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Violation of Leggett-Garg-type inequalities in a driven two-level atom interacting with a squeezed
thermal reservoir
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The violation of Leggett-Garg-type inequalities (LGtIs) is studied on a two-level atom, driven by an external
field in the presence of a squeezed thermal reservoir. The violations are observed in the underdamped regime
where the spontaneous transition rate is much smaller compared to the Rabi frequency. An increase in thermal
effects is found to decrease the extent of violation as well as the time over which the violation lasts. With the
increase in the value of the squeezing parameter the extent of violation of LGtIs is seen to reduce. The violation
of LGtIs is favored by an increase in the driving frequency. Further, the interplay of the degree of violation
and strength of the measurements is studied. It is found that the maximum violation occurs for ideal projective
measurements.
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I. INTRODUCTION

Quantum mechanics is so far the most elegant interpreta-
tion of nature whose predictions have been verified in various
experiments. Central to quantum mechanics are the notions
like coherence and entanglement arising from the superposi-
tion principle [1,2]. Various approaches have been developed
for quantification of quantumness leading to computable mea-
sures of nonclassicality [3,4]. Another way of assessing the
quantum coherent evolution is via inequalities based on the
time correlation functions, know as Leggett-Garg inequalities
(LGIs).

The LGIs have been developed to test the quantum coher-
ence at a macroscopic level [5,6]. These inequalities are based
on the assumptions of macrorealism and noninvasive mea-
surability. The former assigns well-defined macroscopically
distinct states to an observable irrespective of the observation,
while the latter ensures that the postmeasurement dynamics is
unaffected by the act of measurement. A quantum-mechanical
system does not obey these assumptions. The superposition
principle violates macrorealism and the collapse postulate
nullifies the possibility of a noninvasive measurement.

The verification of LGIs involve a single system being
measured at different times unlike the Bell inequality which
involves multiple parties spatially separated from each other
[7]. The simplest Leggett-Garg inequality is the one cor-
responding to three time measurements made at times t0,
t1, and t2 such that t0 < t1 < t2. For a dichotomic operator
M̂(t ), we define the two time correlation function C(ti, t j ) =
〈M̂(ti )M̂(t j )〉 = Tr[ρM̂(ti)M̂(t j )]. For the three time mea-
surement case, we define the following combination of the
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two time correlation functions K3 = C(t0, t1) + C(t1, t2) −
C(t0, t2), such that the simplest LGI reads

−3 � K3 � 1. (1)

A violation of either the lower or the upper bound is a
signature of the “quantumness” of the system. The two time
correlation function can be evaluated as follows:

C(ti, t j ) =
∑

m,n=±
mn Tr{�mEt j←ti [�

nρ(ti )�
n]}. (2)

Here, Etb←ta is the map governing the time evolution of the
state, i.e., ρ(tb) = Etb←ta [ρ(ta)]. The LGIs have been part of
many theoretic [8–19] and experimental [20–27] studies.

In this work, we deviate from the original formulation of
LGIs and study instead a variant form of it, known as Leggett-
Garg-type inequalities (LGtIs) introduced in [28–30] and
experimentally verified in [31,32]. These inequalities were
derived to avoid the requirement of noninvasive measurements
at intermediate times. This feature makes them more suitable
for the experimental verification as compared to LGIs. The
assumption of NIM is replaced by a weaker condition known
as stationarity. This asserts that the conditional probability
p(φ, t j |ψ, ti ) that the system is found in state φ at time t j

given that it was in state ψ at time ti is a function of the
time difference (t j − ti ). Invoking stationarity leads to the
following form of LGtIs:

K± = ±2C(t0, t ) − C(t0, 2t ) � 1. (3)

Here, t = t2 − t1 = t1 − t0 is the time between two succes-
sive measurements. From here on, we will call K± as LG
parameter. Though the assumption of stationarity helps to
put the inequalities into easily testable forms, it reduces the
class of macrorealist theories which are put to the test [28].
The stationarity condition holds provided the system can be
prepared in a well-defined state and the system evolves under
Markovian dynamics. These conditions are satisfied in the
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model considered in this work. Therefore, for a suitable exper-
imental setup, inequalities (3) provide a tool to quantitatively
probe the coherence effects in this system.

Here we study the violation of LGtIs in a driven two-
level atom interacting with a squeezed thermal reservoir. Such
studies are motivated by the fact that LGtIs provide a way
to probe the degree of coherence in a system. Interestingly,
the two time correlation functions can be written in terms of
experimentally observable quantities. The recent upsurge in
the studies of LGtIs has increased considerably leading, for
example, to the possible applications of LGtIs violation for
ensuring security in quantum key distribution schemes. Fur-
ther, LGtIs also serve to probe the applicability of the models
of unsharp measurements pertaining to nonideal measurement
setups [33]. These studies become even more pertinent from
a practical perspective when one takes into account open
system effects. Thus, for example, the effect of temperature,
squeezing and driving frequencies, as well as the role of the
strength of measurement on LGtI violation in a paradigm
model of quantum optics, as done here, should pave the way
for developing our understanding of the multifaceted role
of various parameters on the inherent quantumness of the
system, thereby helping in characterizing the quantumness.
This would be particularly relevant from the point of view of
applying such systems towards quantum technologies.

The paper is organized as follows. In Sec. (II), we discuss
in detail the model considered. Section III is devoted to the
description of LGtIs in the context of the model considered.
The results and their discussion are given in Sec. IV. We
conclude in Sec. V.

II. MODEL: A DRIVEN TWO-LEVEL SYSTEM

Here, we sketch the essential details of a driven two-level
system in contact with a squeezed thermal bath [34–38].
The model consists of a two-level system whose Hilbert
space is spanned by two states, the ground state |g〉 and the
excited state |e〉, Fig. 1. The description of such a system
is analogous to that of a spin- 1

2 system. The Pauli opera-
tors in terms of these basis vectors are σ1 = |e〉〈g| + |g〉〈e|,
σ2 = − i|e〉〈g| + i|g〉〈e|, and σ3 = |e〉〈e| − |g〉〈g|, and satisfy
the usual commutation [σi, σ j] = 2iεi jkσk and the anticommu-
tation {σi, σ j} = 2δi j . The raising and lowering operators can
be defined as

σ+ = |e〉〈g| = 1
2 (σ1 + iσ2),

σ− = |g〉〈e| = 1
2 (σ1 − iσ2). (4)

With this setting, we can define the system Hamiltonian HS to
be diagonal in basis {|e〉 , |g〉}. With ω0 denoting the transition
frequency between the two levels (setting h̄ = 1), we have

HS = 1
2ω0σ3. (5)

A detailed account of two-level systems and their applica-
tion can be found in [39].

We now consider the case when a two-level atomic tran-
sition |e〉 ↔ |g〉 is driven by an external source. The source
is assumed to be a coherent single mode field on reso-
nance. Under dipole approximation, the Hamiltonian (in the

FIG. 1. Schematic diagram for (a) two-level atom interacting
with a squeezed thermal bath at temperature T with squeezing
parameter s. The transition frequency between the two levels is ω0.
(b) Testing the LGtIs using the statistics of two experiments, with the
same preparation state |g〉 at time t0 = 0. The dichotomic observable
M̂ = |g〉 〈g| − |e〉 〈e| would lead to +1 if the atom is found in ground
state and −1 otherwise. For example, at t0, we have 〈M̂〉 = +1.

interaction picture) is given by HL = − �EL(t ) · �D(t ). Here,
�EL(t ) = �εe−iω0t + �ε∗e+iω0t is the electric-field strength of the
driving mode. Also, �D(t ) = �dσ−e−iω0t + �d∗σ+e+iω0t is the
atomic dipole operator in the interaction picture and �d =
〈g| �D|e〉 is the transition matrix element of the dipole operator.
The atom-field interaction can be written in the rotating wave
approximation as follows:

HL = −


2
(σ+ + σ−). (6)

Here, 
 = 2�ε · �d∗ is referred to as the Rabi frequency. Now
coupling the system to a thermal reservoir leads to the quan-
tum master equation

dρ(t )

dt
= i


2
[σ+ + σ−, ρ(t )]

+ γ0n
(
σ+ρ(t )σ−− 1

2σ−σ+ρ(t ) − 1
2ρ(t )σ−σ+

)
+ γ0(n + 1)

(
σ−ρ(t )σ+− 1

2σ+σ−ρ(t )− 1
2ρ(t )σ+σ−

)
− γ0Mσ+ρ(t )σ+− γ0M∗σ−ρ(t )σ−. (7)

Here, γ = γ0(2n + 1) is the total transition rate with γ0 being
the spontaneous emission rate. Further,

n = nth[cosh2(s) + sinh2(s)] + sinh2(s),

and M = − cosh(s) sinh(s)eiθ (2nth + 1), (8)

where s and θ are the squeezing parameters and nth =
1/(exp[βω0] − 1) is the Plank distribution at transition
frequency. In what follows, we will set θ = 0 for the purpose
of calculations.
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In order to solve Eq. (7), we write the density matrix as

ρ(t ) = 1

2
[I + �v(t ) · �σ ] =

( 1
2 (1 + 〈σ3〉) 〈σ−〉

〈σ+〉 1
2 (1 − 〈σ3〉)

)
,

(9)

with �v(t ) = 〈�σ (t )〉 = Tr[�σρ(t )], is known as the Bloch vector.
With this notation, the master equation (7) becomes

d

dt
〈�σ (t )〉 = G〈�σ (t )〉 + �m. (10)

Here,

G =
⎛
⎝− γ

2 − γ0M 0 0
0 − γ

2 + γ0M 


0 −
 −γ

⎞
⎠, (11)

and �m = [0 0 − γ0]T , with T being the transpose operation.
The differential equation (10) has the stationary solution

given by

〈σ3〉s = − γ0(γ − 2γ0M )

γ 2 − 2γ γ0M + 2
2
,

〈σ+〉s = − iγ0


γ 2 − 2γ γ0M + 2
2
. (12)

Consequently, the stationary population of the excited state
ps

e = 1
2 (1 + 〈σ3〉s) = 1

2 [1 − γ0(γ−2γ0M )
γ 2−2γ γ0M+2
2 ].

In the strong driving limit, 
 � γs, we have ps
e = 1/2 and

〈σ+〉s = −iγ0/2
.

In order to solve the time-dependent Bloch equation,
Eq. (10), it is convenient to introduce the vector

〈 ��(t )〉 = 〈�σ (t )〉 − 〈�σ 〉s. (13)

This vector satisfies the homogeneous equation

d

dt
〈 ��(t )〉 = G〈 ��(t )〉. (14)

This equation can be easily solved by diagonalizing G, which
has the eigenvalues

λ1 = −γ

2
− γ0M,

λ2,3 = γ0M

2
− 3γ

4
± iμs, (15)

where

μs =
√


2 −
(γs

4

)2
with γs = γ + 2γ0M. (16)

Assuming the atom to be initially in the ground state
ρ(0) = |g〉 〈g|, we have

〈σ3(0)〉 = −1 or 〈�3(0)〉 = −1 − 〈σ3〉s, (17)

and

〈σ±(0)〉 = 0 or 〈�±(0)〉 = −〈σ±〉s. (18)

With these initial conditions, the solution of Eq. (14) is given
by

〈 ��(t )〉 =

⎛
⎜⎝

e−(γ+2γ0M )t/2〈�1(0)〉
e(−3γ+2γ0M )t/4

[(
cos(μst ) + γ+3γ0M

4μs
sin(μst )

)〈�2(0)〉 + 

μs

sin(μst )〈�3(0)〉]
e(−3γ+2γ0M )t/4

[(
1 − γ0M

2μs

)
cos(μst ) − γ

4μs
sin(μst )

]〈�3(0)〉 + i

μs

e(−3γ+2γ0M )t/4 sin(μst )[〈�+(0)〉 − 〈�−(0)〉]

⎞
⎟⎠.

(19)

Having obtained the solution, one can calculate the survival
probability of the atom being in the ground state |g〉, as

pg(t ) = 1 − [〈�3(t )〉 + 〈σ3〉s]

2
. (20)

Further, the degree of coherence is proportional to the off-
diagonal element

〈σ+(t )〉 = 〈σ1(t )〉 + i〈σ2(t )〉
2

+ 〈σ+〉s. (21)

The dynamics is underdamped or overdamped depending on
whether μs, defined in Eq. (16), is real or imaginary. As a
result, in the underdamped regime, the probabilities as well
as the coherence exhibit exponentially damped oscillations,
while in the overdamped case, they monotonically approach
to their stationary values, Fig. 2. Throughout this paper, we
work in units with h̄ = kB = 1.

III. LEGGETT-GARG-TYPE INEQUALITY FOR THE
TWO-LEVEL DRIVEN SYSTEM

Let Et j←ti be the map corresponding to the evolution given
by Eq. (7), such that the system in state ρ(ti ) at time ti evolves

to state ρ(t j ) at some later time t j > ti,

ρ(t j ) = Et j←ti [ρ(ti )]. (22)

Let at time t0 the system be in the ground state |g〉. We
define the dichotomic observable M̂ = |g〉〈g| − |e〉〈e|. Thus a
measurement of this observable leads to +1 or −1 depending
on whether the system is in the ground or excited state,
respectively, Fig. 1. We introduce the projectors �+ = |g〉〈g|
and �− = |e〉〈e|, such that O = �+ − �−. Using Eq. (2),
with the notation t1 − t0 = t , the two time correlation C(t0, t1)
is

C(t0, t1) = Tr[�+ρ(t0)] Tr

{
�+Et1←t0

[
�+ρ(t0)�+

Tr[�+ρ(t0)]

]}

− Tr[�+ρ(t0)] Tr

{
�−Et1←t0

[
�+ρ(t0)�+

Tr[�+ρ(t0)]

]}

− Tr[�−ρ(t0)] Tr

{
�+Et1←t0

[
�−ρ(t0)�−

Tr[�−ρ(t0)]

]}

+ Tr[�−ρ(t0)] Tr

{
�−Et1←t0

[
�−ρ(t0)�−

Tr[�−ρ(t0)]

]}
,

= pg(t ) − pe(t ) = 2pg(t ) − 1. (23)

062132-3



NAIKOO, BANERJEE, AND JAYANNAVAR PHYSICAL REVIEW A 100, 062132 (2019)

FIG. 2. Probability of finding the atom in ground state at time
t , in the units with h̄ = kB = 1. Here, R = γ0/
 is the ratio of
the spontaneous emission to the Rabi frequency. With squeezing
parameter s = 0 and transition frequency ω0 = 0.5, the values R =
0, 0.05, and 5 correspond to μs = 1, 0.9 (underdamped), and 0.7i
(overdamped), respectively.

Plugging in the expressions of probabilities, we have

K± = ±2F (t ) − F (2t ) ∓ 1. (24)

Here,

F (t ) = A[B + Ce−(3γ−2γ0M )t/4 cos(μst ) + D sin(μst )] − 1,

(25)
with coefficients given by

A = [4μs(γ
2 − 2γ γ0M + 2
2)]−1,

B = 4(γ + γ0)(γ − 2γ0M )μs + 8μs

2,

C = −2(γ0M − 2μs)[(γ − γ0)(γ − 2γ0M ) + 2
2],

D = −γ (γ − γ0)(γ − 2γ0M ) − 2(γ − 4γ0)
2. (26)

In the strong driving limit, 
 � γs, the coefficients can be
approximated as A ≈ 
−3, B ≈ C ≈ 
3, and D ≈ 
2, such
that in this limit, F (t ) ∝ cos(
t ) and therefore

K± ≈ ±2 cos(
t ) − cos(2
t ). (27)

Effect of weak measurement. The two time correlation
function C(t0, t ), Eq. (23), was obtained by assuming that the
measurements are ideal or projective. However, it would be

interesting to see how weak measurements affect the behavior
of C(t0, t ) and thereby of the LG parameters K±. The weak
measurements are characterized by invoking a parameter ξ

[40,41], such that the ideal projectors �± are replaced by the
“weak projectors” W ± defined as

W ± =
(1 ± ξ

2

)
�+ +

(1 ∓ ξ

2

)
�−. (28)

Here, 0 < ξ � 1, such that when ξ = 1, W ± reduce to the
ideal projection operators �±. Invoking weak projectors leads
to the following form of the two time correlation function:
C(t0, t )|weak = ξ 2C(t0, t ), and consequently

K±|weak = ξ 2K±. (29)

Therefore, the maximum violation of LGtIs occurs for an ideal
projective measurement.

IV. RESULTS AND DISCUSSION

The LGtIs given by inequality (3) are studied in the context
of a two-level atom with the ground and excited states labeled
as |g〉 and |e〉, respectively. An external field is driving the
transition between the two levels. Further, the atom is allowed
to interact with a squeezed thermal bath. The inequalities thus
obtained are in terms of experimentally relevant parameters.
The violation of LGtIs occurs predominantly in the under-
damped regime which is characterized by the real values of
parameter μs defined in Eq. (16), such that


 >
γs

4
= γ0

(2n + 1) + 2M

4
underdamped,


 <
γs

4
= γ0

(2n + 1) + 2M

4
overdamped. (30)

Here, the parameter γs = γ0[(2n + 1) + 2M], as defined in
Eq. (16). Figure 3 depicts the behavior of LG parameters
K± with respect to time t , for different values of the ratio
R = γ0/
. The violations of LGtIs are observed mainly in the
underdamped regime and fade quickly with the increase in R.
In other words, strong driving favors the violation of LGtIs to
their maximum quantum bound. The right most panel of the
figure shows coherence paramter C [42,43] which is defined
as

C =
∑
i �= j

|ρi j |. (31)

FIG. 3. Evolution of the LG parameters K+ (left), K− (middle), and coherence parameter C (right). Here, β = 10, ω0 = 0.5, s = 0, such
that R = 0, 0.05, and 5 correspond to μs = 1, 0.9 (underdamped), and 0.7i (overdamped) cases, respectively. The violation of LGtIs occurs
predominantly in underdamped regime such that K± reach their quantum bound 3/2 as R → 0. The coherence parameter shows exponentially
damped oscillations in underdamped regime, while in overdamped case, it monotonically saturates to it stationary value.

062132-4



VIOLATION OF LEGGETT-GARG-TYPE INEQUALITIES … PHYSICAL REVIEW A 100, 062132 (2019)

FIG. 4. Complementary behavior of LG parameters K± in the
strong driving limit. The various parameters used are β = 10, ω0 =
0.5, s = 0, R = 0.005, pertaining to the underdamped regime.

The extent of violation of LGtIs can be seen as a signature of
the degree of coherence in the system.

In the strong driving limit, i.e., 
 � γs, the LG parameters
are given by Eq. (27) and are plotted in Fig. 4. The parameters
K+ and K− show complementary behavior in the sense that
when one of these parameters does not show a violation, the
other does, together covering the entire parameter range.

The interaction with the squeezed thermal reservoir leads
to enhancement in the transition rate which is given by γ =
γ0(2n + 1), where γ0 is the spontaneous emission rate and γ0n
is the squeezed thermal induced emission and absorption rate.
The interactions with the reservoir are expected to decrease
the quantumness in the system. This feature is depicted in
Fig. 5, where K+ shows enhanced violations for larger values
of the parameter β i.e., for smaller temperature.

The squeezing parameter as defined in Eq. (8) controls
the degree of violation of LGtIs, since it affects the total
photon distribution. Figure 6 exhibits the variation of the LG
parameter K+ for different values of squeezing parameter s.

FIG. 5. Temperature dependence of LG parameter K+. With
ω0 = 0.5, s = 0, and R = 0.005, the values β = 10, 1, and 10−3

correspond to μs = 1, 0.9 (underdamped), and 4.8i (overdamped),
respectively.

FIG. 6. The LG parameter K+ for different values of the squeez-
ing parameter s. Here, β = 100, ω0 = 0.5, R = 0.05. Further, s =
0, 1, and 3.5 correspond to μs = 1, 0.9 (underdamped), and 6.7i
(overdamped), respectively.

The increase in s is found to decrease the extent of violation
of LGtIs.

The effect of weak measurement on the LG parameters
is depicted in Fig. 7. The ideal projective measurements
are characterized by ξ = 1, while ξ = 0 corresponds to no
measurement. It is clear from the figure that the maximum
violation occurs for ideal projective measurements.

In [44], general evolution of an atom in squeezed vacuum
was analyzed and the experimental studies of two-level sys-
tems in vacuum were reported in [45,46]. Here, consideration
of the effect of various parameters such as temperature and
external driving on the LGtI violation helps in developing a
better understanding of the quantumness of the system under
consideration, under ambient conditions.

V. CONCLUSION

We studied the violation of Leggett-Garg-type inequalities
in a driven two-level atom interacting with a squeezed thermal
bath. The effect of various experimentally relevant parameters

FIG. 7. Variation LG parameter K+ with respect to t and ξ .
With β = 5, ω0 = 0.5, and s = 0, we have R = 0 (μs ≈ 1) depicted
by blue plane surface, and R = 0.05 (μs ≈ 0.9) represented by
yellow lined surface. Both these correspond to underdamped case.
The maximum violation corresponds to ξ = 1, the ideal projective
measurement.
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on the violation of the inequality were examined carefully.
The violations were seen to be prominent in the underdamped
case. The increase in temperature was found to decrease the
degree of violation as well as the time over which the violation
is sustained. Squeezing the thermal state of the reservoir
was also found to reduce the violation of LGtIs. Enhanced
violations, reaching to the quantum bound, were witnessed
in the strong driving limit. Further, we studied the effect of
the weak measurements on the extent of violation of LGtI.
The weak measurements are characterized by the parameter

ξ such that ξ = 0 (ξ = 1) corresponds to no measurement
(ideal projective measurement). The maximum violation was
found to occur for the ideal projective measurements. The
current study therefore highlights the role of various external
parameters on the quantumness of the system.
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