nonzero
components from which it comprised.
We say that a code C can detect a set of errors £ € GF(2)"
if
X, +e#x; ®))

foralle € £ and x;, x; € C, where x; # x;. That is, the errors
in £ can be detected if they do not map one codeword to
another. Furthermore, we say that C can correct £ if

X;+eFx;+e (6)

foralley, e; € £ andx;, x; € C, where x; # x;. This condition
simply ensures that two codewords cannot be mapped to the
same y € GF(2)", in which case the transmitted codeword
cannot be inferred with certainty. C is said to have distance
d if it can detect any error of weight less than d but is
unable to detect some weight-d error. Note that C can correct
£ if and only if it can detect £+ & = {e; +¢; : e, e, € £},
meaning that a distance-d code can correct any error of weight
t = [(d —1)/2] or less. A length-n code C of size |C| = K
and distance d is called an (n, K) or (n, K, d) code. If C forms
a vector space, then it is called linear and has K = 2k A linear
code encodes the state of k bits and is called an [n, k] or
[n, k, d] code.

Finding a code C of maximum size that detects an error
set £ can be expressed as a clique finding problem. This
is achieved by constructing a graph Gg¢ = (Ng, Eg) whose
nodes are potential codewords; that is, Ng = GF(2)". Two
nodes x;, x; € Ng are connected by an edge {x;, x;} € E¢ if
x; +x; ¢ & (that is, if there is not an error mapping one to the
other). Any clique C in Gg¢ is a code detecting &, and a code of
maximum possible size is a maximum clique in G¢. Note that
if a code C detects &, then so does C' = x + C for any x € C.
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As0 € C’'and |C| = |C’], this means there is always an optimal
code (that is, a maximum size code detecting &) that contains
the all-zero codeword. The clique search can be restricted to
such codes by taking Ne = 0 U [GF(2)"\&].

D. Quantum codes

The action of a quantum channel ® on a quantum state
described by the density operator p is

®(p) = ) AwpAL, 9
k

where the A, called Kraus operators, satisfy >, A;Ak =1
(the identity operator) [35]. The channel can be interpreted as
mapping p — Ay ,oAZ (up to normalization) with probability
tr(AkpA}:) [36]. If p = |¢p)(¢]| (that is, if the input state is
pure), then this becomes the mapping |¢) — Ax|¢) (up to
normalization) with corresponding probability (¢|A£Ak|¢). In
this paper, we are interested in qubit systems; that is, systems
where states |¢) belong to a two-dimensional Hilbert space
H = C2. Similar to the classical case, the noise introduced
by a quantum channel can be protected against by employing
a code. A quantum (qubit) code of length n is a subspace
Q C (C?)®". Codewords |¢) € Q are transmitted across the
combined n-qubit channel ®®",

Suppose a code Q has an orthonormal basis B =
{l¢1), ..., |¢k)}, and take £ = {E|, ..., E,} to be the basis for
some complex vector space of linear n-qubit operators (called
error operators). We say that Q can detect any error in the span
of £ if

(DilE|pj) = Cgdjj ¥

for all E € £ and |¢;), |¢;) € B, where Cg is a scalar that
depends only on E [2]. Furthermore, we say that Q can correct
any error in the span of & if

(BIEEilg;) = Cudi; 9)

for all Ex, E; € £ and |¢;), |¢;) € B, where C is an rxr
Hermitian matrix [1]. The weight of an error E is the number
of qubits on which it acts. Q has distance d if it can detect
any error of weight less than d but not some weight-d error.
Similar to the classical case, a code can correct & if and only
if it can detect £7€ = {E,jEl : Ei, E; € £}, meaning that a
distance-d quantum code can also correct any error of weight
t = |(d—1)/2] or less. A length-n code of dimension K
and distance d is called an ((n, K)) or ((n, K, d)) code (the
double brackets differentiate from the classical case). A code
Q correcting £ is called nondegenerate if the spaces E;Q
and E;Q are linearly independent (that is, their intersection is
trivial) for any Ey, E; € £, where E; # E;. If all such spaces
are orthogonal, then Q is called pure.

The Pauli matrices in the computational {|0), |1)} basis are

0 1 0 —i 1 0
X:(1 0)’ Y:(i 0), Z:<0 _1>. (10)

X can be viewed as a bit-flip operator as X|0) = |1) and
X|1) =10). Z can be viewed as a phase flip as Z|0) = |0)
and Z|1) = —|1). Y =iXZ can be viewed as a combined
bit and phase flip. The Pauli matrices are Hermitian, unitary,

and anticommute with each other. Furthermore, they form the
group
P =A{El, £il, £X, £iX, £Y, +iY, £Z, +iZ} = (X, Y, Z)

(11

called the Pauli group. The n-qubit Pauli group P, consists of
all n-fold tensor product combinations of elements of P;. For
example, Pg contains the element / Q I QX QI QY Z ®
I ® I, which we can write more compactly as X3YsZg. The
weight w(g) of some g € P, is the number of elements in the
tensor product that are not equal to the identity up to phase.
The commutation relations of the Pauli matrices mean that
elements of PP, must either commute or anticommute, with
two elements anticommuting if their nonidentity components
differ in an odd number of places. The Pauli matrices along
with the identity form a basis for the complex vector space of
all 2x2 matrices. It therefore follows that

E'=E=0Q---Qo0,:0;,€{l,X,Y,Z}and w(E) < r}
(12)

is a basis for all n-qubit errors of weight less than or equal
to r. An equivalent definition is &" = {E,...E, : E; € £'};
that is, &, is the set of all r-fold products of elements of
&, which can be written as £! = {I, X;, ¥;, Z;} where 1 <
i < n. It is sometimes convenient to express some E € P,
up to phase as £E x X"Z" ® --- @ X"Z" = X“Z" where
u=u,...,u,), v=_~y,...,v,) € GFQ2)".

Two n-qubit codes Q and Q' are local unitary (LU) equiv-
alent if Q' = U Q for some U € U(2)®". These codes will
have the same dimension as if B = {|¢;), ..., |¢x)} is an or-
thonormal basis for Q, then B’ = UB = {U|¢1), ..., U|pg)}
is an orthonormal basis for Q'. It follows from Eq. (8) that
Q' detects the error set £ if and only if Q detects the LU-
equivalent error set &' = U TEU . Furthermore, & is a basis for
all errors of weight less than d if and only if £’ is also such
a basis. Therefore, Q and Q' have the same distance; that is,
they are both ((n, K, d)) codes. If two codes differ by a LU
operator and/or permutation of qubit labels, which also has no
effect on the size or distance of the code, then they are called
equivalent codes. The normalizer of P; in U (2) is the single-
qubit Clifford group C; = {U e U(2) : UTP,U = P;}. The
n-qubit local Clifford group Cf is comprised of all possible
n-fold tensor products of elements from C;. Two codes are
local Clifford (LC) equivalent if they are LU equivalent for
some U € C!' C U(2)®".

Stabilizer codes (also called additive codes) are defined by
an Abelian subgroup S < P,, called the stabilizer, that does
not contain —/ [2]. The code Q is the space of states that are
fixed by every element s; € S; that is,

Q={l¢) € (CH*":5ilp) = 1) Vsi € S} (13)

The requirement that —/ ¢ S both means that no s € S can
have a phase factor of +i, and that if s € S, then —s ¢ S. If S
is generated by M = {M,, ..., M,,} C P,, then it is sufficient
(and obviously necessary) for Q to be stabilized by every
M;. Assuming that the set of generators is minimal, it can
be shown that dim(Q) = 2"~ = 2¥ [36]; that is, Q encodes
the state of a k-qubit system. An n-qubit stabilizer code with
dimension K = 2% and distance d is called an [[n, k]] or
[[n, k, d]] code.
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An n-qubit stabilizer state |S) is an [[n, 0, d]] code defined
by a stabilizer S with n generators. The distance of a stabilizer
state is defined to be equal to the weight of the lowest nonzero
weight element in S. A graph state |G) is a stabilizer state
defined by a graph G € D,,. Each node i corresponds to a qubit
and is also associated with a stabilizer generator

M;=XiZyoy =X [] z- (14)
JeN (@)
Each graph state |G) defines a basis B ={Z"|G):w €
GF(2)"} for (C*)®" [37]. An error E = X; maps the graph
state |G) to

Xi|G) = Xi(XiZn))|G) = Zni)|G) = Z"|G), (15)

where r; is the ith row of the adjacency matrix for G. That is,
an X error applied at node i is equivalent to Z errors being
applied at its neighbors; this is called the X — Z rule [38]. It
can be shown that every stabilizer state is LC equivalent to a
graph state [11-13]. Two graph states |G;) and |G») are the
same up to a relabeling of qubits if and only if their corre-
sponding graphs G; and G, are isomorphic. Furthermore, |G)
and |G,) are LC equivalent if and only if G| and G, are LC
equivalent [11]. Therefore, |G;) and |G,) are equivalent (as
quantum codes) if G| and G, are LC isomorphic (the converse
does not necessarily hold as two states can be LU equivalent
without being LC equivalent [39]).

E. CWS codes

The family of codeword stabilized (CWS) codes contains
all stabilizer codes as well as many of the best known non-
additive codes [9,10]. An ((n, K)) CWS code Q is defined
using an n-qubit stabilizer state |S) and a set of K word
operators W = {W, ..., Wx} C P,. In particular, Q is the
span of the basis codewords |W;) = W;|S). Note that for the
|W;) to actually form a basis, no two word operators can differ
only by a stabilizer element; that is, it cannot be the case that
WiW; € S = Uges1,1qyaS for any W; # W;. For a CWS code,
the criterion for detecting an error set £ becomes

(WIEIW;) = (SIWEW,|S) = C; (16)

forall E € £ and W;, W; € W. If € contains only Pauli errors
E € P,, then

0 ifW'EW, ¢S,
it WEW; € aS,
where o € {£1, £i}. Therefore, the i # j case of Eq. (16)
holds for some E € £ if and only if
W'EW; ¢ S (18)

for all W;, W; € W, where W; # W,. Furthermore, the i = j
case holds for some E € & if and only if either

WEW; ¢ S (19)

(SIWEW;|S) = (17)

or
W'EW, € aS (20)

for all W; € W and some particular o € {£1, £i}.
It follows from the LC equivalence of every stabilizer state
to a graph state that every CWS code is LC equivalent to one

based on a graph state |G) with word operators of the form
W; = Z% [9]. Such a code is called a standard form CWS
code, and its basis codewords are simply elements of the graph
basis defined by G. The set {x|,...,xx} € GF(2)" forms a
classical binary code C, and without loss of generality we can
take x;=0 [9]. It can be shown that if C is linear, then the
CWS code is additive [9], whereas if C is not linear, then the
code may be additive or nonadditive [10] (although if K # 2F,
then the CWS code must obviously be nonadditive). The
effect of an error E o« X*Z" on one of the basis codewords
|W;) = Z%|G) follows from the X — Z rule with

E\W)) « X"Z°Z¥|G)
x Z'Z" X"|G)
=27"257""|G)
=27"7""7%|G)
= 27O W), @1
where I' is the adjacency matrix for G and
Clg(E x X"Z") =v +ul. (22)

Therefore, the effect of E o« X*Z" is equivalent to that of
E' = ZC%®) where Clg(E) € GF(2)" is a classical error
induced by the graph. It follows from this equivalence that
(W|E|W;) o (W;|ZC%E)|W;), which means that Eq. (18) is
satisfied when

75i7ClEzxi ¢ §. (23)

For a graph state, the only stabilizer element with no X
component is the identity 7 = Z°. Equation (23) therefore
reduces to x; + Clg(E) # x;, which is simply the classical
error detection criterion of Eq. (5). This means that an er-
ror E can be detected only if C detects the classical error
Cls(E). Following the same reasoning, Eq. (19) becomes x; +
Clg(E) # x;, which reduces to Clg(E) # 0. Equation (20)
becomes

Z5EZY € aS, 4)

which reducesto E € oS forx; = 0. If there is some W; = Z*i
that anticommutes with E, then Eq. (24) becomes E € —aS.
This would mean that both ¢« 'E € S and —a~'E € S, from
which it follows that —/ € S. This cannot be the case as S is
a stabilizer. Therefore, to satisfy Eq. (20), it must be the case
that [Z¥, E] = 0 for all x; € C. For E o« X*Z", this condition
is equivalent to requiring x; - u = O forallx; € C, werea - b =
Y, a;b; is the standard Euclidean inner product. In summary,
a standard form code detects E o< X*Z" € £ if

x; +Clg(E) #x; (25)
for all x;, x; € C, where x; # x;, and either
Cig(E) #0 (26)
or
xi-u=0 27
for all x; € C.

Designing a CWS code Q for a given graph G and error
set £ consists of finding a classical code C that satisfies
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Egs. (25)—(27) for every E € £. It is convenient to express
this as a clique finding problem as outlined in Ref. [10]. First,
the set of classical errors

Clg(£) ={CIlG(E): E € &} (28)

induced by the graph is determined. Also required is the set
Dg(E) ={x € GF(2)" : Clg(E) = 0 and

x-u # Ofor some E o« X*Z" € &}. (29)

These are elements of GF(2)" that cannot be included in
the code as they violate Eqs. (26) and (27). An algorithm
for efficiently determining Clg(E) and Dg(E) is given in
Ref. [10]. A classical code C satisfying Egs. (25)-(27) is a
clique in the graph G¢ = (Ng, Eg) with

Ne = 0 U {GF(2)"\[Cls(£) U Dg(E)]} (30)

and E¢ defined by the classical error set Clg(E) as outlined
in Sec. IIC. That is, two nodes x;, x; € Ng are connected by
an edge {x;, x;} € Eg ifx; +x; ¢ Clg(E). If Dg(E) = ¥, then
for all E ¢ I € £ it must be the case that Clg(E) # 0, and
hence Cr = 0in Eq. (16). Therefore, for £ = E,j'El € &£ where
EE; € P, and E; & E;, it follows that (W,-|E,jE,|Wj) =0.
That is, Q is pure if Dg(E) = ¥ [10,40].

F. Code bounds

A simple, but relatively loose, upper bound on the di-
mension K of an n-qubit code of distance d is given by the
quantum singleton bound [1]

K < 2m2d-h, (31)

A tighter limit on code size is given by the linear programming
bound [41]. An ((n, K, d)) code can exist only if there are
homogeneous polynomials A(x, y), B(x, y), and S(x, y) such
that

A(1,0) =1, (32)
_ x+3y x—y
B(x,y) = KA( PR ) (33)
_ x+3y y—x
Sx,y) = KA( TR ), (34)
B(1,y) — A(1,y) = 0", (35)
A(x,y) 20, (36)
B(x,y) — A(x,y) = 0, (37)
S(x,y) = 0. (38)

Here, C(x, y) > 0 means that the coefficients of the polyno-
mial C are non-negative, and O(y¢) is a polynomial in y with
no terms of degree less than d. A pure ((n, K, d)) code can
exist only if Egs. (32)—(38) can be satisfied along with

A(l,y) =1+ 00"). (39)

The linear programming bound is monotonic [42], meaning
that if the constraints can be satisfied for some K, then they
can be satisfied for all lower code dimensions too. This mono-
tonicity holds even if K is allowed to be a real number (rather
than just an integer). Following Ref. [43], we define the real

TABLE II. Bounds on the maximum k of an [[n, k, d]] stabilizer
codeforl <nm<15and2 <d <5.

n\d 2 3 4 5
1

2 0

3 0

4 2

5 2 1

6 4 1€ 0

7 4 1 —A

8 6 3 0

9 6 3 0

10 8 4 2

11 8 5 2 1

12 10 6 4 1€
13 10 7 48 1

14 12 8 6 2-3
15 12 9 6" 3

number K (n, d) as the largest K > 1 for which Eqgs. (32)-(38)
can be satisfied. The purity conjecture of Ref. [41] states that
if the linear programming constraints hold for K = K(n, d),
then A(l,y) =1+ O(yd ). The content of this conjecture is
simply that the linear programming bound for pure codes is
the same as for potentially impure codes. This conjecture has
been verified to hold for n < 100 [43].

For stabilizer codes, bounds on maximum k are given in
Table I for 1 <n < 15and 2 < d < 5. All lower bounds are
given by the best known stabilizer codes (these codes can be
found at Ref. [44]). The unmarked upper bounds are given by
the linear programming bound for K = 2* (determined using
YALMIP [45]). If the lower and upper bounds coincide, then
a single value is given; otherwise, they are separated by a
dash. In the cases marked “A,” the [[7,0,4]], [[15,7,4]], and
[[15,4,5]] codes that do not violate the linear programming
bound are excluded by arguments given in Sec. 7 of Ref. [41].
In the case marked “B,” the [[13,5,4]] code that does not
violate the linear programming bound is excluded by the
argument of Ref. [46]. The entries marked “C” indicate cases
where a code meeting the bound must be impure (also outlined
in Sec. 7 of Ref. [41]). An extended version of Table II for
n < 256 is available at Ref. [44].

Table III gives the bounds on maximum K for a poten-
tially nonadditive ((n, K,d)) code where 1 <n < 15 and
2 <d < 5. All upper bounds are from the linear program-
ming bound. The lower bounds marked “A” are from the fam-
ily of nonadditive ((2c + 1, 3x22*73,2)) codes of Ref. [6].
Those marked “B” are from the family of ((4o + 28 +
3, Mg, 2)) codes of Ref. [7] where 8 € {0, 1} and

(b +28+43
M“ﬁ_2< 2i+ B )

i=0

(40)

The lower bounds marked “C” and “D” correspond to the
((9,12,3)) and ((10,24,3)) codes of Refs. [4] and [5], respec-
tively. All other lower bounds are given by the best known
stabilizer codes.
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TABLE III. Bounds on the maximum size K of an ((n, K, d))
codeforl <nm<15and2 <d <5.

n\d 2 3 4 5
1

2 1

3 1

4 4

5 A6 2

6 16 2 1

7 A2426 2-3 0-1

8 64 89 1

9 A96-112 €12-13 1

10 256 D4 4-5

11 B386-460 32-53 47 2

12 1024 64-89 16-20 2

13 B]586-1877 128-204 16-40 2-3
14 4096 256-324 64-102 4-10
15 B6476-7 606 512-580 64-150 8-18

III. SYMMETRIC CODES

An ((n, K, d)) code must detect the set 971 ag defined
in Eq. (12). Note that £', and hence £~' more generally, is
invariant under any permutation of the Pauli matrices X, Y,
and Z on any subset of qubits. As a result of this symmetry,
we call ((n, K, d)) codes symmetric codes. Furthermore, as
outlined in Sec. II D, this symmetry means that if some code
Q detects £971, then so does any equivalent code Q'. It
is therefore sufficient to consider only standard form codes
when attempting to construct an optimal symmetric CWS
code. Furthermore, we need only consider standard form
codes based on representatives from different elements of £,,.
However, as outlined in Sec. IT A, the size of L, appears
to grow exponentially, and it has only been enumerated for
n < 12. Furthermore, constructing an optimal classical code
for a given graph by finding a maximum clique is NP-hard as
mentioned in Sec. IT A. In this section we explore methods of
code construction that address these two obstacles.

A. Distance-two codes

First we consider distance-two codes of even length. As
outlined in Tables II and III, there are even length stabilizer
codes with k = n — 2 that saturate the singleton bound for n <
14. In fact, there are stabilizer codes that saturate the bound
for all even n [6]. Despite this, there is still some insight to be
gained from constructing CWS codes with these parameters.
For n < 10, it is feasible to exhaustively search £, (that is, to
construct a code based on a representative of each element of
L,). Using the code size distribution over L,, it is possible to
determine the distributions over G, and D, by counting the
number of nonisomorphic and distinct graphs, respectively,
in each element of £, (see Sec. IIA). As an example, the
code size distributions for n = 6 are shown in Fig. 2. It can be
seen that over 50%, 75%, and 80% of elements of Lg, G, and
D, respectively, yield optimal K = 16 codes. The fraction of
elements of £,, G,, and D,, that yield optimal codes for even
2 < n < 10 is shown in Table IV. For 2 < n < 6, the clique
graphs generated are small enough for maximum cliques to

0.75r |
0.5F |
0.25r gl

¢ ©
N 9N
o o

Fraction
(6]

o
— O

o
oy
o o

0.25

FIG. 2. Code size distributions for non-LC-isomorphic, noniso-
morphic, and distinct graphs in the case of n = 6 and d = 2.

be found using the exact algorithm of Ref. [47]. For n > 8,
we have resorted to using the approximate PLS algorithm
due to the larger clique graphs. We have allowed the PLS
algorithm 100 attempts, each of which used a maximum of
1000 selections (these are the default PLS parameters that we
have employed). As a result of having used an approximate
clique finding algorithm, the values given in the n = 8 and 10
rows of Table IV are a lower bounds. It can be seen that in
each case, the fraction of elements in D, yielding an optimal
code is greater than that of G,, which in turn is greater than
that of £,,. Furthermore, increasing n increases the fraction of
optimal codes in all cases. In particular, by n = 10 over 98%
of distinct graphs yield a code with an optimal K = 256. This
trend suggests that for larger n, we are highly likely to find
an optimal code even if we use a randomly selected graph.
This goes some way to explaining the results of Ref. [48],
where cycle graphs were shown to give optimal codes for even
n<12.

The case of odd n is somewhat more interesting. Here, as
shown in Ref. [6], the linear programming bound reduces to

1
ng"—2<1—n_1). 41)

Stabilizer codes cannot saturate this bound and are restricted
to k < n— 3. Again, we can construct codes based on an

TABLE IV. The fraction of elements of £, G,, and D, that yield
optimal K = 2"=2 codes for even n < 10 and d = 2. The values
given for n = 8 and 10 are lower bounds.

n l:ﬂ gn D}l

2 0.500 0.500 0.500
4 0.500 0.636 0.641
6 0.539 0.763 0.833
8 0.643 0.909 0.938
10 0.815 0.977 0.981
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FIG. 3. Code size distributions for non-LC-isomorphic, noniso-
morphic, and distinct graphs in the case of n = 7 and d = 2.

exhaustive search of £, for n < 11. For n =3, a single
element of L3 yields an optimal K = 1 code. Similarly, a
single element of L5 yields a code with K = 6, which matches
the size of the optimal code given in Refs. [3,6]. For n = 7,
there is more of a spread in the code sizes as shown in Fig. 3.
It can be seen that a large number of graphs yield codes with
K =16 or 22, which match the size of an optimal stabilizer
code and the code of Ref. [7], respectively. Furthermore, there
are seven elements of £; that yield codes with K = 24, which
match the size of the code of Ref. [6]. No graphs yield codes
with K = 25 or 26, despite such codes not being excluded by
the linear programming bound.

For n =9, an exhaustive search of Lg is still feasible;

TABLE V. Number of elements Nx of £, that gave codes of
given size K withd = 2.

K 387 388 389 390 391 392 398 400 402 404 406 408 416

Ng 51 11 1 1 2 5 2 207 1 74 1 6 2

codes with K = 64, 93, or 96, which match the size of an
optimal stabilizer code, the code of Ref. [7], and the code
of Ref. [6], respectively. However, we have also found seven
elements of Lg that yield codes with K > 97. To increase
the likelihood that we have found maximum size codes for
these seven graphs, we have repeated the clique search for
each of them using 10000 attempts. This has resulted in one
K = 97 code, two K = 98 codes, and four K = 100 codes.
Representatives of the elements of £, that yielded these codes
are shown in Fig. 4. Note that we do not label the nodes as
isomorphic graphs yield equivalent codes. Given below each
of the drawings is the graph in graph6 format (see Ref. [21]
for details). A classical code for each of these graphs is given
in the Supplemental Material [49] (this is the case for all codes
presented in this paper). While these K > 97 codes are larger
than any previously known codes, they do not saturate the
linear programming bound of K = 112.

For n = 11, we have performed an exhaustive search of
L1 with an increased 10000 PLS selections to account for
the larger cliques. Here, we have mostly obtained codes with
K = 256, 384, or 386, which match the size of an optimal
stabilizer code, the code of Ref. [6], and the code of Ref. [7],
respectively. We have also found 413 elements of £;; that
yield codes with K > 387. As for the n = 9 case, we have
repeated the clique search for these graphs using 10000
attempts. The resulting code size distribution is given in

however, we have done so using the PLS clique finder, and as K =406
such there may exist larger CWS codes than the ones reported
here. Similar to the n = 7 case, the majority of graphs gave
JKO__[Mczz?

K =97 K =408

H??0ZAX J??a?ucUcx? J?C__OBPNE? J??GOGB[Le? J?D?_ObhEE?
K=98

H???0N{ H'GSYW~ JC'@?STTPT_ J_C?pKg'lH_
K =100 K =416

H@O__ "M HGCOSLf H@?@W-~K H@GUC\N J???_0OCG~w? J??G???7gxn?

FIG. 4. Non-LC-isomorphic graphs that yield ((9,97 < K <
100, 2)) codes.

FIG. 5. Non-LC-isomorphic graphs that yield ((11,406 < K <
416, 2)) codes.
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FIG. 6. Code size versus clique graph order for codes with 4 <
n<llandd = 2.

Table V. Representatives of elements of £;; that yield codes
with K > 406 are shown in Fig. 5 (the remaining graphs are
included in the Supplemental Material [49]). Again, while
these are the largest codes known, they do not saturate the
linear programming bound of K = 460. As £, has not been
enumerated for n > 13, we cannot continue this exhaustive
search procedure for higher n. Any (nonexhaustive) search
of G, or D, is also impractical for n > 13 due to the large
clique graphs produced, which both makes the clique search
slow and reduces the likelihood that the clique found is of
maximum size.

Figure 6 shows the relationship between code size and
clique graph order |Ng| for 4 < n < 11. It can be seen that
the data are clustered by clique graph order; furthermore, in
each case, the graphs yielding the largest codes belong to the
highest |N¢| cluster. This clustering behavior can be explained
by considering Eq. (30), which gives

INel =2" 4+ 1 = |Clg(E)] — IDg(E)] + |Clg(E) N D6(E)].
(42)

It follows from Eq. (29) that GF(2)"\Dg(€) is the annihilator
of & ={E € £ :Clg(E) =0} and is therefore a subspace
of GF(2)". If dim[GF(2)"\Dg(€)] = r < n, then |Dg(E)| =
2" — 2" which gives |[Ng| =2"4+ 1 — |Clg(E)| + |Clg(E) N
Dg(E)|. The clusters therefore correspond to different values
of r. The codes in the highest |Ng| cluster are pure as they
have Dg(E) = @. That this cluster contains codes of maximum
size is not entirely surprising in light of the purity conjecture
outlined in Sec. I F.

o O

1
4 oao o am ° o_‘

ommm_mm

2 O O 00003z @D O

O O OCQUHLIMEDTD O

FIG. 7. Code size versus clique graph order for codes with 8 <
n<llandd =3.

B. Distance-three codes

Distance-three codes are of practical interest as they allow
for the correction of an arbitrary single-qubit error. For n <
11, we can exhaustively search £, in the same way as we
have for the distance-two codes of the previous section. There
are one and two elements of L5 and Lg, respectively, that
give optimal K = 2 codes (note that all K =2 CWS codes
are additive [10]). Similarly, there are 18 elements of L7
that yield K =2 codes. As has been previously shown in
Ref. [10], although the linear programming bound does not
exclude them, there are no ((7, 3, 3)) CWS codes. There
are six elements of Lg that give K = 8 codes. No elements
yield a K = 9 code, despite such a code not being excluded
by the linear programming bound. There are eight elements
of Lo that yield K = 12 codes, which match the size of
the code presented in Ref. [4]. Again, no elements yield a
K = 13 code, despite such a code not being excluded by the
linear programming bound. An exhaustive search of Lo has
previously been performed in Ref. [5], where it was shown
that a single element yields an optimal K = 24 code. We have
exhaustively searched £, using the PLS clique finder. This
has yielded 13709 K = 32 codes, which match the size of an
optimal stabilizer code. No larger codes were found, which is
somewhat surprising given that the linear programming bound
is K = 53.

Figure 7 shows the relationship between code size and
clique graph order for distance-three codes with 8 < n < 11.
It can be seen that there is greater spread within the clusters
compared to the distance-two case of Fig. 6. According to
Eq. (42), this can be attributed to an increased variance
in the size of Clg(E). Despite this increased variation, the
graphs yielding the best codes still belong to the highest
|Ng| cluster in all four cases. Importantly, the best codes are
not necessarily given by the graphs with the highest clique
graph order within this cluster. For example, in the n = 10
case, the highest clique graph cluster contains graphs with
613 < |Ng| < 739, while the graph yielding the K = 24 code
only has |[N¢| = 679.

For n = 12, the size of £, makes an exhaustive search
somewhat prohibitive. We can reduce the search space some-
what by considering the distribution of clique graph orders
as shown in Fig. 8. Note that by using Eq. (42), [N¢| can be
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FIG. 8. Clique graph order distribution over £, for codes with
d=3.

computed without actually constructing the clique graph. Our
previous observations regarding the relationship between code
size and clique graph order suggest that graphs yielding the
best codes are highly likely to be found in the |Ng| > 3000
cluster. We have randomly selected 50000 of the 663039
elements of L, in this cluster and constructed a code for each
using the PLS clique finder. This has yielded 6325 codes with
K = 64, which match the size of an optimal stabilizer code.
No larger codes were found, despite the linear programming
bound not excluding codes with up to K = 89. We have not
pursued searches for n > 13 codes as while the clique graphs
produced are smaller than in the d = 2 case, they are still large
enough for maximum clique searches to be unreliable.

C. Distance-four codes

For d =4, we are able to perform exhaustive searches
of £, for n < 12. There are one, five, and eight elements
of L¢, Lg, and Loy, respectively, that yield optimal K = 1
codes. As expected, no elements of £ give a nontrivial code
(note that a K = 1 CWS code is a stabilizer state and hence
pure; such [[n, 0, d]] codes have previously been classified
in [15]). There are 10 and 3060 elements of L9 and L,
respectively, that give K = 4 codes, which match the size of
an optimal stabilizer code. No elements yield larger codes,
despite the linear programming bound not excluding codes
with up to K = 5 and 7, respectively. Unlike the d = 3 case,
an exhaustive search of L, is feasible for d = 4 due to the
smaller clique graphs. However, the clique graphs are still
large enough that we have resorted to using the PLS clique
finding algorithm. This search has yielded 1482 codes with
K = 16, which match the size of an optimal stabilizer code.
No larger codes were found, despite the linear programming
bound not excluding codes with up to K = 20. The smaller
clique graph sizes in the d =4 case also make searching
for codes with n = 13 and 14 feasible. For n = 13, we have
randomly selected 100000 graphs from D3 to estimate the
clique graph size distribution as shown in Fig. 9. 41458 of
these graphs belong to the |Ng| > 2000 cluster. Of these,
one yielded a K = 18 code, which is larger than an optimal
K = 16 stabilizer code.

To find more n = 13 codes with K > 16, we want a more
reliable way of generating graphs that yield a large clique
graph. That is, we wish to search D, for graphs yielding a
large clique graph in a way that is more efficient than a random
search. We have found a genetic algorithm to be effective in
this respect. There are a number of ways we could implement
mutation and crossover in this algorithm. For mutation, we

Fraction

3000

0 500 1000 1500 3500

| Ne|

2000 2500

FIG. 9. Clique graph order distribution over D3 for codes with
withd = 4.

first select two nodes in the child graph at random. If these
two nodes are not connected by an edge, then one is added;
otherwise, if they are connected by an edge, then it is removed.
If we represent the parent graphs as bit strings, then we can
use standard single-point, two-point, or uniform crossover.
One way to achieve this is to convert the upper triangular
component of a parent adjacency matrix to a bit string row
by row. Alternatively, we can use a graph-based approach.
However, the method of Ref. [33] outlined in Sec. IIB is
not appropriate for searching D, as it is not guaranteed to
produce child graphs with n nodes. Furthermore, as previously
mentioned, it tends to remove an unnecessarily large number
of edges when splitting the parent graphs into two fragments.
To address these issues, we propose splitting the parent graphs
using a spectral bisection. In particular, the nodes of a parent
graph P are bisected into the sets N; and N,, which define
the fragments F| = P[N,] and F, = P[N,]. A fragment is then
exchanged between each parent to form two disconnected
children that are then connected following the method of
Ref. [33]. An example of this procedure on two n = 10 graphs
is shown in Fig. 10.

We have run 100 genetic algorithm instances using each
of the potential crossover methods to compare their perfor-
mance. In each instance, we have used a population size of
N = 20, 100 generations, a crossover probability of p, = 0.9,
a mutation probability of p,, = 0.1, and a tournament size of
10. We have also incorporated elitist selection, with the fittest
two parent graphs (that is, the two that yield the largest clique
graphs) being added to the child population at the start of
each generation. The average order of the highest-order clique
graph yielded in each generation is shown in Fig. 11. It can
be seen that single-point, two-point, and uniform crossover
(with p, = 0.5) all exhibit similar performance. However,
their performance is also matched by random crossover, where
the two children are simply selected at random from D, with
no input from the parents. As such, the increase in fitness with
successive generations when using these crossover methods is
simply due to the selection pressure of the genetic algorithm.
It can also be seen that spectral crossover gives significantly
better performance than all other methods. We have also tested
the effect of population size when using spectral crossover.
In particular, we have tested population sizes of N = 10 and
40 in addition to the previously considered N = 20 case. We
have used a tournament size of half the population size in each
case and left all other parameters unchanged. It can be seen
in Fig. 11 that, as expected, increasing the population size
increases the average maximum fitness. With clique graph
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Partition

Split

Pu) PZD
Exchange

Cu) CZD
Combine

Cy

FIG. 10. Spectral crossover example for n = 10 graphs. Each
parent graph is split into two fragments according to a spectral
bisection. These fragments are then exchanged and combined to form
two child graphs.

order only serving as an indicator of code size, it is not
essential for the genetic algorithm to find graphs that yield
the absolute largest clique graphs. In fact, as was seen in the
n = 10, d = 3 case, focusing solely on such graphs may mean
that we miss the best code(s). With this in mind, we have
found using 50 generations and a population size of N = 10
to be a good compromise. Using a modest population size and
number of generations is also favorable from a run time per-
spective as determining |Ng| becomes more computationally
expensive with increasing code length and/or distance (both
of which serve to increase the size of the error set).

a0t P = o0 g
o 3300 r 2
\n . -
£ 3200 e =" :J—Ii
E ¥ —8— Single-point, N=20
g 3100 —¥—Two-point, N=20 |-
g Uniform, N=20
g 3000 —Q—Random, N=20 1
-®-Spectral, N=10
2906 -©-Spectral, N=20 | ]
-~ Spectral, N=40

0 10 20 30 40 50 60 70 80 90 100
Generation

FIG. 11. Comparison of crossover methods for n =13, d =4
codes. The vertical axis shows the fitness (the clique graph order
|Ng|) of the highest fitness element of the child population averaged
over 100 genetic algorithm instances.

The genetic algorithm we have outlined is quite exploita-
tive. To make our search more explorative, we run a large
number of genetic algorithm instances, with a code being
constructed from the fittest graph found by each instance.
For n = 13, we have run 50000 such instances, of which
352 yielded a K = 18 code and a further 175 gave a K = 20
code. The graphs that yielded codes with K = 18 and 20
belong to 35 and 25 different elements of L3, respectively.
A representative from each of these elements is shown in
Figs. 12 and 13. Note that the graphs shown are not nec-
essarily the exact ones found using the genetic algorithm;
they are LC-equivalent graphs that can be drawn clearly using
the force-directed layout method of Ref. [50]. While these
K = 18 and 20 codes are larger than any previously known
codes, they do not saturate the linear programming bound of
K =40. We have also run 50000 instances of the genetic
algorithm for n = 14. 65 of these instances have yielded
K = 64 codes, which match the size of an optimal stabilizer
code. We have not found any codes with K > 64, despite the
linear programming bound not excluding codes with up to
K =102.

D. Distance-five codes

For d =5, one and five elements of £;; and Li,, re-
spectively, yield optimal K = 2 codes. For 13 < n < 15 we
have run 50 000 genetic algorithm instances. 46 978 instances
yielded a K = 2 code for n = 13, 452 instances yielded a K =
4 code for n = 14, and 14 instances yielded a K = 8 code
for n = 15. No larger codes were found, despite the linear
programming bound being K = 3, 10, and 18, respectively.
Note that the existence of a ((13, 3, 5)) CWS code has
already been excluded in Ref. [10] by the same argument that
excluded the ((7, 3, 3)) code.

IV. ASYMMETRIC CODES

A channel of physical interest is the amplitude damping
channel

0 — Ao,oAg +A1pAI, (43)

where

(1 0 (0 U7
A0_<0 m) Al_(o 0). (44)

It can be shown [2,51,52] that a sufficient condition for
correcting a single amplitude damping error is the ability to
detect

EW =11, X,,Y:, Zi, XiX;, XiY;, YY)}, (45)

where 1 < i, j < n. This is not a necessary condition for
correcting an amplitude damping error. In fact, a code de-
tecting £ can also correct a single AT error [19]. A code
can correct ¢ amplitude damping errors if it can detect £,
which is comprised of all 7-fold combinations of elements
from W, £ is a subset of £, which is the set of errors
that must be detected to guarantee the ability to correct an
arbitrary weight-¢ error. As a result, there is potential for
constructing codes correcting t amplitude damping errors that
are larger than those correcting ¢ arbitrary errors. For example,
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FIG. 12. Non-LC-isomorphic graphs that yield ((13,18,4)) codes.

the stabilizer codes presented in Ref. [2] detect £ and have
the parameters given in Table VI (these values are taken from
Ref. [53]). In all but the n = 8§ case, these codes are larger
than the size of an optimal d = 3 stabilizer code as given in
Table II. An exhaustive search for CWS codes detecting £}
has been performed in Ref. [19] for 5 < n < 9. The size of
these codes is also given in Table VI, where they can be seen

FIG. 13. Non-LC-isomorphic graphs that yield ((13,20,4)) codes.

to be larger than the stabilizer codes for n = 8 and 9. Other
nonadditive codes have also been constructed that can correct
a single amplitude damping error [53,54]; however, they are
not directly comparable as they do so in a way that does not
guarantee the detection of £ (that is, they cannot correct an
AI error).

£ is not invariant under all possible Pauli matrix per-
mutations. As such, two LC-equivalent CWS codes need not
correct the same number of amplitude damping errors. This

TABLE VI. Size of stabilizer codes presented in Ref. [2] and
CWS codes presented in Ref. [19] that detect £,

n 4 56 7 8 9 10 11 12 13 14 15
Stabilizer 1 2 4 8 8 16 32 64 128 256 512 1024
CWS 2 4 8 10 20
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TABLE VII. Number of elements of G, that yield optimal
((n, K)) CWS codes for the LC-equivalent error sets £, £L)) and
5)(,12’ The values given for n = 9 are lower bounds.

e £y £ty
((5,2)) 5 9 3
(6,4)) 11 16 0
(7.8)) 114 157 181
((8,10)) 0 4 36
((9,20)) 0 6 44

means that considering standard form codes based on different
elements of £, no longer constitutes an exhaustive search of
all CWS codes. However, as suggested in Ref. [19], a search
of £, can be made exhaustive by performing it for every
LC-equivalent error set of the form UTEWU. These sets are
versions of £ with X, Y, and Z errors permuted on some
subset of qubits. If £ exhibited no symmetries under such
permutations, then there would be 6" such sets. However, as
& is invariant under the permutation X <> ¥ on any subset
of qubits, this number is reduced to 3". Unfortunately, an ex-
haustive search is not practical for codes with n > 10 as even
for n = 10, there are 3'°|L,9] = 235605510 cases to test. In
this section, we build on our code construction methods to
address this increase in the size of the search space.

A. Single amplitude damping error

To construct new codes for the amplitude damping channel
with n > 10, we first consider n < 9 to determine what types
of codes match the bounds provided in Ref. [19]. Initially,
we restrict consideration to standard form codes that detect
EW. As W (and £ more generally) is invariant under a
permutation of qubit labels, it is sufficient to consider one
representative from each element of G,. The first column of
Table VII shows the number of elements of G, for 5 <n <9
that yield optimal standard form CWS codes. Note that the
value given for n = 9 is a lower bound as we have used the
PLS clique finder in this case. It can be seen that while we are
able to construct optimal codes for 5 < n < 7, we are unable
to do so for n = 8 and 9. To remedy this, we consider the
LC-equivalent error sets

Exy = 1. X0, Yi 2. 2, Z,Y}, YY), (46)

EW =1, X, Y., Zi, XiX;, XiZ;, ZiZ;). (47)

These versions of £!!} with the permutations X <> Zand Y <>
Z, respectively, on every qubit. More generally, we define 5){&
and &!Y) to be versions of £ with the permutations X <> Z
and Y < Z, respectively, on every qubit. Columns two and
three of Table VII show that exhaustive searches of G, using
the error sets 5){(12} and 81{,12} yield optimal codes for n =8
and 9.

For n =10, the size of Gjp combined with the sizes
of the clique graphs generated makes an exhaustive search
impractical. However, we can still determine the distribution
of clique graph sizes over G, for the three error sets £, 1Y,
and 51{,12} as shown in Fig. 14. For each of the three error sets,

Faths
0.1 b
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_._A_A_A—A_‘lk
0 | | | | L
- 5{1} T T T T T T T T T
g 045 XZ i
g
C 0.05 b
0 ‘ ‘ L ‘ ‘ ‘ L
5{1} T T T T T T T T
045 YZ i
0.05 M b
W ‘

0 ‘ ‘ ‘ ‘ y -
0 100 200 300 400 500 600 700 800 900
| Ve |

FIG. 14. Distribution of clique graph order over Gy, for the error
sets EM, &Y and &Y.

50000 graphs in the |[Ng| > 600 cluster have been selected.
In each case, all 50000 graphs yielded K = 32 codes, which
match the size of the stabilizer code presented in Ref. [2].

For n = 11, an exhaustive search of G, is impractical, even
to simply determine clique graph sizes. We have therefore
run 50000 instances of our genetic algorithm for each of
the three error sets £, E){(IZ}, and 51{,12} For £W this has
yielded a K = 64 code in every case. These codes match the
size of the stabilizer code presented in Ref. [2]. For 51{,12},
1818 instances yielded codes with K = 68, which are larger
than the best known stabilizer codes. 28 of these graphs are
nonisomorphic and are shown in Fig. 15 (a simple circular
node layout is used here as we do not have the freedom of
picking an LC-isomorphic graph that can be drawn clearly
using the force-directed layout method). For 5){(12}, only nine
instances yielded codes with K = 68; however, there were
also 71 instances that yielded codes with K = 80. Of these,
two of the K = 68 graphs are nonisomorphic and two of
the K = 80 graphs are nonisomorphic; these graphs are also
shown in Fig. 15. For n = 12, applying the same genetic
algorithm approach has yielded codes with K = 128, which
match the size of the stabilizer code presented in Ref. [2].
In particular, of the 50000 instances run for each error set,
21535 gave a K = 128 code for £, 34906 gave a K = 128
code for 5){(12} and 41 002 gave a K = 128 code for 51{,12}

B. Two amplitude damping errors

As determined by exhaustive search in Ref. [19], there are
no nontrivial CWS codes capable of detecting the error set £
with n < 8. For n = 9, the largest CWS code that can detect
£ has K = 2. Interestingly, an exhaustive search of Gy fails
to yield any K = 2 codes detecting £!2). However, there are
seven elements of Gy that yield K = 2 codes detecting 5){(22} and
12 elements that yield K = 2 codes detecting 51{,22} Forn = 10,
there are 32 elements of G that yield a K = 2 code detecting
&2} 309 that yield a K = 2 code detecting 5){(22} and 1327 that
yield a K = 2 code detecting 5;22} There are no larger standard
form n = 10 codes detecting g 5){(22} or 51{,22}
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FIG. 15. Nonisomorphic graphs yielding ((11,68)) codes detect-
ing £!Y, ((11,68)) codes detecting L}, and ((11,80)) codes detecting
&Y.

As in the single-error-correcting case, any exhaustive
search of G, for n > 11 is impractical. For 11 < n < 14, we
have run 50 000 instances of the genetic algorithm outlined in
Sec. I C for each of the three error sets £/, £, and £7.
The best codes found have K =4 forn = 11 and 12, K = 8§
for n = 13, and K = 16 for n = 14. The number of genetic

&2

J??HGpbcuX_
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gXZ

J?2G\Qmy\UX_ J?HN‘hXeTH_

JGo_O}ULeF

JK?{ATPIKL_ JQ?yCSXWKL_

JeG[?~aXjq_

FIG. 16. Nonisomorphic graphs yielding ((11,4)) codes detect-
: : 2} {2}
ing either £'% or £y.

algorithm instances yielding codes with these parameters is
shown in Table VIII. Note that nearly all of these codes are
stabilizer codes. For n < 13, we have used an exact clique
finder, whereas for n = 14 we have used PLS. The n = 11
codes are interesting due to how difficult they are to find.
The two graphs found for £? are nonisomorphic and eight
of those found for 5,{(22} are nonisomorphic. These graphs are
shown in Fig. 16. It is easy to find graphs giving codes
with K =4 codes forn =12, K =8 forn = 13,and K = 16
for n = 14 (they can be found quickly even with a simple
random search). However, to the best of our knowledge, no
stabilizer codes with these parameters have been previously
published. Furthermore, they are all larger than an optimal
d = 5 stabilizer code that can correct two arbitrary errors. As
such, we include graphs yielding codes of these sizes for £},
&Y. and £ in Fig. 17.

&2t n=12 n=13 n=14
KCOW?C‘GCAWA LpS_W_J?_A_C?B  MmIn?CO@GO_M?Z?U_
2}

Exz

KrDGpAA@OB?R
{2}
EYZ

LsOXJ?G@GCAL?U  Mp]R?GG?_A_F?K?P_

KQIw?CbCuDWI L{KYGOEGM??L?V MQMiwA @ ?XAaKoEqD?

FIG. 17. Graphs yielding ((12,4)), ((13,8)), or ((14,16)) codes
detecting one of £, &2, or 1.
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TABLE VIII. The number of genetic algorithm instances out of
the 50 000 run that yielded an ((n, K)) code detecting the given error
set.

e £ et}
((11,4)) 2 14 0

((12,4)) 45912 36275 43225
((13,8)) 38 475 33163 44 151
((14,16)) 3467 5840 13 148

V. CONCLUSION

We have demonstrated the effectiveness of a number of
heuristic approaches to the construction of CWS codes. We
have shown that using an approximate maximum clique
finding algorithm makes finding larger codes practical. In

particular, this has allowed us to find ((9, 97 < K < 100, 2))
and ((11, 387 < K <416, 2)) codes that are larger than
the best known nonadditive codes. We have demonstrated a
clustering of clique graph orders and shown a relationship
between clique graph order and code size. Furthermore, we
have shown that graphs yielding large clique graphs can be
found using a genetic algorithm with a crossover operation
based on spectral bisection. This search strategy has yielded
((13, 18, 4)) and ((13, 20, 4)) codes, which are larger than
any previously known code. Finally, we have shown that good
codes correcting amplitude damping errors can be found by
considering standard form codes that detect one of only three
of the 3" possible LC-equivalent error sets. Coupling this with
the genetic algorithm approach, we have found ((11, 68))
and ((11, 80)) codes capable of correcting a single amplitude
damping error. We have also found ((11, 4)), ((12, 4)), ((13,
8)), and ((14, 16)) stabilizer codes capable of correcting two
amplitude damping errors.
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