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Observer dependence of entanglement in nonrelativistic quantum mechanics
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It was recently shown that, in general, the von Neumann spin entropy of fermionic particles is not invariant
under Lorentz boosts. We show that an analogous result can be recovered (at the lowest order of v2/c2) using
plain nonrelativistic quantum mechanics provided one uses that energy weighs: E = mc2. This should (i) help to
moderate the skepticism on the observer dependence of the spin entropy of fermionic particles, (ii) emphasize
the “soft” relativistic nature of this result, and (iii) show that this is a particular case of a more general class
of systems, since our calculation only assumes a nonrelativistic particle endowed with an internal degree of
freedom.
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I. INTRODUCTION

Recently, Peres et al. have shown that the von Neumann
spin entropy of a massive fermion is observer dependent [1].
They considered a pure fermionic wave-packet state separable
in spin and momentum in some inertial frame I having, thus,
a vanishing spin entropy S[ρs

I ] = 0 in such a frame, where
ρs

I is the reduced density matrix coming from tracing out the
momenta degrees of freedom. It happens, however, that in a
distinct inertial frame I ′, related to I through a Lorentz boost,
a Wigner rotation leads spin and momenta to be nonseparable,
in general, resulting in a nonzero spin entropy: S[ρs

I ′] �= 0.
Soon after, however, some claims were raised against such

a conclusion [2] and doubts on the standard procedure of
tracing out the momentum degrees of freedom from the full
state to obtain the reduced spin density matrix were posted
[3]. In particular, Ref. [4] claims that it would not be possible
to measure the particle spin independently of its momentum in
a relativistic setting. Doubts on Peres et al.’s result based on
the principles of relativity can be also found [5]. Reference
[6], e.g., criticizes Ref. [1] because the theory of relativity
would require a physical quantity to be Lorentz invariant.
This is incorrect, since relativistic observables are in general
observer dependent. (The relativity principle only demands
that distinct inertial observers measure the same value for any
given observable provided the experiments are carried on with
states equally prepared in the corresponding proper frames;
clearly, if identical separable states are prepared in I and I ′,
Peres et al. would have obtained S[ρs

I ] = S[ρs
I ′] = 0.)

As it can be seen, the issue is not consensual yet and
efforts trying to reconcile all pieces of information are in
course [7,8]. This is very much in order, since the objections to
Ref. [1] collide with papers according to which Peres et al.’s
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conclusions should impact on our knowledge about the spin
correlation of entangled fermions as measured by moving de-
tectors [9,10]. (See also Ref. [11] where fermions are replaced
by photons, which might have some practical application
in the future.) This paper follows this trend by looking for
a simple “nonrelativistic” analogous system, where similar
conclusions as the ones obtained in Ref. [1] can be extracted.
We consider a particle endowed with an internal-energy de-
gree of freedom in a one-dimensional box with boundary
conditions that allow the existence of momentum eigenstates.
The momentum eigenstates will be denoted by |p〉, as usual,
while the internal-energy eigenstates will be given by |E1〉
and |E0〉, E1 > E0. Such an internal degree of freedom can
be realized, for instance, by coupling a nonrelativistic spin
to a constant magnetic field B. The nonexcited, |E0〉 ≡ |←〉,
and excited, |E1〉 ≡ |→〉, energy eigenstates can be associated
with the spin states being aligned and counteraligned with
B, respectively, which is conveniently set up to point out
along the boost direction. We recall that the magnetic field
component along the boost direction is invariant: B|| = B′

||.
In analogy to Ref. [1], we prepare the state to be separable

in some inertial frame I as

|ψI〉 = |↑ 〉 ⊗ |p〉, (1)

where we have defined the orthogonal basis,

|↑ 〉 ≡ 1√
2

(|←〉 + | →〉), |↓〉 ≡ 1√
2

(|←〉 − |→〉).

Obviously, |ψI〉 has vanishing spin entropy S[ρs
I ] = 0, where

ρs
I ≡ Trp|ψI〉〈ψI |.

We wonder what is the entropy S[ρs
I ′] as defined in an

inertial frame I ′, related to I by a Galilean boost. We will
show that S[ρs

I ′] �= 0 provided one uses that E = mc2. We also
verify that by taking the full nonrelativistic limit at the end,
i.e., c → ∞, we recover the commonsensical conclusion that
the momentum and internal-degree-of-freedom entanglement
is invariant under Galilean transformations [12]: S[ρs

I ′]c→∞ =
0. This should help to moderate the skepticism on the observer
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dependence of the spin entropy for fermionic particles, em-
phasize the “soft” relativistic nature of this result, and point
out that this is a particular case of a more general class of
systems.

The paper is organized as follows. In Sec. II, we review
Peres et al.’s main results [1]. In Sec. III we show how
analogous results can be obtained in a nonrelativistic setting
provided one recalls that energy weighs. Our closing remarks
appear in Sec. IV. We assume h̄ = 1 but keep c in our formulas
for the sake of clarity.

II. SPIN ENTROPY FOR A FERMIONIC PARTICLE
UNDER LORENTZ BOOSTS

Here, we review the main results of Ref. [1] for the sake
of further comparison. Let us start considering a general spin-
1/2 fermionic particle described by a spinor in the momentum
representation as

ψ (p) ≡
[

a1(p)

a2(p)

]
. (2)

Tracing out the momentum degrees of freedom, the spin
entropy of the reduced density matrix can be written as

S[ρs] = −1 − |n|
2

ln

(
1 − |n|

2

)
− 1 + |n|

2
ln

(
1 + |n|

2

)
,

(3)

where n = (nx, ny, nz ) is the Bloch vector with

nz =
∫

d3p(|a1|2 − |a2|2), (4)

nx − iny = 2
∫

d3p a1a∗
2. (5)

Now, let us consider a particular case where the particle
state,

ψI (p) ≡
⎡
⎣(1/πw2)3/4 exp(−|p|2/2w2)

0

⎤
⎦, (6)

is a Gaussian wave packet (in momentum space) with width
w = const and spin +1/2 along the z axis with respect to
a congruence of observers lying at rest in the inertial frame
I . In this case, n = (0, 0, 1) and one obtains S[ρs

I ] = 0 from
Eq. (3), as expected.

Next, let us wonder what ψ (p) looks like for a different
congruence of observers lying at rest in the inertial frame I ′,
which is Lorentz boosted along the x direction with velocity
v. After performing a Wigner rotation, Peres et al. obtain

ψI ′ (q) ≡
[

a1
′(q)

a2
′(q)

]
≡ Ka1(p)

[
b1(p)

b2(p)

]
, (7)

where the 3-momenta p and q are related to each other through
pμ = (�−1q)μ with � being the boost matrix. Here,

a1(p) = (1/πw2)3/4 exp(−|p|2/2w2),

b1(p) = cosh
(α

2

)
(p0 + mc) − sinh

(α

2

)
(px + ipy),

b2(p) = − sinh
(α

2

)
pz,

with tanh α ≡ β ≡ v/c and

K =
[

p0

q0(p0 + mc)(q0 + mc)

]1/2

. (8)

Then, by using Eq. (7) in Eqs. (4) and (5) (with ai → ai
′, i =

1, 2) and recalling that

d3p/p0 = d3q/q0, (9)

we get the transformed Bloch vector: n′ = (nx ′, ny ′, nz ′),
where

nx ′ = ny ′ = 0, nz ′ =
∫

d3r
exp(−|r|2/w̃2)

w̃3π3/2
G(r), (10)

with w̃ ≡ w/mc, and we have performed the replacement
q → r ≡ q/mc. Moreover,

G(r) = (γ + 1 − γ βx)(1 +
√

1 + |r|2) + γ (x2 + y2) + z2

(1 +
√

1 + |r|2)[1 + γ (
√

1 + |r|2 − βx)]
,

(11)

where

x ≡ |r| sin θ cos φ, y ≡ |r| sin θ sin φ, z ≡ |r| cos θ, (12)

with 0 � θ � π , 0 � φ < 2π , and γ = (1 − β2)−1/2.
In order to exhibit more clearly the physical content of this

result, it is convenient to expand G(r) around r = 0 before
we evaluate the integral in Eq. (10). The output comes out
automatically as a series for w̃:

nz ′ = 1 −
(

γ − 1

γ + 1

)
w̃2

4
+ (11γ 3 + 9γ 2 − 11γ − 9)

(1 + γ )3

w̃4

32

+ O(w̃6) (13)

= 1 −
(

w̃2

16
− 5w̃4

64
+ O(w̃6)

)
β2 + O(β4), (14)

where the second equality comes from an extra expansion for
β � 1, which will be useful later.

For sharp momentum states, i.e., w̃ � 1, the first terms of
Eq. (13) approximate nz ′ very well. Then, Peres et al. write
the spin entropy at leading order in w̃2 as

S
[
ρs

I ′
] ≈ t (1 − ln t ), (15)

with

t = w̃2

8

(
γ − 1

γ + 1

)
. (16)

Clearly, S[ρs
I ′] �= 0 provided v �= 0 and the wave packet is not

arbitrarily sharp: w̃ �= 0.

III. SPIN ENTROPY FOR A NONRELATIVISTIC
PARTICLE UNDER GALILEAN BOOSTS

Let us consider, now, a free particle with rest mass M
endowed with an internal-energy degree of freedom and
constrained to move in a one-dimensional box with size L.
The Hilbert space of our system is H = Hp ⊗ HE , where the
momentum and internal-energy Hamiltonian operators act as
follows: p̂ : Hp → Hp and ĤE : HE → HE , respectively [13].
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The total Hamiltonian is simply

Ĥ = p̂2

2M
+ ĤE . (17)

Let us prepare our state to be separable in some inertial
frame I at some instant t = 0 as

|ξI〉 = 1√
2

(|E0〉 + |E1〉) ⊗ |pn〉

= 1√
2

(|E0, pn〉 + |E1, pn〉), (18)

where the nonexcited |E0〉, excited |E1〉, and momentum |pn〉
eigenstates satisfy

ĤE |E0〉 = E0|E0〉, ĤE |E1〉 = E1|E1〉,
and

p̂|pn〉 = pn|pn〉,
respectively. Here, pn = 2πn/L for n ∈ Z, once we have
assumed that the particle wave function obeys periodic bound-
ary conditions. Superposition states of internal energy levels
are routinely produced in laboratory (see, e.g., Ref. [14] for
a recent application concerning the measurement of time
dilation).

Clearly, the reduced spin matrix,

ρs
I = Trp|ξI〉〈ξI |,

obtained after tracing out the momenta degrees of freedom
still represents a pure quantum state, leading to a vanishing
von Neumann entropy:

S
[
ρs

I

] = 0.

The label “s” appears because we have associated the nonex-
cited and excited states to nonrelativistic spin states (as dis-
cussed in Sec. I):

|E0〉 �→ |←〉, |E1〉 �→ |→〉,
in order to keep the nonrelativistic analysis as close as possible
to the relativistic one.

Next, we consider the same quantum system as seen in
an inertial frame I ′ related with I through a Galilean boost
along the x direction with velocity v. For this purpose, we
recall that the wave function of the system at t = 0 should be
transformed by the boost operator [15,16]:

Ĝ(v, M ) = exp(iMvx̂), (19)

where M is the corresponding particle rest mass and x̂ is the
position operator. Thus, the boosted state will be written as

|ξI ′ 〉 = 1√
2
|E0〉 ⊗ Ĝ(v, M0)|pn〉 + 1√

2
|E1〉 ⊗ Ĝ(v, M1)|pn〉

= 1√
2
|E0〉 ⊗ |pn + M0v〉 + 1√

2
|E1〉 ⊗ |pn + M1v〉,

(20)

where Mj = m + Ej/c2 for j = 0, 1. Here, we have used that
mass is what scales measure; scales measure the total energy
of the system in its rest frame. Hence, the internal energy
contribution Ej/c2 must be added to the bare mass m (i.e., the

mass that the particle would have without any internal energy)
to give Mj .

As a side comment, we note that Bargamann’s celebrated
result that the Galilean group imposes a superselection rule
in nonrelativistic quantum mechanics precluding the superpo-
sition of distinct mass eigenstates [17] does not apply here
for two reasons. From the mathematical side, Eq. (20) solely
relies on the one-dimensional subgroup of Galilean boosts
(rather than on the whole Galilean group), which does not lead
to any such a superselection rule. Bargmann’s superselection
rule comes from considering the composition of a sequence of
boosts and translations. Furthermore, by using E = mc2, we
make it explicit that our system inherits elements of relativity,
which drives it beyond the scope of Bargmann’s theorem
(for a more detailed discussion on it see Ref. [18]). From
the physical side, it is consensual that the superposition of
mass eigenstates is realized by nature, being the basis, e.g.,
of neutrino oscillation experiments.

It is also interesting to note that the same result (20) can be
obtained by writing

|ξI ′ 〉 = Ĝ(v)|ξI〉, (21)

with the unitary operator,

Ĝ(v) = exp(iM̂vx̂),

where M in Eq. (19) is promoted to the Hermitian operator,

M̂ = mÎE + ĤE/c2. (22)

It is worthwhile to note that the set of unitary operators Ĝ(v)
gives rise to a faithful representation of the one-dimensional
Galilean boost subgroup:

gv1 ◦ gv2 = gv1+v2 ⇒ Ĝ(v1)Ĝ(v2) = Ĝ(v1 + v2),

with Ĝ(0) = Î. The fact that Eq. (21) coincides with Eq. (20)
can be straightforwardly checked out by noting that

Ĝ(v)|Ej, p〉 = |Ej〉 ⊗ Ĝ(v, Mj )|p〉. (23)

As a consequence, M in Eq. (17) should be also promoted to
M̂ for the sake of consistency. The present analysis does not
involve dynamics and, thus, our results are insensitive to such
a promotion. Situations which do involve dynamics are much
subtler. See, e.g., Ref. [19] for a related case, where the system
is time evolved in a gravitational field and the thrilling debate
which was sparked from it [20].

Now, we compute the density matrix for the system as a
whole and then trace out the momentum degrees of freedom:

ρs
I ′ (v) ≡ Trp|ξI ′ 〉〈ξI ′ |

= 1
2 (|E0〉 〈E0| + |E1〉 〈E1|)
+ 1

2 ( f (v)|E0〉〈E1| + f (v)∗|E1〉 〈E0|), (24)

where

f (v) = Trp(|pn + M0v〉〈pn + M1v|)

= exp(ivεL/2c2)
sin(vLε/2c2)

(vLε/2c2)
, (25)

with ε ≡ (E1 − E0). We note that limv→0 f (v) = 1 implies
limv→0 ρs

I ′ (v) = ρs
I , as expected. Finally, the von Neumann
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entropy reads

S
[
ρs

I ′
] = −1 − | f |

2
ln

(
1 − | f |

2

)
− 1 + | f |

2
ln

(
1 + | f |

2

)
,

(26)

where

| f | = sin(vLε/2c2)

(vLε/2c2)
, (27)

= 1 −
(

ε2L2

24c2

)
β2 + O(β4). (28)

In the last step, we have written β = v/c.
It is clear from Eq. (27) that S[ρs

I ′ ] �= 0 provided ε �= 0.
Most interestingly, in this nonrelativistic limit, there is no
doubt that one can measure the internal degree of freedom
(e.g., spin) independently of its momentum. Hence, Eqs. (26)–
(28) show that the noninvariance of the spin entropy in differ-
ent frames is not a technical artifact but a physical fact which
may influence experimental outputs when the observer who
prepares the state and the one who measures it move with
respect to each other.

Let us finish by comparing the relativistic and nonrela-
tivistic spin entropy results. To this end, we note that both
expressions (3) and (26) are formally the same and thus it is
enough to compare our | f | in Eq. (28) with nz ′ in Eq. (14). We
see that they are comparable at the lowest order of β2 provided
one makes the identification,

ε2L2

24c2
↔ w̃2

16
− 5w̃4

64
+ O(w̃6). (29)

The identification above can be recast in a more suitable
form by introducing the electron Compton wavelength, λ =
2π/(mc) (h̄ = 1):

(ε/c)2L2

24
↔ w2λ2

64π2
, (30)

where we have kept only the leading term in w in the
right-hand side of Eq. (30), since the result in the left-hand
side, obtained from our nonrelativistic calculation, comes

from assuming momentum eigenstates. Apart from numerical
multiplicative factors, w and λ are seen to play the role of ε/c
and L, respectively.

Despite the similarity between Peres et al. and our anal-
yses, they should be seen as being complementary to each
other in the sense that while they consider free electrons with
momentum width scaled by w, we consider a confined particle
in a box with length L and well-defined momentum.

Finally, we note that the conclusion reached in Ref. [12]
that the entropy of the reduced density matrix, in the non-
relativistic quantum realm, is invariant under Galileo boosts
can be recovered here by simply taking c → ∞ in Eqs. (26)
and (27): limc→∞ S[ρs

I ′ ] = S[ρs
I ] = 0; no interesting result is

obtained unless one recalls that energy weighs.

IV. CONCLUSIONS

We have considered a nonrelativistic particle endowed with
an internal degree of freedom. Such a degree of freedom plays
the role of the spin of an electron described by a relativistic
fermionic field. We prepare our nonrelativistic state to be
separable (in spin and momentum) in some inertial frame
I . We have shown that it will be nonseparable, in general,
in some other inertial frame I ′ related to I by a Galilean
boost i f we recall that energy weighs. The spin entropy
obtained can be compared with the one given in Ref. [1] in
the nonrelativistic regime β � 1. We hope that our paper
moderates the skepticism concerning the observer dependence
of the spin entropy for fermionic particles, since it does not
involve any Wigner rotation which seems to be the core of the
dispute.
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Ĝ(v, M, t ) = exp(iMv2t/2) exp(iMvx̂) exp(−ivt p̂). Since our

results must be insensitive to the arbitrary instant of time t when
the state is prepared, we have chosen t = 0.

[17] V. Bargmann, On unitary ray representation of continuous
groups, Annals of Math. 59, 1 (1954).

[18] D. M. Greenberger, Inadequacy of the Usual Galilean Trans-
formation in Quantum Mechanics, Phys. Rev. Lett. 87, 100405
(2001).

[19] I. Pikovski, M. Zych, F. Costa, and C. Brukner, Universal
decoherence due to gravitational time dilatation, Nature Phys.
11, 668 (2015).

[20] B. H. Pang, Y. Chen, and F. Ya. Khalili, Universal Decoherence
under Gravity: A Perspective Through the Equivalence Princi-
ple, Phys. Rev. Lett. 117, 090401 (2016).

062126-5

https://doi.org/10.1103/PhysRevA.68.044101
https://doi.org/10.1103/PhysRevA.68.044101
https://doi.org/10.1103/PhysRevA.68.044101
https://doi.org/10.1103/PhysRevA.68.044101
https://doi.org/10.1126/science.1192720
https://doi.org/10.1126/science.1192720
https://doi.org/10.1126/science.1192720
https://doi.org/10.1126/science.1192720
https://doi.org/10.2307/1969831
https://doi.org/10.2307/1969831
https://doi.org/10.2307/1969831
https://doi.org/10.2307/1969831
https://doi.org/10.1103/PhysRevLett.87.100405
https://doi.org/10.1103/PhysRevLett.87.100405
https://doi.org/10.1103/PhysRevLett.87.100405
https://doi.org/10.1103/PhysRevLett.87.100405
https://doi.org/10.1038/nphys3366
https://doi.org/10.1038/nphys3366
https://doi.org/10.1038/nphys3366
https://doi.org/10.1038/nphys3366
https://doi.org/10.1103/PhysRevLett.117.090401
https://doi.org/10.1103/PhysRevLett.117.090401
https://doi.org/10.1103/PhysRevLett.117.090401
https://doi.org/10.1103/PhysRevLett.117.090401

