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Preparations and weak-field phase control can witness initial correlations
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The dynamics of a system that is correlated with an environment is almost always non-Markovian. Hence, it
is important to characterize such correlations experimentally and witness them in physically realistic settings.
One such setting is weak-field phase control where control is sought by the shaping of the phase of weak laser
pulses. In this paper, we show how weak-field phase controllability can be combined with quantum preparations
to witness initial correlations between the system and the environment. Furthermore, we show how this protocol
can be applied to almost always predict violations of the quantum regression formula.
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I. INTRODUCTION

Almost all open quantum system evolution is non-
Markovian (NM). Our ability to control and manipulate small
quantum systems coupled to mesoscopic baths brings into
focus the need to understand NM and detect it using simple
experimental protocols. In this paper, we demonstrate how
quantum control with weak (perturbative) Hamiltonian con-
trols can be used to witness both initial and intermediate
correlations. As an example of such weak control, we consider
weak-field phase control (WFPC), which is a spectroscopic
technique where the phase of weak-shaped laser pulses is
used to control the dynamics of quantum systems. Although
we will consider WFPC as the prototypical example, we
note that any perturbative control Hamiltonian satisfying the
stated assumptions can be used to witness non-Markovianity,
making this paper relevant to diverse physical systems, such as
vacancy centers [1], nano-, and optomechanical systems [2].
Examples of weak-field phase control of open quantum sys-
tems include interesting quantum biological systems, such as
bacteriorhodopsin [3], and is the relevant regime of control
for the dynamics of protein environments in normal func-
tional conditions. Furthermore, WFPC has been shown to be
directly influenced by the environment with strong solvent
dependence of the stimulated emission [4]. Computational
demonstrations of phase control were presented in Refs. [5,6].

We understand the evolution of a quantum system as non-
Markovian when the quantum system exhibits memory of past
dynamics. Examples of such practical NM can be seen in
systems with structured environments [7], quantum biology
[8], and nuclear magnetic resonance [9], making it ever more
relevant to be able to detect NM in an arbitrary physical
system. Several formal definitions of non-Markovianity have
been proposed with conceptual similarities and key differ-
ences. Definitions of NM have been formulated based on the
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nondivisibility of maps [10–13] and the backflow of informa-
tion from the environment [14,15]. These measures are part of
a hierarchy of NM [16] and follow from the presence of cor-
relations at intermediate times [17]. Other related definitions
of NM involve the presence of initial correlations [18–24].
Such initial correlations result in the backflow of informa-
tion [25]. Additionally, they violate the assumption of initially
factorized states and, hence, lead to the breakdown of several
well-known approaches to the dynamics of the reduced state,
such as Lindblad dynamics and completely positive trace
preserving (CPTP) maps [26]. Hence, it is imperative that we
understand how to characterize and control NM in physical
systems for future quantum technology applications [27].
Performing tomography on the system-environment state or
the marginal postmeasurement system state [28] is the stan-
dard way to detect NM, which is tedious for large systems.
Furthermore, since tomography of non-Markovian systems is
cumbersome [29] and witnessing it through mapping quantum
correlations [30] involves performing complicated measure-
ments, it is important to find experimentally scalable methods
to witness NM in arbitrary open quantum systems with mini-
mal assumptions about the system.

We begin by discussing the necessary conditions for ob-
serving WFPC before relating it to the correlations between
the system and the environment. We then present a method
to witness initial and intermediate correlations. Finally, we
comment on how the witnessing of correlations can be used as
a method to detect physical systems that violate the quantum
regression formula. Our results, hence, connect an important
spectroscopic tool that is of importance to a variety of experi-
mental systems to the problem of detecting and characterizing
the nature of NM.

II. MODEL

Consider an open system evolution where a quantum sys-
tem S is in contact with an environment E . The system is
composed of two manifolds, a ground-state manifold and
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an excited-state manifold. The control task is to transfer
population from the ground-state manifold to the excited-
state manifold. To this end, we define several quantities of
interest. First, let P be the projector onto the excited-state
manifold. Furthermore, let the initial joint state of the system
environment be R(0). The bare Hamiltonian that governs the
subsequent evolution is given by H0 and a control field that
is applied only on the system is given by V (t ) ⊗ I. Without
loss of generality, we take the form of the control Hamiltonian
(h̄ = 1) to be composed entirely of off-diagonal blocks in the
energy eigenbasis, namely,

V (t ) =
(

0 με(t )
με∗(t ) 0

)
. (1)

Here, μ is a Hermitian operator (such as the dipole moment
operator) and ε(t ) = F[ε̃(ω)] is a time-dependant field that
mediates the external control via the amplitude and phase
of ε̃(ω) = Ã(ω)eiϕ(ω). By phase control, we mean that the
expectation value of P is controllable by ϕ(ω). The state of
the system environment at a later time is given by a unitary
rotation, namely,

R(t ) = U (t )R(0)U †(t ). (2)

Here, U (t ) = T exp (−i
∫ t

0 du{H0 + V (t ) ⊗ I}). If the initial
system-environment state is factorizable as R(0) = ρ (S)(0) ⊗
τ (E )(0), the subsequent evolution of the marginal states is
described as a completely positive trace preserving map acting
on the initial marginal state alone.

The central quantity of interest is the rate of population
change in the excited-state manifold at time t . Consequently,
we can define the population rate in the excited-state manifold
as

ṗ(t ) := tr[P ⊗ IṘ(t )]. (3)

If the field is sufficiently weak, the dynamics of the system
is well understood by second-order perturbation theory. Fol-
lowing standard literature [31], we can write the evolution
equation for the joint state at time t in this perturbative regime
as

ṘI (t ) = −i[VI (t ), RI (0)] −
∫ t

0
du{VI (t ), [VI (u), RI (0)]}. (4)

Here, RI refers to the system environment state in the interac-
tion picture given by U0RU †

0 = RI with U0 = exp(iH0t ). The
calculation of ṗ(t ) follows by substituting Eq. (4) into Eq. (3)
in the appropriate picture.

We focus on WFPC with an eye to inspect the relationship
of the projector P, the bare Hamiltonian, and their relation
to the initial system-environment state. We begin with a brief
summary of the results relating to WFPC before we prove a
theorem relating phase control to correlations. Hence, in the
next section, we will discuss the different conditions for the
presence of weak phase control.

III. CONDITIONS FOR OBSERVING WFPC

We begin with the point of view that we have just observed
phase control in a physical system. We want to find out what
exactly caused this phase control. In Ref. [32], Am-Shallem
and Kosloff produced a no-go theorem that asserted that no

weak phase control is observed if a set of conditions are met.
Since phase control has been observed, one or more of these
conditions must have been violated. A generalized version of
these conditions are statable in the following no-go theorem:

Theorem 1. Consider an open quantum system consisting
of a ground- and an excited-state manifold. Let such a system
be subject to a joint system-environmental unitary operator
that depends on phase of a control field ϕ(t ) = F[ϕ̃(ω)]
through the Hamiltonian given in Eq. (1) with the control
objective being the population of the excited-state manifold.
Such a quantum system is not phase controllable if: (1) The
field is weak enough for second-order perturbation theory
to be a good approximation. (2) The free evolution does
not excite the system, i.e., [P ⊗ I, H0] = 0. (3) The initial
state is invariant under free evolution, i.e., [H0, R(0)] = 0,
and (4) stationarity of the bare evolution, defined as the
evolution of the system-environment state R(t1) to R(t2) only
depending on the difference t2 − t1. Condition (1) ensures
that the physics excites only the low-lying energy sectors
of the system, a condition important for several experimen-
tal scenarios [3] where (say) the molecule under consider-
ation can photodisassociate under strong fields. Condition
(2) simply is the statement that the bare evolution should
not excite the quantum system to make transitions from the
ground-state manifold |gi〉 into the excited-state manifold |ei〉.
Condition (3) asserts that the initial state should commute
with the bare Hamiltonian, but we note that, although the
off-diagonal terms in the system energy eigenbasis of the
type |gn〉〈em| are important for phase control, not all off-
diagonal terms in the energy eigenbasis produce phase con-
trol. Consider the bare Hamiltonian H0 = ω(S)(n(S) + 1/2) +∑

k ω
(E )
k (n(E )

k + 1/2) + gn(S) ∑
k x(E )

k where the excited state
is defined by the projection operator P = I − |0〉〈0|. Here,
ω(S) is the frequency of the system, and ω

(E )
k represents the

frequencies of the environment made of harmonic-oscillator
modes. If the initial state of the system environment is a
Gibbs state given by R(0) = exp(−βH0)/Z0, where Z0 =
tr exp(−βH0), then all conditions are satisfied, and there is,
indeed, no phase control. Note that the absence of phase
control survives the initial correlations between the system
and the environment, but only because the off-diagonal terms
(in the energy eigenbasis of the individual system and envi-
ronment spaces) of R(0) are all in the environment.

Condition (4) deals with stationarity, which can also be
viewed as an extension of condition (2) where we have
constrained the bare evolution of the system-environment
state. Throughout the paper, we have assumed that the bare
evolution of the system environment does not depend on
time. This assumption can always be satisfied by sufficiently
dilating the environment and is consistent with our results
as we have made no assumptions about the dimension or
structure of the environmental states in our paper. However,
if for practical or theoretical reasons, it is more convenient
to consider an environment with fewer degrees of freedom
at the cost of introducing some time dependence into the
bare Hamiltonian, then our framework would allow for this
as long as the free evolution does not excite the system for
all time t , i.e., [P ⊗ I, H0(t )] = 0. None of our methods or
results would change in this time-dependent regime if we are
able to constrain our system to follow the above assumption,
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and so without loss of generality, we assume that the bare
Hamiltonian H0 is independent of time.

In our notation, the projector is given by P = ∑
i |ei〉〈ei|,

and the control Hamiltonian can be written as

V (t ) =
∑

jk

μk jε(t )|e j〉〈gk| + μ jkε
∗(t )|gk〉〈e j |. (5)

IV. VIOLATION OF CONDITIONS

To summarize the discussion so far, WFPC can be observed
in a chemical reaction for several reasons. The first reason
is that second-order perturbation theory is not valid. This is
discounted since control fields are accessible to experimental
tuning and, hence, can always be made weak.

The second reason is that free evolution operator does not
commute with the target operator. For example, consider the
bare Hamiltonian H0 = ω(S)(n(S) + 1/2) + ∑

k ω
(E )
k (n(E )

k +
1/2) + gx(S) ∑

k x(E )
k . Let the system and environment in a

Gibbs state at temperature β−1, i.e., R(0) = exp(−βH0)/Z0.
Since such a state commutes with H0, it satisfies condition (3).
Clearly, [H0, P] �= 0, and such an objective (the population
in the excited-state manifold) is phase controllable following
Ref. [32]. Here, WFPC is due to the system-environment
Hamiltonian being off-diagonal in the energy eigenbasis of
the system. This was pointed out in Refs. [33,34] where it was
argued that the environment can assist in WFPC by having a
generic system-environment Hamiltonian that does not com-
mute with the target operator. Note that, although we have
defined P as the projector onto the excited-state manifold, the
choice of P can be determined by the experimentalists based
on what they can measure. Thus, we can always choose P such
that this condition is satisfied.

Given the condition that the bare evolution does not trans-
fer population from the ground- to the excited-state manifold,
the control Hamiltonian in the interaction picture becomes

VI (t ) = U (t )†(V (t ) ⊗ I)U (t ),

VI (t ) =
∑
jklm

μ̃m jε(t )|e j〉〈gm| ⊗ |αk〉〈αk| + H.c. (6)

Here, μ̃ jk is the matrix element of the operator μ in the
interaction picture. We can show that the phase control
arises from the off-diagonal blocks in the energy eigenba-
sis. To this end, we consider the initial state to be R(0) =∑

lmnk clmnk|gl〉〈em| ⊗ |αn〉〈αk| + H.c., where clmnk is the
coefficient of the different operators such that the matrix R(0)
is a good density matrix and {|αk〉} is a basis for the envi-
ronmental states. Taking the first-order term from Eq. (4) and
putting it in Eq. (3), we obtain ṗ = −itα

∑
lmn[μ̃mlclmnnε(t ) −

μ̃∗
ml c

∗
lmnnε

∗(t )] through

[VI (t ), RI (0)] =
∑
ilmnk

μ̃il clmnkε(t )|ei〉〈em| ⊗ |αn〉〈αk|

− μ̃∗
imclmnkε

∗(t )|gl〉〈gi| ⊗ |αn〉〈αk| − H.c.,

(7)

P ⊗ I[VI (t ), RI (0)] =
∑
ilmnk

μ̃il clmnkε(t )|ei〉〈em| ⊗ |αn〉

× 〈αk| − H.c., (8)

tr[P ⊗ IṘI (t )] = −i tr{P ⊗ I[VI (t ), RI (0)]}, (9)

p = tα

∫ t

0
−i

∑
lmn

[μ̃ml clmnnε(t ) − μ̃∗
ml c

∗
lmnnε

∗(t )]. (10)

This clearly depends on the phase. Here, tα is obtained after
tracing over the environmental state. For completeness, we
show in Appendix A that, if we start with an initial state that
is diagonal in the energy eigenbasis, there is no phase control.

Condition (3) deals entirely with the initial state of the
system and is at the heart of the phase control that will help
us witness initial correlations. Since we established that phase
control arises from off-diagonal terms, such as |gm〉〈en|, we
seek to place such terms either in the initial system marginal
ρ or the initial correlations χ . Distinguishing these two sce-
narios would directly enable us to witness correlations. To this
end, we will consider quantum preparations.

V. WITNESS OF CORRELATIONS

If a quantum system is initially correlated with the en-
vironment, then mathematical operations on the state alone
are ill defined unless the effect of such operations on the
environment are accounted for. In this context, we discuss
preparations, defined as a map from an unknown quantum
state to a known quantum state [22,23,35]. For example,
the “throw and replace” preparation is given by the action
A1[ρ] = ρ0 ∀ ρ ∈ B(H) and simply maps any initial marginal
state of the system to a fixed state ρ0. Another example of a
preparation is the disentanglement channel or the “marginal
preserving” preparation. The action of such a preparation is
to disentangle a given joint state, namely, A[R(0)] = ρ ⊗ τ

which decorrelates the system and the environment [36,37].
This preparation cannot be carried out universally with just
one density matrix [36] but can be performed easily with two
copies [38] of the system-environment density matrices as
shown in Appendix B.

Phase control can arise from off-diagonal terms of the type
|gm〉〈en| arising either in the marginal state of the system
or the correlation matrix or both. To detect where phase
controllability arises from, we consider marginal preserving
preparations A defined above. We note that before A, the
joint system-environment state is given by R(0) = ρ ⊗ τ + χ ,
whereas after A, the joint system-environment state is given
by R(0) = ρ ⊗ τ . If all of the off-diagonal terms are present
in χ , the marginal preserving preparation A erases the corre-
lation matrix, thus, removing weak-field phase controllability
from the system. On the other hand, if the off-diagonals are
all present in ρ, then the weak-field phase controllability is
not disrupted by A. Note that, although the reaction yield
(whose rate is given by ṗ) changes because ṗ depends on χ ,
in general, through tα from Eq. (10), the phase dependence of
ṗ does not change because all of the control is attributed to the
marginal state.

We propose an experiment performed on two copies [39]
of the system-environment state that can witness correlations.
The first copy is simply checked to see if the system enjoys
WFPC (see Fig. 1). On the second copy, we perform the
marginal preserving preparation on the system, and once
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FIG. 1. Weak-field phase control: The system is depicted with
a ground-state manifold and an excited-state manifold. An initially
correlated system-environment state R(0) = ρ ⊗ τ + χ is subject
to a joint unitary operator that depends on phase of a control
field ϕ(t ) = F[ϕ̃(ω)]. The system is said to be weak-field phase
controllable if the population in the excited-state manifold can be
controlled by the phase of sufficiently weak control pulses.

again check for WFPC. If we detect WFPC before A and no
WFPC after A, then we have detected the correlation matrix
whose off-diagonal terms induced WFPC. This witnessing of
the correlations is illustrated in Fig. 2. On the other hand,
if we detect no WFPC both before and after the marginal
preserving preparation A, then we cannot say that there were
no correlations between the system and the environment. We
show below that the set of all system-environment density
matrices which have a nonzero correlation matrix that cannot
be detected by the dual WFPC test outlined above is measure
zero. We express a general correlation matrix in the energy
eigenbasis of the system as

χ =
∑
lmnk

aklmn|gk〉〈gl | ⊗ |αm〉〈αn| + bklmn|gk〉〈el | ⊗ |αm〉〈αn|

+ cklmn|ek〉〈el | ⊗ |αm〉〈αn| + H.c. (11)

For there to be no |g〉〈e| terms,

bklmn = 0 ∀ k, l, m, n. (12)

With just one of these constraints, we have the remaining
subset of χ confined to a lower-dimensional subspace of all χ .
Thus, the set of χ without any |gm〉〈en| terms has Lebesgue
measure zero.

FIG. 2. Witness of correlations: A marginal preserving prepara-
tion A can be used to witness initial correlations between the system
and the environment, denoted by χ . The preparation A witnesses
correlations since the output of a marginal preserving preparation is
an uncorrelated state, and, hence, any existing correlations can be
seen in the phase controllability of the reaction products.

FIG. 3. Marginal preserving preparation illustrated with two
copies of the system-environment state. By swapping the state of
the system from one copy to another, the system state is no longer
correlated with its new environment whereas preserving the marginal
states.

We also consider the scenario where the joint state R(0) has
the relevant off-diagonal terms in both the marginal system
state and the correlation matrix. In this case, the reaction
yield p(t ) is phase controllable, but this phase controllability
arises due to both aforementioned terms. This means that the
marginal preserving preparation, which removes the corre-
lation matrix χ will change the quantitative details of the
phase controllability. This quantitative change can witness
the presence of off-diagonal elements in both terms as there
would be fewer terms in the summation in Eq. (10) after A.
For completeness, we also consider the case when the off-
diagonal terms are in the marginal system state but not in
the correlation matrix. In this case, the quantitative details of
the phase controllability will not change after the marginal
preserving preparation. We summarize this in Table I.

Another approach to detecting the correlation matrix when
both the marginal system state and the correlation matrix have
|gm〉〈en| terms is as follows. We first make two separate prepa-
rations of the system into different states |ψm〉〈ψm| ⊗ τE |ψm

where ψm ∈ g, e and τE |ψm is the marginal environmental
state given that the system is in ψm. Note that if there are
no correlations, the marginal environmental state is the same
for all such preparations of the system state. We then rotate
this prepared state by a unitary L such that the resulting
system state has off-diagonal terms of the form |gm〉〈en|. We
can then check the amount of phase control from both our
prepared and our rotated states. If both of these states have
different environmental marginals, then the amount of phase
control would be different as the trace over the environment
tα would be different. Thus, this would be a witness of initial
correlations.

Finally, we consider the correlation matrix at interme-
diate times and apply this formalism to the quantum re-

TABLE I. Table summarizing the witnessing of correlations.

Off-diagonals Not in χ In χ

Not in ρ No WFPC WFPC → no WFPC
In ρ

d p(t )
dϕ

unchanged d p(t )
dϕ

changes

062120-4



PREPARATIONS AND WEAK-FIELD PHASE CONTROL CAN … PHYSICAL REVIEW A 100, 062120 (2019)

gression formula (QRF). Consider again R(0) = ρ(0) ⊗ τ (0)
evolving as R(t1) = U0(t1)R(0)U †

0 (t1). Here, U0(t ) is the free
evolution before the laser field ε(t ) is switched on. Now,
the two-time correlation function is given by 〈B(t2)A(t1)〉 =
tr[U †

0 (t2)BU0(t2)U †
0 (t1)AU0(t1)R(0)] [40]. This can be writ-

ten as trS (BZ), where A, B are the system operators in the
Schrödinger picture and Z is given by

Z = trE [U0(t2 − t1)AR(t1)U †
0 (t2 − t1)]. (13)

If R(t1) = ρ(t1) ⊗ τ (t1), then Z = �t1→t2 [Aρ(t1)] where the
CPTP map �t1→t2 is the evolution operator for the system
dynamics. Hence, the evolution of the two-time correlation
function is governed by the same evolution equation as the
density matrix, following the spirit of Onsager’s regression
theorem. If R(t1) = ρ(t1) ⊗ τ (t1) + χ (t1), then the regression
formula almost always breaks down (see Appendix D). Thus,
QRF relies on the fact that, for all t1 < t2, the total state at
the intermediate time is assumed to be well approximated
by a product state ρ(t1) ⊗ τ (t1). The validity of this stronger
“factorization” approximation [16] needs to be ascertained
before QRF can be applied to a given physical system. This
relationship between QRF and intermediate correlations can
also be written in terms of a Markovian nondivisible master
equation where the nondivisibility is a signature of the corre-
lations shared between the system and the environment [40].
If we partition the physical system under consideration to have
a similar structure (a ground- and an excited-state manifold)
and, furthermore, if the system is not spontaneously excited
by the free evolution U0(t ), then, following our discussion,
WFPC can almost always predict the violation of the QRF.
Clearly, if we switch on a weak laser field at the intermediate
time t1, following our earlier discussion, we can witness the
correlation matrix at intermediate times. Thus, we can almost
always predict the violation of the QRF.

VI. CONCLUSIONS

Our ability to witness and characterize NM in physical
systems is crucial to understand complex quantum systems.
In this paper, we show how standard experimental techniques
can be adapted to witness correlations which are closely
related to NM. This is important since often the dynamical
modeling of a physical system follows assumptions, such
as the Born-Markov approximation. Such assumptions make
strong claims about the nature of the initial and subsequent
density matrix of the system environment. Furthermore, the
applicability of important theorems, such as the generalized
quantum regression formula almost always rely on the ab-
sence of intermediate correlations. The presence of (almost
all) such correlations can be witnessed by making a small set
of experimentally verifiable assumptions.

Finally, we note that WFPC is used here as an alternative to
quantum process tomography on initially correlated systems
[41,42]. The full reconstruction of the dynamical map for
correlated dynamics typically scales very unfavorably with
the size of the universe. Such proposals will herald new
experimental progress in the detection, characterization, and
control of non-Markovian systems.
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APPENDIX A: PROOF THAT EXCITED STATES DO NOT
PRODUCE WFPC

Consider an initial-state R(0) = ∑
jk |e j〉〈e j | ⊗ |αk〉〈αk|

which has diagonal states in the excited-state manifold with-
out loss of generality. The first-order term in the perturbative
series expansion will clearly be 0 as

[VI (t ), RI (0)] =
∑
jkl

μ̃∗
l jε

∗(t )|gl〉〈e j | ⊗ |αk〉〈αk| − H.c.

(A1)
This has no diagonal terms and, hence, its trace is zero. To
check for phase control in the second order, we evaluate it to
be

[VI (t ), [VI (u), RI (0)]]

=
∑
jklm

μ̃∗
l j[μ̃lmε(t )ε∗(u)|em〉〈e j | ⊗ |αk〉〈αk|

− μ̃m jε(t )ε∗(u)|gl〉〈gm| ⊗ |αk〉〈αk|] + H.c. (A2)

Acting on this by the projection matrix and performing a trace,
we get

tα
∑

l j

|μ̃l j |2ε(t )ε∗(u) + c.c., (A3)

where tα is the trace of the environment marginal state. We
can summarize the result as

ṗ = tα

∫ t

0
du

∑
l j

|μ̃l j |2ε(t )ε∗(u) + |μ̃l j |2ε∗(t )ε(u). (A4)

This is clearly dependent on the autocorrelation function and
has been proved to be independent of the phase by Am-
Shallem and Kosloff [32]. Thus, phase control is not possible
if the initial density matrix is diagonal.

APPENDIX B: MARGINAL PRESERVING PREPARATION

Marginal preserving preparations (MPPs) refer to a general
decorrelating map that takes a bipartite quantum system as
input and outputs the marginal states (see Fig. 3). As shown
in Refs. [36,37], this MPP cannot be universal for a single
copy of the system. In the figure, we illustrate the marginal
preserving preparation given two copies of the system with the
environment. By construction, we hence show that a universal
MPP is possible if two copies are available.
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APPENDIX C: THE SET OF ALL χ’s WITH NO |g〉〈e|
TERMS IS A SET OF MEASURE ZERO

We express a general correlation matrix in the energy
eigenbasis of the system as

χ =
∑
lmnk

aklmn|gk〉〈gl | ⊗ |αm〉〈αn| + bklmn|gk〉〈el | ⊗ |αm〉〈αn|

+ cklmn|ek〉〈el | ⊗ |αm〉〈αn| + H.c. (C1)

For there to be no |g〉〈e| terms,

bklmn = 0 ∀ k, l, m, n. (C2)

With just one of these constraints, we have the remaining
subset of χ confined to a lower-dimensional subspace of all χ .
Thus, the set of χ without any |gm〉〈en| terms has Lebesgue
measure zero.

APPENDIX D: PROOF THAT QRF ALMOST ALWAYS
BREAKS DOWN WHEN χ IS NONZERO

Here, we show that QRF is generally violated when χ is
nonzero and show explicitly when QRF can hold even with
nonzero χ . We can write the two-point correlation function as

〈B(t2)A(t1)〉 = tr[U †
0 (t2)B ⊗ IU0(t2)U †

0 (t1)A ⊗ IU0(t1)R(0)]

(D1)

= tr[U0(t1)U †
0 (t2)B ⊗ IU0(t2)U †

0 (t1)A ⊗ IR(t1)]

(D2)

= tr[U †
0 (t2 − t1)B ⊗ IU0(t2 − t1)A ⊗ IR(t1)]

(D3)

= tr[CR(t1)], (D4)

where C(t2 − t1) = U †
0 (t2 − t1)B ⊗ IU0(t2 − t1)A ⊗ I. We

can perform our experiment to detect the correlations of the
system at time t1. If the experiment detects correlations, we
can conclude that R(t1) = ρ ⊗ τ + χ for some ρ, τ , and χ .
Now, the quantum regression formula would not be violated
if and only if tr(Cχ ) = 0 [43]. Let the dimension of the
system and the environment be N and K , respectively. Thus,
we can expand C in the Fano representation to write it as
C = dI ⊗ I + ∑

i aiσi ⊗ I + ∑
j b jI ⊗ σ j + ∑

i, j ci jσi ⊗ σ j

where σi and σ j are the traceless generators of SU (N )
and SU (K ), respectively. Since both the partial traces
of χ are 0, the quantity of interest simplifies to
tr(Cχ ) = ∑

i, j ci j tr(σi ⊗ σ jχ ) = 0. In this space of operators
with both partial traces vanishing, the trace acts as an inner
product. Thus, another way to restate this equation is to say
that C is orthogonal to χ . This immediately makes the set of
all χ ’s that satisfy this equation to be of Lebesgue measure 0
if and only if ci j �= 0 for some i and j. Thus, the problem is
equivalent to showing that not all ci j’s are 0.

If the observables are stationary and do not change with
time, the quantum regression formula would, of course, hold.
However, the QRF is most useful when the observables are not

stationary. Thus, we first assume that our interaction Hamil-
tonian does not commute with the second measurement B.
We then evaluate D(t ) = U †

0 (t )B ⊗ IU0(t ) for small times dt
ignoring terms of order dt2. Here, U0(t ) = e−iH0t , and H0

can be expanded as H0 = HS ⊗ I + I ⊗ HE + ∑
i, j Hi ⊗ Hj .

Thus, up to order dt ,

D(dt ) ≈ B ⊗ I − i[H0, B ⊗ I]dt, (D5)

= B ⊗ I − i dt[HS, B] ⊗ I

− i dt
∑
i, j

[Hi, B] ⊗ Hj, (D6)

trS[D(dt )] = tBI, (D7)

trE [D(dt )] = K ∗ (B − i dt[HS, B]) − i dt
∑
i, j

t j[Hi, B],

(D8)

where t j is the trace of Hj and tB is the trace of B. The
correlations of D can be calculated as follows:

DI = D(dt ) − trE [D(dt )] ⊗ trS[D(dt )], (D9)

= −i dt
∑
i, j

[Hi, B] ⊗ Hj + i dt
∑
i, j

t j[Hi, B] ⊗ I, (D10)

= −i dt
∑
i, j

[Hi, B] ⊗ (Hj − t jI). (D11)

Thus, D can be written as DS ⊗ DE + DI where DI = 0 if and
only if [Hi, B] = 0 for all i. Intuitively, this can be viewed
as follows. If the system and the environment are interacting,
and you measure the system in a way that disturbs it, this
measurement would also disturb the environment. Finally,
we can calculate C = DSA ⊗ DE + DI (A ⊗ I). Intuitively, we
would expect this to be nonzero, in general, as a nonfactor-
izable system-environment state cannot, in general, become
factorizable by operating on the system. Writing DI and A in
the Fano representation, we get

DI (A ⊗ I) =
∑
i, j,m

amdi jσiσm ⊗ σ j +
∑
i, j

tAdi jσi ⊗ σ j, (D12)

=
∑

i, j,m,k

amdi jTimkσk ⊗ σ j + 1

2

∑
i, j

a jdi jI ⊗ σ j,

+
∑
i, j

tAdi jσi ⊗ σ j, (D13)

where we have used the property of generators of SU (N ) that
σiσm = ∑

k Timkσk + 1
2δim. Thus, we would get ci j = 0 if and

only if σi,mamdi jTimk + tAdk j = 0 ∀ j, k. This is certainly a set
of measure 0. The set of all χ ’s such that tr(Cχ ) = 0 is also
of measure 0 if ci j is nonzero. Thus, the set of all such χ ’s
is of measure 0. Additionally, note that di j is a function of
time as DI changes with time. Thus, even if this condition is
met at some instant of time, it will not hold true at some later
time. As any experiment would involve a sampling at differ-
ent instants of time, this would not effect any experimental
data.
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