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Narrow peaks of full transmission in simple quantum graphs
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This work deals with quantum graphs, focusing on the transmission properties they engender. We first
select two simple diamond graphs, and two hexagonal graphs in which the vertices are all of degree 3, and
investigate their transmission coefficients. In particular, we identified regions in which the transmission is fully
suppressed. We also considered the transmission coefficients of some series and parallel arrangements of the
two basic graphs, with the vertices still preserving the degree 3 condition, and then identified specific series and
parallel compositions that allow for windows of no transmission. Inside some of these windows, we found very
narrow peaks of full transmission, which are consequences of constructive quantum interference. Possibilities of
practical use as the experimental construction of devices of current interest to control and manipulate quantum
transmission are also discussed.
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I. INTRODUCTION

In the past 20 years, quantum graphs [1,2] have been used
to describe the behavior of quantum particles in idealized
physical networks. The interest is due to the richness of
the subject, which can be related to a variety of issues in
physical and mathematical sciences. For instance, it has been
simulated experimentally in microwave networks [3] and it is
also possible to synthesize quantum nanowire networks [4,5].
From the fundamental point of view, quantum graphs have
became a test bed for studying different aspects in quantum
mechanics and, due to the complex nature of the problem,
the development of a unique method that holds for all graphs
is difficult. Fortunately, however, there are some techniques
developed in the literature that are able to deal with this
problem [6]. Among the several methods to deal with quantum
graphs, an interesting one is the Green’s function approach,
first proposed in [7] and further explored in [8,9]. In this work
we shall deal with specific scattering properties of quantum
graphs, which are identified by two leads and sets of vertices
and edges, to be described in the next section. The focus is
mainly on the transmission properties of simple graphs, owing
to the possibility of applications of physical interest. We inves-
tigate the global transmission amplitude of quantum graphs as
a function of the wave number of the incident signal using the
Green’s function approach developed in [8,9]. In particular,
closer attention is given to the search for a new effect, which
somehow reminds us of the Braess paradox [10], and to the
possibility to identify regions of wave numbers where the
transmission coefficient increases significantly. The study will
lead to the identification of peaks of quantum interference of
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very narrow width, similar to Feshbach resonances [11], in
distinct arrangements of the basic structures to be studied in
this work.

As one knows, the Braess paradox was first discussed by
Braess in 1968 [10], and further studied in Refs. [12,13].
Originally, it showed that adding an extra road to a congested
road traffic network to improve traffic flow may sometimes
have the reverse effect, impeding the flow. The paradox was
also discussed in several other contexts [14–18], in particu-
lar in [14], in which the quantum transport in mesoscopic
networks with two and three branches revealed the trans-
port inefficiency, confirmed by a scanning-probe experiment
using a biased tip that modulates the conductance variation
in terms of the tip voltage and position. It also appeared in
[15] in a quantum ring of finite width, and in [18] in the
context of two quantum dots that are coupled together. Besides
exploring global transmission properties of quantum graphs,
we also concentrate on the presence of very narrow peaks
of full transmission. The narrowness of the peaks reminds
us of Feshbach resonances [11], which, in the context of
quantum graphs, were investigated before in Ref. [19] in a
ring graph with edges with unequal sizes. Motivated by the
above reasonings, in this work we follow the interpretation
that the addition of a new path may under specific conditions
enlarge the complexity of the system, opening new possibil-
ities that may include unexpected responses. The effects that
we are interested in here appear in the search for the global
transmission related to simple quantum graphs in the presence
of quantum interference.

The investigation deals with quantum graphs, but in this
work we consider simple graphs that are formed by ar-
rangements of ideal leads, edges, and vertices. This means
that neither the vertices nor the leads and edges allow for
vanishing of the quantum probability and, in this sense, any
linear arrangement of leads, edges, and vertices is trivial,
since it gives full global transmission (see below). To go
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further on out of the trivial situation, we have to consider the
possibility of a vertex being connected by a triple junction,
in the form of a Y-shaped configuration, which is usually
called a vertex of degree 3. In this case, the signal reaching
a vertex has the possibility to reflect and return, and two
possible paths of transmission, and this introduces nontrivial
quantum effects that can appear in the global transmission
coefficient of the graph. Of course, there is a diversity of
possibilities of constructing graphs with vertices connected by
two, three, four, and more edges, and so in this work we con-
sider the two simple possibilities of diamond and hexagonal
arrangements. In the hexagonal case, we pay special attention
to two arrangements, composed of two leads, six vertices,
and eight edges, with all the vertices having degree 3. We
consider the hexagonal graphs in order to eliminate effects
that could appear due to the presence of vertices with higher
degrees, which seem to prefer backscattering [20]. We call
this the degree 3 condition, and use it to simplify the current
investigation. The presence of vertices of degree 3 leads us
to two distinct graphs that can be used to build arrangements
that give interesting responses, which can be of practical use
in the construction of simple devices with important quantum
properties. The two graphs to be considered in this work are
hexagonal graphs with some internal structure, and this will
also be of current interest, since hexagons are important to
tile the plane to lead to hexagonal structures with vertices of
degree 3, which are important part in nanotubes [21] and in
graphene sheets [22,23].

In order to deal with the above issues and implement the
investigation, we organize the work as follows. In the next
Sec. II, the main properties of quantum graphs are described,
and there one concentrates mainly on the global transmission
of simple graphs via the Green’s function approach. In Sec. III
we introduce some simple graphs and describe and compare
their global transmission coefficients. This investigation al-
lows that we identify another effect, which is periodic and
appears under the presence of quantum complexity. Also, in
Sec. IV we deal with some simple composition of two distinct
graphs and study some simple series and parallel arrange-
ments of them. This will lead us to the presence of narrow
peaks of full transmission, so in Sec. V we further investigate
the issue to search for the presence of very narrow peaks of
quantum interference. In Sec. VI we end the work, adding
some comments and conclusions, paying further attention to
the possibility of using the results of the work to applications
of current interest to quantum transport.

II. PROCEDURE

In this section, we review some concepts of graphs as used
in this paper. In particular, we deal with quantum effects and
the use of the Green’s function approach for the calculation
of the global transmission properties of quantum graphs,
paying closer attention to the case of graphs with simple
arrangements of leads, edges, and vertices.

A. Quantum graphs

A graph G(V, E ) consists of a set of vertices V (G) =
{1, . . . , n} and a set of edges E (G) = {e1, . . . , el} [24]. The

graph is described in terms of the adjacency matrix A(G) of
dimension n × n where the i jth element is defined by

Ai j (G) =
{

1, if {i, j} ∈ E (G),
0, otherwise. (1)

The degree of a vertex i is defined as di = ∑n
j=1 Ai j (G). We

denote the set of neighbors of a vertex i by Ei = { j : es =
{i, j} ∈ E (G)} and the set of neighbors of i but with the ver-

tices {k1, . . . , kdi} excluded by E
k1,...,kdi
i = Ei \ {k1, . . . , kdi}. A

metric graph �(V, E ) is a graph in which is assigned a positive
length �es ∈ (0,+∞) to each edge. When a single ended edge
es is taken as semi-infinite (�es = +∞), it is called a lead.
A quantum graph is a metric graph in which it is possible to
define a Schrödinger operator along with appropriated bound-
ary conditions at the vertices [2]. In general, the Schrödinger
operator along the edge {i, j} has the form

Hi j = − h̄2

2m

d2

dx2
+ Vi j (x), (2)

where Vi j (x) is the corresponding potential. In this sense,
we can model distinct edges with the inclusion of different
potentials; in particular, one can add a square well which will
modify the transmission through the edge and so the global
transmission through the graph. In this work, however, we
shall take Vi j (x) = 0, that is, we shall use the free Schrödinger
operator.

B. Green’s function approach

In the context of quantum graphs, the exact scattering
Green’s function for a quantum particle of fixed energy E =
h̄2k2/2m, with initial position xi in the lead ei and final
position xn in the lead en, is given by a sum over all the
scattering paths connecting the points xi and xn, where each
path is weighted by the product of the scattering amplitudes
gained along the path [8]. The reflection and transmission
amplitudes, ri and ti, at the vertex i, are determined through
the boundary conditions defined at the vertex i. With the help
of the adjacency matrix of the graph, it was shown in [9] that
this sum over the paths can be written in the form

G�in = m

ih̄2k
T�in (k)eik(xi+xn ), (3)

where

T�in (k) =
∑
j∈Ei

tiAi j p(n)
i j (4)

is the transmission amplitude. The p(n)
i j is the family of paths

between the vertices i and j, which are given by

p(n)
i j = zi jr j p(n)

ji +
∑

l∈Ei,n
j

zi jt jA jl p(n)
jl + zi jtnδ jn, (5)

with zi j = eik�{i, j} . The family p(n)
ji is given by the same expres-

sion above, but with the swapping of indices i and j. Then,
in each vertex i we associated one p(n)

i j for every j ∈ Ei. In
this work, we shall employ the above approach to determine
the transmission coefficient |T�in (k)|2 for different quantum
graphs and then discuss their properties. A useful quantity
in our discussion is the difference between the transmission
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coefficients of two quantum graphs, � and �′, and will be
represented by

���′ (k) = |T� (k)|2 − |T�′ (k)|2. (6)

Here, we shall consider equilateral quantum graphs where the
length of all the edges are the same and set them to �, such
that zi j = z = eik�.

C. Quantum amplitudes

Let us now discuss the possible boundary conditions. As
one knows, a common vertex condition used is the so-called
δ-type condition defined by [25]

ψ{i, j} = ϕ j, ∀i ∈ Ej,∑
i∈Ej

ψ ′
{i, j} = α j ϕ j, (7)

where ϕ j is the value of the wave function at the vertex j
and α j is a real parameter related to the strength of the δ-type
interaction. The prime in (7) represents the derivative, which
should be taken in the outgoing direction, i.e., from the vertex
into the edges or leads. Using this boundary condition the
quantum amplitudes have the form [8,9]

r j (k) = α j − (d j − 2)ik

ikd j − α j
, (8)

t j (k) = 2ik

ikd j − α j
. (9)

Among the choices for the value of α j , an interesting one
is α j = 0,∀ j. In this case, we are considering no barrier at
the vertices, resulting in the so-called Neumann-Kirchhoff
boundary condition. As a result, the quantum amplitudes have
the property of being independent of k,

r j = 2

d j
− 1, t j = 2

d j
, (10)

showing that the reflection amplitude increases with the
increase of the degree of the vertex. When a Neumann-
Kirchhoff boundary condition is used at a vertex of degree
2, the transmission amplitude is equal to 1 and the vertex
becomes an ordinary point joining the edges. Such vertices
are called Neumann vertices [2]. In what follows, we shall
adopt vertices of degree 3 with the Neumann-Kirchhof bound-
ary condition. In this case the reflection and transmission
amplitudes are explicitly given by r j = −1/3 and t j = 2/3,
respectively.

With the above conditions, we shall then be considering
quantum graphs with ideal leads and edges, and with vertices
that obey the Neumann-Kirchhoff boundary conditions. This
is the simplest possibility, and we shall mainly consider
vertices of degree 3 to avoid accounting for effects due to
vertices of different degrees.

III. SIMPLE GRAPHS

Let us now concentrate on simple graphs. One uses the
symbol • to represent vertices, and straight line segments to
stand for the edges and leads, and first considers the graph
−•− with two leads—one at the left and the other at the right

FIG. 1. Illustration of the diamond and hexagonal graphs.

of the vertex. As we have already commented, this is trivial
and gives |T−•−(k)|2 = 1, since we are considering a Neumann
vertex. If we go further and consider the graph −•−•− we
also get full transmission, |T−•−•−(k)|2 = 1. In view of this, we
have to consider vertices with higher degrees leading to more
complex graphs to open the possibility of having nontrivial
transmission effects, so we depict the diamond (D) and the
hexagonal (H) graphs that are shown in Fig. 1. In this case,
the transmission amplitudes can be written as

TD(k) = 8z2

9 − z4
, (11)

TH (k) = 8z3

9 − z6
, (12)

and the corresponding transmissions coefficients are shown in
Fig. 2.

The transmission coefficients are no longer nontrivial, and
the effects are due to the presence of the left and right vertices
of degree 3. Here we notice that since we are considering
Neumann vertices, the difference between the diamond and
hexagonal graphs depicted in Fig. 1 is only due to the dif-
ference between the two internal paths, which is at the ratio
2/3, as it nicely appears when one accounts for the difference
between the periodicity of the transmission of the diamond
and the hexagonal graphs that appear in Fig. 2.

Since the presence of vertices of degree 3 induces nontriv-
ial transmission, we then focus on this and consider the new
graphs which are depicted in Fig. 3. They are all constructed
with vertices of degree 3 in the diamond and hexagonal
families. Since there is only one graph in the diamond family,
we cannot compare the transmission behavior of two distinct
diamond graphs with vertices of degree 3. However, if we
relax the degree 3 condition and consider the two diamond

FIG. 2. Transmission coefficients of the diamond (blue solid
line) and hexagonal (violet dotted line) graphs shown in Fig. 1.
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FIG. 3. Graphs with vertices of degree 3 in the diamond and
hexagonal families.

graphs that are depicted in Figs. 1 and 3, we see that the
diamond graph D̃ of Fig. 3 has an extra edge which is not
present in the diamond graph D of Fig. 1, so it seems that
the transmission through it would always be greater than the
other one, which was already calculated above. To see how
this works, we calculate the transmission coefficient of the D̃
graph, which is given by

TD̃(k) = 16z2(1 + z)

27 + 9z + 6z2 − 6z3 − z4 − 3z5
. (13)

We then depict the difference �D̃D(k) in Fig. 4 and the result
shows that the transmission through D̃ is not always greater
than the one through D. The effect shows that the addition
of an extra edge in the graph D to make it the D̃ graph does
not always improve the transmission probability. We believe

FIG. 4. Transmission coefficient of the D̃ graph (top) and the
difference between the transmission coefficients of the D̃ and D
graphs.

FIG. 5. Transmission coefficients of the two structures, the
hexagonal square (blue solid line) and crossed (violet dotted line)
arrangements Q and X that appear in Fig. 3.

that this is a manifestation of the quantum complexity that
appears in the D̃ graph. However, since the two graphs D and
D̃ have different numbers of edges, and vertices with different
degrees, we cannot separate how these effects contribute to the
final transmissions. Due to this, from now on we concentrate
on the transmission coefficient of the two graphs Q and X of
the hexagonal family that are depicted in Fig. 3 to compare
their properties. We stress that all the vertices of these two
hexagonal graphs have degree 3 and, also, they have the same
number of edges and vertices. This means that our results
will be contaminated neither by effects of vertices of different
degrees nor by effects of different number of vertices and
edges. The transmission amplitudes for these two graphs are
given by

TQ(k) = 32z3(1 + z)

(9 + 4z2 + 3z4)(9 − 3z + z2 − 3z3)
, (14)

TX (k) = 64z3

81 + 9z2 − 17z4 − 9z6
, (15)

and the corresponding transmission coefficients are displayed
in Fig. 5, unveiling interesting nontrivial properties which we
discuss below.

As we noted, the two transmission coefficients are periodic
so we display them in Fig. 5 for the wave number in the
interval of periodicity of the Q graph. We also observe that
the transmission coefficient of the Q graph is more complex
than the other one. More importantly, it may vanish in a large
interval which we call the suppression band, inside its interval
of periodicity. The results also show that there are regions in
k space where the transmission is more or less significant for
the Q than the X graphs. That is, |TQ(k)|2 may be greater or
smaller than |TX (k)|2, depending on the interval in k space in
consideration.

These results open the possibility to study the presence
of an effect that is similar to the one that appeared above,
with the two diamond graphs, but now with the vertices
with the same degree. Here we depict the difference �QX (k)
between the two coefficients to see regions where one is
higher than the other. This is shown in Fig. 6, and we can
observe that for k� in the interval 1.15215 < k� < 5.13103
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FIG. 6. Difference between the transmission coefficients of the
Q and X graphs.

the transmission of the X graph is higher than the transmission
of the Q graph. However, for 0 < k� < 1.15215 and for
5.13103 < k� < 2π one sees that the transmission for the Q
graph is greater than the one for the X graph, and this is
a manifestation of the quantum complexity related to these
two graphs. In regard to the numerical results, all of them
were obtained using the commercial Mathematica software by
using standard techniques with precision of twelve decimal
digits, and we decided to use only five digits in the final
results.

To get further insight on the result depicted in Fig. 6, let
us now briefly discuss the transmission of the signal at the
classical level: one supposes that a classical signal enters the
graph at the left (right) lead and leaves it at the right (left) lead;
one notices from Fig. 3 that for the Q graph the shortest trajec-
tory requires three steps, and that there are two distinct pos-
sibilities; for the X graph, the shortest trajectory also requires
three steps, but now there are four distinct possibilities. This
suggests that the classical flux through the X graph seems to
be more efficient than the other one. However, the problem is
more complex than this, because of the presence of reflection
at the vertices. For instance, the next shortest trajectory for the
Q graph requires four steps, and there are four possibilities; for
the X graph there is no trajectory with four steps. In fact, the X
graph has only trajectories with odd number of steps, whereas
the Q graph has both even and odd number of steps. Thus,
even classically, it is hard to decide which of the two graphs is
more efficient to transmit the signal. At the quantum level the
problem is harder, because of the quantum interference, and
the result displayed in Fig. 6 shows that the answer depends on
the wave number. Since the two graphs have the same number
of edges and vertices and all the vertices have degree 3, it
is the topological difference between these two graphs that
leads to different transmission coefficients, which depends on
the wave number and the quantum complexity involved in the
problem.

The result in Fig. 6 suggests that both the Q and X graphs
are complex enough to give rise to other effects of current
interest. They then motivate us to go further and explore other
possibilities. In the current investigation we explore the fact
that the Q graph engenders a band of no transmission in k
space, as it is easily identified from the blue solid line depicted

in Fig. 5. This is the suppression band, and it is an interesting
quantum effect that can be used in different applications. The
simplest possibility is to use it to block the passage of a
signal through the quantum graph, which can be seen as a
device of direct interest to the construction of tools that allow
for the control and manipulation of quantum transmission
probability. Yet more interesting is to see the two quantum
graphs as two independent quantum devices, which can be
used for the construction of others, composed devices, and
this will be investigated in the next section.

IV. GRAPH CIRCUITRY

Let us now use the two quantum devices, the Q and
the X graphs, to build compound structures and study their
transmission properties in light of the above investigation.

A. Simple series circuits

We first consider the series composition, of the forms
S(QQ), S(QX ), S(XQ), and S(XX ), where S(QX ) indicates
the series composition of the graph Q with the graph X ,
keeping the degree 3 condition of the vertices, which in the
series arrangement occurs very naturally. We then calculate
and display the transmission coefficient for all the cases in
Fig. 7. Although the square and crossed graphs are different,
the compound transmission does not depend on the order
one chooses each other, so we say that S(QX ) = S(XQ). We
compare the transmission displayed with the blue solid line
in Fig. 5 with the one in the top panel in Fig. 7 to see that
the series composition of two square graphs enlarges a bit
the suppression band in k space around k� = π , so it is a
bit more efficient to block the passage of a signal. On the
other hand, the violet dotted line that appears in Fig. 5 and
the bottom panel in Fig. 7 show the appearance of extra
maxima in the transmission coefficient of the S(XX ) graph.
This composition also deepens the main minima, approaching
them to suppression. The composition S(QX ) which appears
in the middle panel in Fig. 7 is also interesting: it shows an
almost invisible substructure in the suppression band, and this
suggests that we further explore this effect.

To do this, we add another basic device to the series
structure, so we consider compound structures with three
devices. In this case there are several possibilities and in Fig. 8
we depict the three series arrangements S(QQQ), S(QXQ),
and S(XXX ), which are important for the considerations that
follow below. The top and bottom panels in Fig. 8 show a
behavior which appeared before, when we compared with
Figs. 5 and 7. In particular, in the top panel in Fig. 8, one
sees that the transmission coefficient vanishes completely
in some interval in k space, so we can also use this in
applications of current interest. Moreover, the behavior that
appears in the middle panel in Fig. 8 reveals an interesting
quantum behavior—the presence of two very narrow peaks of
full transmission inside the suppression band. They are very
interesting and are consequences of the constructive quantum
interference in the underlying graph, which we further study
in Sec. V.
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FIG. 7. Transmission coefficients of the three compound struc-
tures, the series arrangements S(QQ), S(QX ), and S(XX ), depicted
from top to bottom, respectively.

B. Simple parallel circuits

Let us now study the case of parallel circuits. Here the
condition that we only have vertices of degree 3 selects some
specific combinations of the elementary devices. The simplest
parallel possibilities are the P(QQ), P(QX ) = P(XQ), and
P(XX ) structures, where P is used to indicate parallel arrange-
ments. The P(QX ) arrangement, for instance, is constructed
as follows: one puts the Q graph on top of the X graph,
without contact, and at the center of the vertical arrangement,
at the left and right one adds two extra vertices, the one at
the left (right) being connected with a left (right) lead, and
then connected with two other edges to keep the degree 3
condition, one going up to the Q graph, and the other going
down to the X graph.

We study the three distinct possibilities and in Fig. 9
we depict the transmission coefficients for the three distinct
cases. We note that both the top P(QQ) and bottom P(XX )

FIG. 8. Transmission coefficients of the three compound struc-
tures, the series arrangements S(QQQ), S(QXQ), and S(XXX ),
depicted from top to bottom, respectively.

figures give results somehow similar to the respective cases
in the series arrangements shown in Fig. 7; compare the top
results and the bottom results of both Figs. 7 and 9. However,
the middle panel which describes the P(QX ) possibility is
different from the case displayed in the middle panel of Fig. 7,
so we go further and study other compositions.

C. Other arrangements

The above results suggest that we study other
possibilities. The series and parallel arrangements are more
intricate than the elementary Q and X compositions, and
they require more complicated numerical calculations.
However, if one keeps the condition of vertices of
degree 3, there are several possibilities and we can,
for instance, consider the parallel structures P(QQ),
P(QX ), and P(XX ) in parallel and in series. Examples
are the cases P(P(QQ)P(QX )) and P(P(QX )P(XQ)),
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FIG. 9. Transmission coefficients of the three compound struc-
tures, the parallel arrangements P(QQ), P(QX ), and P(XX ), de-
picted from top to bottom, respectively.

which represent parallel arrangements of parallel
arrangements, etc., and S(P(QQ)P(XX )P(QQ)), which
represents a series arrangement of three parallel arrangements,
etc.

We have studied several cases and, in comparison with the
previous results, we found no qualitatively different behavior.
To exemplify the findings, let us consider for instance the
case of a parallel composition of two parallel compositions
and a series composition with three structures of two parallel
compositions. The results are depicted in Fig. 10, for the cases
P(P(QX )P(XQ)) and S(P(QQ)P(XX )P(QQ)), respectively.
We note that the transmission coefficients for these new
compositions add no different qualitative effects, in compar-
ison with the previous results, so we end the calculations of
transmission coefficients here.

FIG. 10. Transmission coefficients of two compound
structures, the parallel arrangement of two parallel structures,
P(P(QX )P(XQ)), and the series arrangements of three parallel
structures S(P(QQ)P(XX )P(QQ)), depicted from top to bottom,
respectively.

V. INTERFERENCE

We see, from the transmission coefficients of the several
arrangements already studied, the appearance of peaks of full
transmission in the region around the center (k� = π ) of the
periodic region in k space, which we now want to investigate
more carefully.

We first focus on the central peak that is displayed with
the violet dotted line in Fig. 5. We do this by looking at the
poles of the Green’s function which, for the X graph depicted
in Fig. 3, are all contained in the roots of the denominator
of Eq. (15) [8]. Here we identified a pole at k� = π , so one
extends the investigation to the complex plane to find that
this pole has a width that measures wX = 0.54408. Similarly,
we also confirmed the presence of the pole at k� = π in
the bottom panel in Fig. 7, but now the width is wS(XX ) =
0.25037.

The more interesting case appears from the middle panel
in Fig. 8 and in the bottom panel in Fig. 10. There are two
similar peaks which engender very narrow widths, so we
further examine the corresponding Green’s function and find
the two poles that appear in the middle panel in Fig. 8: they
are located at k� = π ± 0.33250, and have very narrow width,
which obeys w < 0.00030. They are peaks of full transmis-
sion that appear inside the band of full suppression, and can
be interpreted as peaks of constructive quantum interference.
A similar situation appears in the bottom panel in Fig. 10.
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The presence of the two peaks symmetrically located around
k� = π is a consequence of the time reversal symmetry of
the quantum graphs, which does not distinguish the signal
entering from the left (right) and leaving to the right (left).
Note that the time reversal symmetry is present in all graphs
here studied; it shows that |T (π + k�)|2 = |T (π − k�)|2, for
k� ∈ [0, π ], for all the global transmission coefficients.

VI. DISCUSSION

In this work we studied global transmission properties of
some simple quantum graphs. We started with diamond and
hexagonal graphs and, in the diamond family of graphs, we
compared the transmission coefficients associated with the D
and D̃ arrangements that are depicted in Figs. 1 and 3. The
difference �D̃D(k) between the two transmissions appears in
Fig. 4, showing that it can be positive or negative, depending
on the wave number of the incoming signal. For the D and
D̃ graphs, however, the degree of the vertices and the number
of edges are not the same, so we moved on to the hexagonal
family of graphs. In this case, the Q and X arrangements ap-
peared in the study of simple graphs that engender nontrivial
behavior, and they are all constructed under the condition that
the vertices are of degree 3. This condition is imposed to
circumvent the presence of effects due to vertices of different
degrees that could perhaps complicate the understanding of
the results.

With this condition at hand, we ended up with the two
quantum graphs of the hexagonal family which are displayed
in Fig. 3, represented by Q and X , respectively. We calculated
the corresponding global transmission coefficients |TQ(k)|2
and |TX (k)|2 and examined some of their properties. In partic-
ular, we showed the presence of the effect that the difference
between the two global transmissions �QX (k) displayed in
Fig. 5 can be positive or negative, depending on the value
of the incoming wave number. Although this is similar to the
case studied before, related to the diamond graphs D and D̃,
here the Q and X graphs contain the very same number of
leads, vertices, and edges, with the vertices with the same de-
gree and edges with the same length. In this sense, the Q and X
graphs are different because of the distinct connections among
their vertices, which change their topological structures.

We also found a surprising quantum behavior, which con-
cerns the presence of a suppression band, that is, a large region
in wave number, where the global transmission probability
is fully suppressed by the Q graph. Motivated by this, we
explored other possibilities, using the two graphs as elemen-
tary devices that could be added together in series and/or
parallel, to form composed structures. We studied several
arrangements, finding results that can certainly motivate the
construction of the apparatus of current interest for controlling
the transmission probability. Also surprising, we showed how
to compose the elementary devices to find very narrow peaks
of constructive quantum interference inside the suppression
band of the Q device. We investigated the values and widths
of these peaks and showed that they are indeed very narrow.

If one thinks of the two quantum graphs as two elementary
devices, it is possible to probe them following the lines
of Ref. [3], in which experimental and theoretical results
show that microwave networks can simulate quantum graphs

with time reversal symmetry. This is an interesting line of
investigation, and is further connected with another very
recent investigation [26] on graphs and possible simulations
via microwave networks. One can also think of considering
networks of fibers and splitters, as considered in [27]. In
this case, in the simplified version we may say that when
a signal reaches a splitter, it is transmitted towards one of
the connected fibers chosen at random, with the transition
probability given in terms of splitting factors, with the signal
flowing as a random walk on the graph [27,28].

Another important line of research concerns the construc-
tion of quantum devices at the nanometric scale, simulating
the two quantum graphs Q and X with quantum dots con-
nected by edges and leads; see, e.g., Refs. [4,5] and references
therein. The idea is to suppose that electrons in the incoming
lead reach a quantum dot from one side and leave the device
through the quantum dot at the outgoing lead on the other
side, after interacting with the four other quantum dots that
are arranged to form the two hexagonal graphs displayed in
Fig. 3. Here the matter flow can be controlled by chemical
potentials of electronic sources that are attached to the left and
right leads. From the practical perspective, the experimental
construction of devices based on quantum dots seems to face
another challenging obstacle, which concerns the graph X ,
that requires two edges that cross without touching each other.
To circumvent this, one has to leave the planar perspective to
build spatial devices. There is no problem here, if one thinks
of modeling microwave structures like the ones described in
[3,26] and, also, the fabrication of lattices of optical fibers
and splitters in the form recently suggested in [27,28]. An-
other possibility of practical interest is to leave the Q and X
arrangements and examine simpler graphs, with the focus on
the construction of simpler quantum devices at the nanometric
scale. The challenge here is to conciliate quantum complexity
with geometric simplicity: complexity that is required for
the enhancement of the quantum interference and simplicity
which is welcome for the fabrication of quantum devices.

The theoretical perspective engenders other realizations,
an interesting one being the study of more realistic graphs.
Another feasible possibility is the inclusion of potentials along
the edges and/or barriers at the vertices of the quantum
graphs. This can be implemented with the addition of real
parameters related to the potentials added along the edges,
as commented on below Eq. (2), and the strength of the
δ-type interaction at the vertices; this last possibility is con-
trolled by Eqs. (7), (8), and (9), and its realization follows
straightforwardly. In the case of electronic transport, we can
also add appropriate magnetic fields, which would break
the time reversal symmetry and add new effects. Another
line of investigation concerns the search for other graphs,
with similar properties but distinct topologies, which could
suggest the construction of other experimental devices of
direct interest to the control and manipulation of quantum
transmission.

Before ending the work, we mention that, besides the very
narrow peaks of full transmission that we found in this work,
we have also observed some sharp peaks of full suppression
in Figs. 9 and 10, and they also pose some issues, in particular
related to their origin and narrowness. We believe that the
peaks of full transmission and suppression deserve further
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attention and an investigation focusing on them is now under
consideration, with special attention to the possibility to relate
the topological structures of the Q and X graphs to the
topological resonances considered in [29].
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