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The physics of topological singularities, namely, exceptional points (EPs), has been a key to a wide range
of intriguing and unique physical effects in non-Hermitian systems. In this context, exploration of the mutual
interactions among the states in four-level systems around fourth-order EPs (EP4s) is lacking. Here we report
a four-level parameter-dependent perturbed non-Hermitian Hamiltonian, mimicking quantum or wave-based
systems, to explore the physical aspects of an EP4 analytically as well as numerically. The proposed Hamiltonian
exhibits different orders of interaction schemes with the simultaneous presence of different higher-order EPs.
Here an EP4 has been realized by mutual interaction between four states with proper parameter manipulation. We
comprehensively investigate the dynamics of corresponding coupled eigenvalues with stroboscopic parametric
variation in the vicinity of the embedded EP4 to establish a successive state-switching phenomenon among
them, which proves to be robust even in the presence of different orders of EPs. Implementing the relation of
the perturbation parameters with the coupling control parameters, we report a region to host multiple EP4s in a
specific system. The chiral behavior of successive state exchange has also been established near the EP4. The
proposed scheme, which is enriched with physical aspects of EP4s, should provide a unique light manipulation
tool in any anisotropic multistate integrated system.
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I. INTRODUCTION

Beyond ideal Hermitian quantum systems, nonconserva-
tive open systems experience rich physical impacts as they
interact with their surroundings and hence are either dissi-
pative or active in nature. The non-Hermitian formulation in
quantum mechanics provides useful tools to express any such
open system in a matrix form which hosts discrete energy
states having complex eigenvalues [1]. During the interaction
between the complex states of a parameter-dependent open
system, spectral degeneracies can be realized with the pres-
ence of branch-point singularities in the parameter space. An
exceptional point (EP) of order N (EPN) is a special kind
of topological singularity in the system parameter space of
non-Hermitian systems in general, for which N number of
eigenvalues and their corresponding eigenvectors simultane-
ously coalesce and the effective Hamiltonian of the underlying
system becomes defective [2,3]. Thus, a second-order EP
(EP2) refers to a particular singularity where two interacting
eigenvalues coalesce [4,5]. In a very similar way, a third-
order EP (EP3) can be realized with the coalescence of three
interacting states [6–8]; however, there are several reports on
EP3s where similar physical consequences can be achieved
by winding around two EP2s associated with three interacting
states [9–11]. Recently, arbitrarily higher-order EPs [12] have
also been studied using various anisotropic systems [13].
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In the presence of EPs, exotic physical phenomena have
been widely investigated in a wide range of open systems
such as atomic [14,15] and molecular [16] spectra, microwave
cavities [17], Bose-Einstein systems [18], and Bose-Hubbard
systems [19]. Apart from these nonoptical systems, the uncon-
ventional physical aspects of EPs have been mainly studied
in various photonic systems such as lasers [20,21], optical
microcavities [22–24], planar [25,26] and coupled [27–29]
waveguides, and photonic crystals [30,31]. Using optical gain
and loss as nonconservative elements, such photonic systems
provide a leading platform to meet a wide range of contem-
porary technological applications such as unidirectional light
transmission [32], topological energy transfer [33], asym-
metric mode switching and conversion [25–28], resonance
scattering [34], cross-polarization mode coupling [31,35],
lasing and antilasing [20,21], ultrasensitive optical sensing
[36–39], optical isolation with enhanced nonreciprocal effect
[40,41], and the stopping of light [42]. Recently, EPs have
been also explored in cavity optomechanics [43] in the context
of phonon-magnon coupling [44] and phonon lasing [45]. In
various parity-time (PT ) -symmetric systems, EPs have been
studied in connection with broken PT symmetry [46]. For a
detailed review, see Ref. [47].

The presence of an EP in parameter space unexpectedly
modifies the dynamics of the system. A stroboscopic variation
of control parameters enclosing an EP results in the permu-
tation between the coupled states where they successively
exchange their identities [5,10,11,14,15,22–26,29]. This state-
exchange phenomenon around a branch-point singularity is
the fundamental proof of the exceptional behavior of that
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singularity in the sense that the singularity must behave like an
EP. Such an effect of parametric encirclement around an EP2
and the corresponding topological properties [48] were exper-
imentally demonstrated for the first time in an microwave cav-
ity [49]. During permutation between two interacting states,
one of the corresponding eigenvectors acquires an additional
Berry phase [50]. The successive state flipping between three
coupled states around an EP3 and their corresponding ge-
ometric phase behavior have been analytically established
[10,11,50] and also demonstrated numerically in a coupled
waveguide system [29]. Instead of such stroboscopic paramet-
ric encirclement around EPs, for device-level implementation,
if we consider time- or analogous length-scale-dependent
parametric variation to encircle an EP dynamically, then the
adiabaticity of the system breaks down, which essentially
enables a nonadiabatic evolution of one of the two coupled
states [51]. In that case, only the eigenstate that evolves with
a lower average loss behaves adiabatically, and depending
on the direction of rotation, a specific eigenstate dominates
at the end of encirclement process. Such a competition be-
tween the effect of an EP and the adiabatic theorem leads to
an asymmetric state-transfer phenomenon [25–28].

The cube-root response near an EP3 entails more complex
physics in comparison with the square-root response near
an EP2. For example, if we consider an EP-aided sensing
application, then sensitivity can be immensely enhanced, ex-
ploiting an EP3 [38] in comparison with an EP2 [36,37]. So
it would be indeed quite interesting if one can manipulate the
mutual interaction between four states simultaneously, then
an EP4 can be encountered which could be suitable to study
the even more complex physics of the fourth-root response
near the EP4. At an EP4, four interacting states should be
analytically connected. However, with proper parameter ma-
nipulation, the simultaneous interaction among four states and
successive exchange between them around an EP4 have never
been explored.

In this paper we explore the analytical framework and
corresponding topological properties of an EP4. To study
the state dynamics alongside an EP4, we realize an open
system, having four decaying eigenstates, that is subjected to
a parameter-dependent perturbation. We judiciously choose
some control parameters to connect the passive system to
the perturbation in such a way that we can simultaneously
study different orders of interaction phenomena. With proper
parameter manipulation, we encounter a situation where four
states are mutually interacting around a fourth-order singular-
ity. Encircling this singularity in the system parameter plane,
we explore an exclusive state-flipping phenomenon. Here four
coupled states exchange their identities successively, which
confirms the presence of an EP4. In addition to an EP4, we
also explore the simultaneous existence of EP2s and EP3s in
the same system and establish the possibility of the simultane-
ous existence of different orders of EPs in a particular system.
Similar to one-dimensional exceptional-line which connect
multiple EP2s [22,23], we corroborate the relation of the per-
turbation parameters to the coupling control parameters and
formulate a three-dimensional (3D) EP4 region within which
multiple locations that could be labeled as EP4s coexist. The
chiral behavior of state exchange around the EP4 has also been
established. The proposed scheme may be implemented using

suitable state-of-the-art techniques in an anisotropic multistate
optical system.

II. MATHEMATICAL MODELING

In order to achieve our goal, we consider a simple generic
4 × 4 non-Hermitian Hamiltonian matrix H having the form
H0 + λHp,

H =

⎛
⎜⎝

ε̃1 0 0 0
0 ε̃2 0 0
0 0 ε̃3 0
0 0 0 ε̃4

⎞
⎟⎠ + λ

⎛
⎜⎝

0 ωp 0 ωq

ωp 0 ωr 0
0 ωr 0 ωs

ωq 0 ωs 0

⎞
⎟⎠. (1)

Here the passive Hamiltonian H0 is subjected to a parameter-
dependent complex perturbation Hp. In addition, λ represents
a complex tunable parameter as λ = λR + iλI . The H0 consists
of four complex states ε̃ j ( j = 1, 2, 3, 4). Here we consider
ε̃ j = ε j + iτ j (τ j � ε j) given that τ j are the decay rates of
the respective ε j . The Hp is parametrized by four intercon-
nected perturbation parameters ωp, ωq, ωr , and ωs. Now four
eigenvalues of H, say, Ej ( j = 1, 2, 3, 4), are obtained by
solving the eigenvalue equation |H − EI| = 0 (with I the 4 ×
4 identity matrix), which gives the quartic secular equation

E4 + p1E3 + p2E2 + p3E + p4 = 0, (2)

where

p1 = −(ε̃1 + ε̃2 + ε̃3 + ε̃4), (3a)

p2 = ε̃1ε̃2 + ε̃2ε̃3 + ε̃3ε̃4 + ε̃4ε̃1 + ε̃1ε̃3 + ε̃2ε̃4

− λ2(ω2
p + ω2

q + ω2
r + ω2

s

)
, (3b)

p3 = −(ε̃1ε̃2ε̃3 + ε̃2ε̃3ε̃4 + ε̃1ε̃3ε̃4 + ε̃1ε̃2ε̃4)

+ λ2{(ε̃1 + ε̃2)ω2
s + (ε̃2 + ε̃3)ω2

q + (ε̃3 + ε̃4)ω2
p

+ (ε̃4 + ε̃1)ω2
r

}
, (3c)

p4 = ε̃1ε̃2ε̃3ε̃4 − λ2
(
ε̃1ε̃2ω

2
s + ε̃2ε̃3ω

2
q + ε̃3ε̃4ω

2
p + ε̃4ε̃1ω

2
r

)
− λ4(ωpωs + ωqωr )2. (3d)

Using Ferrari’s method [52], the roots of Eq. (2) can be written
as

E1,2 = − p1

4
− η ± 1

2

√
−4η2 − 2m1 + m2

η
, (4a)

E3,4 = − p1

4
+ η ± 1

2

√
−4η2 − 2m1 − m2

η
, (4b)

where

η = 1

2

√
−2

3
m1 + 1

3

(
κ + m3

κ

)

with κ =
⎛
⎝m4 +

√
m2

4 − 4m3
3

2

⎞
⎠

1/3

. (5)
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Here

m1 = −3p2
1

8
+ p2, (6a)

m2 = p3
1

8
− p1 p2

2
+ p4, (6b)

m3 = p2
2 − 3(p1 p3 + 4p4), (6c)

m4 = 2p3
2 − 9p2(p1 p3 + 8p4) + 27

(
p2

1 p4 + p2
3

)
. (6d)

Thus, the roots of Eq. (2) given by Eqs. (4a) and (4b) represent
the eigenvalues of H. In addition, with the complex λ, we de-
liberately introduce a controlling parameter δ to interconnect
the four perturbation parameters of Hp. Here we customize the
perturbation parameters in terms of δ as

ωp = 4δ − 10−4, ωq = δ − 0.1, (7a)

ωr = 0.95 − δ/2, ωs = 0.5 − δ. (7b)

The independent tunability parameter δ enables the simulta-
neous modulation of four perturbation parameters ωk (k =
p, q, r, s). Thus, with the simultaneous variation of com-
plex λ (=λR + iλI ) and δ, the perturbation parameters ωk

(k = p, q, r, s) control the interactions between the Ej ( j =
1, 2, 3, 4). Using this framework, various interaction phe-
nomena are described in the following section. During opti-
mization, we choose the passive eigenvalues ε1 = 0.9, ε2 =
0.8, ε3 = 1.25, and ε4 = 0.25 with the corresponding decay
rates τ1 = 5 × 10−3, τ2 = 2.5 × 10−3, τ3 = 0.2 × 10−3, and
τ4 = 0.01 × 10−3. Here we consider τ j � ε j to implement
this analytical model on any feasible anisotropic prototypal
device.

To design a prototype by implementing the proposed
scheme, one can consider a gain-loss-assisted coupled waveg-
uide system supporting four or more channels or cores. The
idea may be conceived in such a way that the physical
separation between the cores and/or dimensions of individual
cores may vary along the length of the device. Therefore,
this four-core guided wave system would be represented by
the passive Hamiltonian H0. Introduced gain or loss and the
separation between the cores with variable dimensions along
the propagation direction can be considered as a perturbation
(λHp). Here the imaginary part of complex λ, i.e., λI , may be
deemed to be introduced gain or loss and δ may be mapped
to the varying dimension of the cores or the varying sepa-
ration between them. Thus, based on the proposed scheme,
we enable the system to host EPs due to an anisotropic
perturbation that would follow the proposed Hamiltonian.
A similar gain-loss-assisted three-waveguide non-Hermitian
system hosting two EP2s has been reported [28]. Here both
EP2s have been encountered by varying the gain and loss,
the dimension of the channels, and also the spacing between
them along the length of the waveguide. Our proposed scheme
can be straightforwardly implemented in an extended version
of similar guided wave geometry supporting four or more
channels or cores.

III. DIFFERENT ORDERS OF INTERACTIONS
BETWEEN COUPLED STATES

With consideration of the specific optimized values as
described in the previous section, we study the interactions
between Ej ( j = 1, 2, 3, 4), to which we simultaneously vary
the complex λ and δ within judiciously chosen regions. Here
λR varies within the range from 0.56 to 0.57, whereas λI

varies simultaneously, maintaining the ratio λI/λR = −10−3.
The choice of λI of the order 10−3 of λR makes the phys-
ical system more realistic. In any prototypal guided wave
geometries used to implement the proposed scheme, the
cited ratio λI/λR is closer to the real attenuation or gain
coefficient. The span for the variation of δ is chosen to be
within [−0.04, 0.04].

We study the interactions between the Ej ( j = 1, 2, 3, 4)
in Fig. 1 with an increasing λ and δ within the chosen limits.
The trajectories of Ej ( j = 1, 2, 3, 4) have been shown using
dashed red, solid green, dotted blue, and solid black lines, re-
spectively. In Fig. 1(a) we can observe the interaction between
E1 and E2 in a certain range of control parameters (within
the specified span), where E3 and E4 remain unaffected. The
equivalent dynamics of Ej ( j = 1, 2, 3, 4) with respect to
λR, λI , and δ are depicted in Figs. 1(a i), (a ii), and (a iii),
respectively. Thus, from the interaction phenomenon shown
in Fig. 1, it can be inferred that there should be a singularity
of second order near the interaction regime of E1 and E2.
Now, with a further increase in λ and δ, we observe the
simultaneous interaction between E1, E2, and E3, not affecting
E4, which is shown in Fig. 1(b). Here the similar behavior
of Ej ( j = 1, 2, 3, 4) concerning λR, λI , and δ, as can be
seen in Figs. 1(b i), (b ii), and (b iii), respectively, supports
the presence of a third-order singularity in the (λ, δ) plane.
After investigating the second- and third-order interactions,
we further increase the values of the control parameters to
study the fourth-order interaction, which is shown in Fig. 1(c).
Here we observe that for comparably higher values of λ and δ,
all four states Ej ( j = 1, 2, 3, 4) are mutually interacting and
show similar coupling natures with respect to λR, λI , and δ,
as depicted in Figs. 1(c i), (c ii), and (c iii), respectively. Such
mutual coupling between four interacting states confirms the
presence of a singularity of fourth order in the system param-
eter plane.

All kinds of interaction phenomena of different orders (as
shown in Fig. 1), which are hosted by the Hamiltonian H
[given by Eq. (1)], are simultaneously presented in Fig. 2 for
the entire chosen span of λ and δ. In Figs. 2(a), 2(b), and
2(c), all the interaction phenomena among the Ej are shown
with respect to λR, λI , and δ, respectively, where we observe
that, at the initial points of the chosen scale of the control
parameters, the eigenvalues remain noninteracting, and then
with an increase in parametric values, they exhibit different
orders of interactions for different parametric regions. Thus
identifying these particular regions in the parameter plane, we
can realize the presence of singularities of different orders.
In the following section we examine the exceptional behavior
of the embedded singularities by moving around them in the
system parameter plane.
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Re(E) Im(E) Re(E) Im(E) Re(E) Im(E)

Re(E) Im(E)Re(E) Im(E)
Re(E) Im(E)

Re(E) Im(E) Re(E) Im(E) Re(E) Im(E)

(i) (ii) (iii)

(i) (ii) (iii)

(i) (ii) (iii)

FIG. 1. Interactions between the eigenvalues with the variations of the perturbation parameters. Trajectories of Ej ( j = 1, 2, 3, 4) are shown
by dashed red, solid green (light gray), dotted blue, and solid black lines, respectively. (a) Second-order interaction between E1 and E2, not
affecting E3 and E4, with respect to (a i) λR, (a ii) λI , and (a iii) δ. (b) Third-order interaction between E1, E2, and E3, not affecting E4, with
respect to (b i) λR, (b ii) λI , and (b iii) δ. (c) Fourth-order interaction between E1, E2, E3, and E4 with respect to (c i) λR, (c ii) λI , and (c iii) δ.

IV. PHYSICAL EFFECTS OF TOPOLOGICAL
SINGULARITIES: TOWARDS SUCCESSIVE

STATE SWITCHING

If a singularity behaves like an EP, then its presence inside
the closed parameter space of the underlying system leads to
significant modifications in the dynamics of the corresponding
coupled states due to the influence of the coupling parameters.
Quasistatically encircling an EP in parameter space results
in the permutation between the coupled eigenvalues. Around
an EP, the corresponding coupled eigenvalues exchange their
identities adiabatically. To enclose the singularities, we use
the following parametric equation in the (λ, δ) plane:

λR(φ) = a0[1 + r1 cos(φ)], (8a)

δ(φ) = b0[1 + r2 sin(φ)]. (8b)

Here (a0, b0) represents the center of the parametric loop
and r1 and r2 are two characteristic parameters to control
the variations of λR and δ over a tunable angle φ given that
φ ∈ [0, 2π ]. To encircle a singularity, we choose the variation

of λR and δ using Eq. (8), where there is a variation of
λI maintaining the ratio λI/λR = −10−3 (as mentioned in
Sec. III). Such overall parameter space (λR, λI , δ) variation
significantly affects the dynamics of the coupled states. Ju-
diciously choosing the characteristics parameters of Eq. (8),
we can encircle the single or multiple singularities (even the
singularities having different orders) to scan the enclosed area.
Now if we establish the successive state switching by paramet-
ric encirclement around the embedded singularities of differ-
ent orders, then we can confirm that the proposed Hamiltonian
H hosts different order of EPs [5,10,11,14,15,22–26,29].

Now we predict the approximate second-order interac-
tion region between E1 and E2 (except E3 and E4), as
shown in Fig. 1(a), and judiciously choose a0 = 0.55, b0 =
−0.0178, r1 = 0.05, and r2 = 0.45 to enclose the associ-
ated second-order singularity. The corresponding parametric
loop is shown in Fig. 3(a). Looking at the ranges of the
x and y axes of Fig. 3(a) and y axes of Figs. 1(a i) and
1(a iii), we can confirm that the described parametric loop in
Fig. 3(a) perfectly encloses the associated singularity that is
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Re(E) Im(E) Re(E) Im(E) Re(E) Im(E)

FIG. 2. Simultaneous representation of different orders of interactions shown in Fig. 1 with respect to (a) λR, (b) λI , and (c) δ within the
chosen ranges.

responsible for the coupling between E1 and E2. Following a
very slow evolution along this parametric loop, we plot the
corresponding trajectories of Ej ( j = 1, 2, 3, 4) in Fig. 3(b).
Here we show that for one complete cycle around the singu-
larity in the parameter plane, the coupled eigenvalues E1 and
E2 are permuted by exchanging their identities and make a
complete loop in the complex-eigenvalue plane, whereas the
unaffected states E3 and E4 remain to make individual loops.
The corresponding insets in Fig. 3(b) show close-ups of the
trajectories of E3 and E4. Such unconventional state dynamics
in the complex-eigenvalue plane proves that the identified
second-order singularity between E1 and E2 behaves as an
EP2 [5,14,15,22–26]. In Fig. 3(b) we show the state dynamics
in the complex-eigenvalue plane concerning the parameter λR;
however, similar state dynamics can also be observed with
respect to the parameters λI and δ.

After exploring the EP2 in the proposed system, we look
into the parametric region where E1, E2, and E3 (except E4)

are mutually coupled [as shown in Fig. 1(b)]. To enclose
this region, we perform an encirclement process by choosing
the characteristic parameters of Eq. (8) as a0 = 0.55, b0 =
−0.028, r1 = 0.15, and r2 = 0.55. These parameters are cho-
sen in such a way that the resulting parameter space, shown in
Fig. 4(a), encloses the third-order singularity in addition to the
EP2 (between E1 and E2 only, as described in Fig. 3). Thus,
we can examine the effects of the third-order singularity even
in the presence of a different lower-order singularity. Now
following a quasistatic encirclement process along the closed
loop shown in Fig. 4(a), we plot the dynamics of Ej ( j =
1, 2, 3, 4) in Fig. 4(b) concerning the parameter λR (however,
instead of λR, we can also choose λI or δ). Here three coupled
eigenvalues E1, E2, and E3 flip successively by exchanging
their identities adiabatically in the complex-eigenvalue plane
for one complete loop in the parametric plane. However, the
noninteracting state E4 is not affected by the dynamics of
the other three states and keeps its self-identity by making

Im(E)

Im(E) Re(E)

Im(E)
Re(E)

Re(E)

FIG. 3. State-flipping between a pair of coupled states. (a) Encircling an EP2 in the (λR, δ) plane. (b) Corresponding dynamics of Ej

( j = 1, 2, 3, 4) in the complex E plane with respect to λR showing the flipping between the coupled E1 and E2. The insets show close-ups
of the trajectories of E3 and E4 for proper visualization. The state-conversion phenomena in the E plane are shown clearly inside the brown
boxes, where the corresponding SCi→ j (with {i, j} ∈ {1, 2, 3, 4}, i �= j) refers to the conversion from the ith state to the jth state. Arrows in
both (a) and (b) indicate the direction of progression.
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Re

Re

Im
Im

FIG. 4. Successive state flipping between three coupled states. (a) Parametric variation enclosing an EP2 and an EP3 in the (λR, δ) plane.
(b) Corresponding dynamics of Ej ( j = 1, 2, 3, 4) in the complex E plane with respect to λR showing the successive flipping between the
coupled E1, E2, and E3. The inset shows a close-up of the trajectory of E4 for proper visualization. Arrows in both (a) and (b) indicate the
direction of progression.

an individual loop. The magnified view of the trajectory
of E4 is shown in the inset. Such state dynamics in the
complex-eigenvalue plane, as shown in Fig. 4(b), following
the parameter space, as shown in Fig. 4(a), clearly justifies
that the enclosed third-order singularity between E1, E2, and
E3 behaves as an EP3 [10,11,29]. Here the exotic effect of
the identified EP3 on the state dynamics is robust even in the
presence of an EP2 inside the parametric loop. If we choose
a similar parameter space that only encircles the approximate
position of the EP3, even then one should observe similar state
dynamics in the complex-eigenvalue plane.

Successfully verifying the topological properties of an EP2
and an EP3, we then study the dynamics of the proposed
four-level Hamiltonian H [Eq. (1)]. We encircle the approxi-
mate position of the embedded fourth-order singularity where

all four supported states Ej ( j = 1, 2, 3, 4) are analytically
connected. Accordingly, we choose the characteristics param-
eters of Eq. (8) as a0 = 0.55, b0 = −0.019, r1 = 0.5, and r2 =
3.4. Such a set of parameters also gives the opportunity to
study the immutable behavior of the fourth-order singularity
even in the presence of the EP2 and EP3 encountered. The
chosen parametric contour is shown in Fig. 5(a). In Fig. 5(b)
we study the corresponding dynamics of Ej ( j = 1, 2, 3, 4)
following a quasistatic parametric variation along the loop
described in Fig. 5(a). As shown in Fig. 5(b), following
one complete parametric cycle, all the coupled eigenvalues
successively exchange their identities and make a complete
loop in the complex-eigenvalue plane. Here the state dynamics
are shown with respect to the parameter λR. In Fig. 5(c) we
show similar successive state-flipping phenomena concerning

Re(E) Im(E) Re(E) Im(E)

Re(E) Im(E)

FIG. 5. Successive state flipping between four coupled states. (a) Parametric encirclement around an EP2, an EP3, and an EP4 in the
(λR, δ) plane. The corresponding dynamics of Ej ( j = 1, 2, 3, 4) in the complex E plane with respect to (b) λR and (c) δ show the successive
flipping between all the coupled states. (d) Parametric encirclement similar to that shown in (a) with additional fluctuation. (e) Corresponding
dynamics of Ej ( j = 1, 2, 3, 4) in the complex E plane with respect to δ. Arrows in (a)–(e) indicate the direction of progression.
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the parameter δ, for the exact same parametric loop. Such state
dynamics confirms the exceptional nature of the embedded
fourth-order singularity as an EP4. Thus we have successfully
explored an exclusive state exchange among the four coupled
states around an EP4. We also observe that there is no effect
of the EP2 and EP3 on the state dynamics if an EP4 is
properly enclosed in the system parameter space. During im-
plementation of the proposed scheme in any realistic system,
some unwanted tolerance may appear during the parametric
encirclement process. To take into account such fabrication
tolerances, we add some random fluctuations (up to ∼10%)
on variation of the parameters following the same parametric
loop as shown in Fig. 5(a). The modified parametric loop and
corresponding state dynamics are shown in Figs. 5(d) and
5(e), respectively. Investigating the state dynamics as shown
in Fig. 5(e), we can conclude that the successive state-flipping
phenomenon around an EP4 is robust even in the presence
of the parametric fluctuation. However, this is robust until the
amount of fluctuation does not affect the approximate location
of the EP4.

Note that, to facilitate matter, we do not consider the
explicit time dependence of the parametric variation for the
proposed Hamiltonian H [given by Eq. (1)]. Thus, within
this framework, the dynamical EP encirclement process and
corresponding nonadiabatic chiral state-transfer phenomenon
cannot be realized. In this work we straightforwardly investi-
gate the dynamics of four complex eigenvalues in the vicinity
of an EP4 and investigate corresponding topological prop-
erties. Based on the proposed model, any prototypal device

having the parameters with an explicit dependence on time or
analogous length, e.g., any guided wave geometry having at
least four channels or cores, may exhibit nonadiabatic modal
propagation, which is still under investigation.

V. ANALYTIC PICTURE OF AN EP4

Here we describe the analytic structure of the eigenvalues
and the corresponding eigenfunctions near an EP4 [6]. To
describe the peculiar nature of the fourfold coalescence in
the Hamiltonian H (=H0 + λHp) [given by Eq. (1)], we
consider a particular point λc, where four levels are analyt-
ically connected, and a critical eigenvalue Ec at λ = λc. To
consider such four-level coalescence through a fourth-root
branch point, the set of equations

dk

dEk
det |H(λ) − EI| = 0, k = 0, 1, 2, 3, (9)

must be satisfied simultaneously. Now the general set of
eigenvalues Ej ( j = 1, 2, 3, 4) can be written in terms of λc

and Ec as

Ej (λ) = Ec +
∞∑

l=1

al
(

4
√

λ − λc
)l

with j = 1, 2, 3, 4. (10)

Here al represent some real constants; j = 1, 2, 3, 4 represent
the levels that are defined by the quantity ( 4

√
λ − λc) on the

first, second, third, and fourth Riemann sheets in the λ plane.
After expanding, Eq. (10) can be written more explicitly as

Ej (λ) = Ec +
∞∑

l=1

al

[
4
√

|λ − λc| exp

(
i arg(λ − λc) + 2iπ ( j − 1)

4

)]l

. (11)

Considering a critical eigenfunction at the EP4 as |ψEP4〉, the
structure of the corresponding eigenfunctions can be written
as

|ψ j (λ)〉 = |ψEP4〉 +
∞∑

l=1

(
4
√

λ − λc
)l |φk〉. (12)

Specifically considering four Riemann sheets for j =
1, 2, 3, 4, these eigenfunctions can be written more explicitly
as

|ψ j (λ)〉 = |ψEP4〉 +
∞∑

l=1

(
4
√

λ − λc
)l |φ j

k 〉, (13)

with |φ j
k 〉 = exp[i arg(λ − λc)/4 + 2iπ ( j − 1)/4]|φk〉. Now

all the possible pairs of eigenfunctions given by Eq. (13) form
the usual biorthogonal complete system for all λ �= λc as

〈ψ̃i(λ)|ψ j (λ)〉 = Nj (λ)δi, j, (14a)

∑
j

|ψ j (λ)〉〈ψ̃ j (λ)|
〈ψ̃ j (λ)|ψ j (λ)〉 = I. (14b)

As for complex λ the corresponding Hamiltonian is not self-
adjoint, in Eq. (14) ψ̃ and ψ have been used to differentiate
left and right eigenvectors. Now the scalar product given by

Eq. (14a) vanishes as

Nj (λ) ∼ ζ
(

4
√

λ − λc
)3

for λ → λc, (15)

and then replacing one of the eigenfunctions of this product
[given by Eq. (14a)] with the critical eigenfunction |ψEP4〉, we
can write

〈ψ̃i(λ)|ψEP4〉 ∼ ϑ
(

4
√

λ − λc
)3

for λ → λc, (16)

with some constants ζ and ϑ . Thus, once we consider λ → λc,

〈ψ̃EP4|ψEP4〉 = 0 (17)

even if i �= j, which means the coalescence of the eigenvec-
tors. In addition, if |φ1〉 is associated with the first power of
( 4
√

λ − λc) in Eq. (12), then 〈ψ̃EP4|φ1〉 should also vanish.
Around the EP4, we can write the |ψEP4〉 as the linear

combination of the coupled eigenvectors |χ j (λ)〉 with some
constants c j like

|ψEP4〉 =
4∑

j=1

c j (λ)|χ j (λ)〉, (18a)
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with

|χ j (λ)〉 = |ψ j (λ)〉√
〈ψ̃ j (λ)|ψ j (λ)〉

. (18b)

The solutions of Eq. (18a) while λ → λc would yield the
basic structure of the general eigenfunction with the corre-
sponding phase relations based upon the fourth roots of unity.
The possible combinations of c j are given by⎛

⎜⎜⎜⎝
c1(λ)

c2(λ)

c3(λ)

c4(λ)

⎞
⎟⎟⎟⎠ ∼ κ1

4
√

|λ − λc|

⎛
⎜⎜⎜⎝

1

e+iπ/2

eiπ

e−iπ/2

⎞
⎟⎟⎟⎠, (19a)

⎛
⎜⎜⎜⎝

c1(λ)

c2(λ)

c3(λ)

c4(λ)

⎞
⎟⎟⎟⎠ ∼ κ2

4
√

|λ − λc|

⎛
⎜⎜⎜⎝

e−iπ/2

e+iπ/2

1

eiπ

⎞
⎟⎟⎟⎠, (19b)

⎛
⎜⎜⎜⎝

c1(λ)

c2(λ)

c3(λ)

c4(λ)

⎞
⎟⎟⎟⎠ ∼ κ3

4
√

|λ − λc|

⎛
⎜⎜⎜⎝

e+iπ/2

eiπ

1

e−iπ/2

⎞
⎟⎟⎟⎠, (19c)

⎛
⎜⎜⎜⎝

c1(λ)

c2(λ)

c3(λ)

c4(λ)

⎞
⎟⎟⎟⎠ ∼ κ4

4
√

|λ − λc|

⎛
⎜⎜⎜⎝

e+iπ/2

e−iπ/2

eiπ

1

⎞
⎟⎟⎟⎠. (19d)

Here κ j ( j = 1, 2, 3, 4) are some complex constants. We also
obtain that the divergence of |χ j (λ)〉 will lead to a finite value
of |ψEP4〉. Thus, from Eq. (18), we further conclude that

4∑
j=1

c j (λ) = 0, (20)

since 〈ψ̃EP4|ψEP4〉 = 0. Mathematically, Eq. (20), which re-
sembles the chirality condition around the EP2, also leads to
the chiral nature of coupled states around an EP4.

VI. FORMULATION OF A REGION TO HOST MULTIPLE
EP4S: EXCEPTIONAL REGION

In this section we study the specific relations between the
perturbation parameters (which are connected by a specific
parameter δ) and the independent coupling control parameter
λ to formulate a specific parametric region in which the
fourth-order coupling can occur multiple times. This specific
parametric region is referred to as the EP4 region, i.e., this
region can host multiple EP4s.

To describe such a region we make some special settings
in our proposed Hamiltonian H given in Eq. (1). Initially, to
facilitate the situation, we consider ωs = 1 and rewrite Eq. (1)
as

H|ωs=1 =

⎛
⎜⎜⎜⎝

ε̃1 ωpλ 0 ωqλ

ωpλ ε̃2 ωrλ 0

0 ωrλ ε̃3 0

ωqλ 0 0 ε̃4

⎞
⎟⎟⎟⎠ + λ

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠.

(21)

Such special consideration has been made to explore the
relation of ωp to ωq and ωr over the independent variation of
λ. In this case Eq. (2) can be rewritten as

E4 + p1E3 + p′
2E2 + p′

3E + p′
4 = 0, (22)

where p1 is given by Eq. (3a) and p′
2, p′

3, and p′
4 are from

Eqs. (3b), (3c), and (3d), respectively, considering the special
setting ωs = 1. Now considering the fourfold coalescence at
an EP4, we rigorously assume a critical eigenvalue, which is
the mean of all passive elements, at the coalescing point as

Ec = 1
4 (ε̃1 + ε̃2 + ε̃3 + ε̃4), (23)

which must satisfy Eq. (22). Again, extracting the terms
containing ωp from p′

2, p′
3, and p′

4 as

p′
2 = p′′

2 − λ2ω2
p, (24a)

p′
3 = p′′

3 + λ2(ε̃3 + ε̃4)ω2
p, (24b)

p′
4 = p′′

4 − λ2ε̃3ε̃4ω
2
p − λ4

(
ω2

p + 2ωpωqωr
)
, (24c)

we can rewrite Eq. (22) as

μ1ω
2
p + μ2ωp + μ3 = 0, (25)

with

μ1 = λ2
(
ε̃3 + ε̃4 − ε̃3ε̃4 − λ2 − E2

c

)
, (26a)

μ2 = −2λ4ωqωr, (26b)

μ3 = E4
c + p1E3

c + p′′
2E2

c + p′′
3Ec + p′′

4. (26c)

Here {p′′
2, p′′

3, p′′
4} represent the parameters {p′

2, p′
3, p′

4} after
extraction of the ωp terms. If we write ωr in terms of ωq

using the relation ωr = 0.95 − (ωq + 0.1)/2 [from Eqs. (7a)
and (7b)], then Eq. (25) becomes a pure quadratic equation of
ωp having two different roots, say, ω+

p and ω−
p .

Now we consider a different special setting in Eq. (1) as
ωp = 1 to explore the relation of ωs to ωq and ωr over the
independent variation of λ. We rewrite Eq. (1) as

H|ωp=1 =

⎛
⎜⎝

ε̃1 0 0 ωqλ

0 ε̃2 ωrλ 0
0 ωrλ ε̃3 ωsλ

ωqλ 0 ωsλ ε̃4

⎞
⎟⎠ + λ

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠.

(27)

Also considering the critical eigenvalue Ec [given by Eq. (23)]
and the relation between ωr and ωq as ωr = 0.95 − (ωq +
0.1)/2 [from Eqs. (7a) and (7b)], we can derive a pure
quadratic equation of ωs having the form

ν1ω
2
s + ν2ωs + ν3 = 0. (28)

Expressions for the terms ν1, ν2, and ν3 can be obtained in
a similar way, which is described for the previous special
setting. Equation (28) has two different roots, ω+

s and ω−
s .

Now we plot the roots {ω+
p , ω−

p } [from Eq. (25), rep-
resented by dotted blue and red curves, respectively] and
{ω+

s , ω−
s } [from Eq. (28), represented by dotted magenta and

black curves, respectively] in Fig. 6(a i) for a continuous
variation of λR within [−2, 2] (with simultaneous variation
of λI maintaining the ratio λI/λR = −10−3), taking different
values of ωq. Here we investigate the intersecting region
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ReRe

(i)
(ii)

(i) (ii)

ImIm

FIG. 6. The EP4 region and the existence of multiple EP4s. (a) (a i) Variation of perturbation parameters with respect to λR forming a
3D region that hosts multiple EP4s. (a ii) Specific cross section of the region shown in (a i). (b) Existence of multiple EP4s governing the
interactions between all the coupled states with respect to (b i) λR and (b ii) δ inside the region shown in (a i).

between the trajectories of these four roots. As can be seen
in Fig. 6(a i), we observe that for ωq = −3.14, there is no
blank area under the intersections. Then, for an increasing
ωq, the area under the intersections increases up to a specific
value of ωq = 0.86 and then decreases again even we increase
ωq further. For ωq = 5.86, again there is no blank area under
the intersections. If we consider the overall range of ωq from
−3.14 to 5.86, then we can realize a closed 3D space in
Fig. 6(a i). A particular cross section of this closed 3D space,
where the area under the intersections becomes maximum,
i.e., for ωq = 0.86, is shown in Fig. 6(a ii).

We refer to this closed 3D space as the EP4 region because
within this region the proper coupling between the perturba-
tion parameters ωp, ωq, ωr , and ωs through δ for a continuous
variation of λ will happen to control the fourth-order inter-
actions between four states of the proposed Hamiltonian H
[given by Eq. (1)]. Thus, in Fig. 6(a i), we show the relation
between ωp and ωs with ωq and ωr for a wide range of λ where
ωr has been expressed in terms of ωq. If we express ωq in
terms of ωr then we can also get a region similar to that shown
in Fig. 6(a i), but in this case the ωq axis will be replaced by
the ωr axis. Note that, in this calculation, we consider two
special settings by choosing a specific pair {ωp, ωs} from four
perturbation parameters. In a very similar way we can choose
a different pair from the possible combinations to formulate
such an EP4 region. Winding around this parametric region
shown in Fig. 6(a i), we encounter three different situations for

the proposed Hamiltonian H where four states are mutually
interacting around three different EP4s. In Fig. 6(b i) we
show three such fourth-order interactions within the EP4
region with respect to λR. For proper validation, we show the
same interactions between four coupled states with respect
to δ in Fig. 6(b ii).

VII. CONCLUSION

In summary, we have reported the existence of a fourth-
order exceptional point (EP4) by considering a four-level non-
Hermitian Hamiltonian. Within the proposed framework, a
passive system, hosting four decaying states, is subjected to a
parameter-dependent perturbation. We have chosen a complex
(λ) and a real (δ) control parameter in such a way that the
system can host different orders of interaction phenomena
between the supported states in the vicinity of different orders
of singularities. We have shown the simultaneous existence
of an EP2, an EP3, and an EP4 within a certain parametric
range. Verifying the state-exchange phenomenon between two
and three coupled states around an EP2 and an EP3, respec-
tively, we have established a successive state-conversion phe-
nomenon between four coupled states following a parametric
variation around an EP4. Introducing random fluctuation in
the parametric variation around an EP4, the immutability of
this successive state-conversion phenomenon has been shown.
We have also established that the topological properties of
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an EP of a specific order are robust even in the presence
of other EPs of lower order inside the parametric loop. To
correlate the multiple locations of EP4s in a system, we have
formulated an EP4 region by the interplay between the spe-
cific relationship of perturbation parameters and the coupling
control parameters. The chiral behavior of the state-exchange
phenomenon around the EP4 has also been established. The
systems realized with such a scheme may provide a fertile
foundation to improve the quality of a wide range of EP-aided
state-of-the-art applications such as all-optical mode conver-
sions and optical sensing with enhanced sensitivity. Owing to

unconventional, richer physical aspects, an EP4 could provide
an alternative light manipulation tool in integrated circuits.
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