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Out-of-time-order correlators (OTOCSs) play an increasingly important role in different fields of physics and
in particular they provide a way of quantifying information scrambling in quantum many-body systems. We
verify that an OTOC can be used to probe an excited-state quantum phase transition (ESQPT) in a quantum
many-body system. We examine the dynamical properties of an OTOC in the Lipkin-Meshkov-Glick model,
which undergoes an ESQPT, using the exact diagonalization method. We show that the long-time evolution of
the proposed OTOC is remarkably different in the different phases of the ESQPT. In consequence, we put the
long-time averaged value of the OTOC forward as a possible ESQPT order parameter. Our results highlight the
connections between OTOCs and ESQPTs, opening the possibility of using OTOCs for accessing experimentally

ESQPTs in quantum many-body systems.
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I. INTRODUCTION

The concept of an excited-state quantum phase transition
(ESQPT) was introduced as a generalization of the ground-
state quantum phase transition (QPT) [1] to the realm of
excited states. Their occurrence is associated with a singular
behavior of the excited-state level density at a given critical
energy, once a Hamiltonian control parameter passes through
a critical value associated with the ground-state QPT [2,3].
This divergence of the density of states at the critical energy in
the mean-field limit is the most remarkable feature of ESQPT's
[2-8]. In recent years, ESQPTs have been studied in several
quantum many-body models (see, e.g., Ref. [6] and refer-
ences therein) and have also been identified experimentally
in different systems [9-13]. Furthermore, the impact of an
ESQPT in the system nonequilibrium dynamics has attracted
much attention [14—-18]. It has been found that the evolution
of isolated systems can be substantially slowed down [6,19],
decoherence processes in open systems can be enhanced
[20,21], and changes in the quantum work distribution can
occur [22] under an ESQPT. In particular, an abrupt increase
of the entropy at the critical point of the ESQPT has been re-
vealed [23], which means that ESQPTs strongly influence the
propagation of quantum information in many-body systems.

The out-of-time-order correlator (OTOC) was originally
introduced by Larkin and Ovchinnikov in the context of super-
conductivity studies [24]. It has recently been rekindled [25]
because it offers an interesting perspective on the occurrence
of quantum chaos and on the exploration of information
propagation in quantum many-body systems (see, e.g., [26,27]
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and references therein). Possible OTOC realizations are cur-
rently being investigated in many fields, offering different and
interesting insights into physical systems. Some of the most
important results involve the dynamics of quantum informa-
tion [27-33]. The OTOC study has renewed the interest in the
correspondence between classical and quantum chaos [34—45]
with some analytical breakthroughs in the field of high-energy
physics, mostly regarding the black hole information prob-
lem [46—48] and the Sachdev-Ye-Kitaev model [49,50]. The
OTOC:s have also found application in condensed-matter sys-
tems (see, e.g., Refs. [51-60]) as well as in statistical physics
[61-63]. It has been verified that OTOCs can be employed
for the characterization of phase transitions in quantum many-
body systems, e.g., ground-state QPTs [55,57], many-body
localization transitions [58], ergodic-nonergodic transitions
[64,65], and dynamical phase transitions [57]. Moreover,
recent progress in the experimental detection of quantum
correlations and in quantum control techniques applied to
systems as atoms, molecules, or photons has led to the direct
observation of an OTOC in spin [66,67] and trapped ions
[68] systems. Finally, a relationship between the OTOC for
projection operators and the number of principal components
(participation ratio) has been found recently [69]. The latter
is another quantity that has proved very relevant in the study
of ESQPTs in two-level systems [7]. In addition, the fact
that OTOCs cast light upon ESQPTs can be expected if
one considers that there exists a clear link between OTOCs
and Loschmidt echoes [70], something that is clear from the
OTOC definition provided below, and Loschmidt echoes are
known to be strongly influenced by ESQPTs [21,22].
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Therefore, we zero in on revealing how the signatures
of an ESQPT modify the dynamical properties of OTOCs,
which are defined as follows [26,37]. Given a system with a
Hamiltonian H, an initial state, and two operators W and V,
the spread with time of the operator W can be probed through
the expectation value of the squared module of a commutator
with a second operator V,

Cuo(t) = (W), VOI'[W(2), V(0)])
= 2Re[A,, ,(t)] — 2Re[F,, ,(1)], (1)

where W (¢) is the operator W in the Heisenberg representation
W(t) = e"We=! The commutator module is split into two
terms. The first term A, ,(t) = (VI(O)WT ()W (t)V (0)) has
the same time order as the usual response functions and it is a
quantity that tends to a constant value for long times [57,71].
The second term

Fuo(t) = (WHOVTOW 1)V (0)) 2)

has a particular out-of-time order, with a nontrivial time
dependence. Therefore, the long-time dynamical properties
of Cy ,(t) are only determined by F,, ,(t). Due to the special
time ordering implicit in Eq. (2), F,, ,(¢) is dubbed an OTOC.
If W and V are unitary operators, C,, ,(¢) in Eq. (1) can be
further simplified to C,, ,(#) = 2 — 2 Re[F,, , (t)]. In this case,
the Cy, ,(¢) time dependence is fully dependent on Fy, ,(¢). In
our case, the operators initially commute, [W (0), V (0)] = 0,
but this is not a crucial restriction. In the literature, the average
() in the above-mentioned quantities was performed over the
canonical ensemble, but, as in other recent works, we perform
an average over initial states.

In this work we investigate the time evolution after a sud-
den quench of an OTOC for an isolated quantum many-body
system which undergoes an ESQPT, the Lipkin-Meshkov-
Glick (LMG) model [72]. Our results indicate that the selected
OTOC can be considered as a candidate for the order param-
eter of the underlying ESQPT due to the drastic changes that
occur when the quench drives the system across the ESQPT
critical point. We further confirm this result by examining
the microcanonical OTOC, studying the time dependence for
initial eigenstates above and below the critical energy of the
ESQPT, and confirming that the OTOC evolution exhibits a
sudden change when crossing the critical energy, making it
possible to classify the ESQPT phases according to the OTOC
long-time averaged value.

II. THE LIPKIN-MESHKOV-GLICK MODEL

The LMG model describes an Ising spin chain with
infinite-range interactions. The collective spin operators are
defined as S, = Zf\;l G;, with y = x,y, z, where N is the
total number of spins and ajﬂ are the Pauli spin matrices for the
ith spin. The Hamiltonian of the LMG model can be written
as (see, e.g., Ref. [6])

2(1 — a)
S

where the total spin of the system is a conserved quantity,
i.e., [S?, H] = 0. Therefore, we may restrict our study to the
sector S = N/2, reducing the Hilbert space to a dimension

H=— 2 +a(s, +S), 3)

Dy = N + 1. The control parameter is o, which takes values
in the range 0 < o < 1.

It is known that, in the mean-field (or thermodynamic)
limit, i.e., when N — oo, the LMG model exhibits a second-
order QPT at a critical value of the control parameter o, = 0.8
[73-75]. It is worth pointing out that recent studies have
shown that an OTOC can be a good probe for the ground-
state QPT in the Lipkin model [57]. The (S,) parameter acts
as an order parameter for this ground-state phase transition.
The phase with o < « is the broken-symmetry phase, where
(Sy) o< | — a|'/?, while for @ > a, the phase is the symmet-
ric phase with (S;) = 0 [76]. However, besides the ground-
state QPT, the LMG model also undergoes an ESQPT with a
critical energy E. = 0 [20,21]. In the following we focus on
the identification of the signatures of this ESQPT making use
of an OTOC.

In our study we follow the approach of Ref. [57], using
the rescaled order parameter of the QPT in the LMG model
as the OTOC operators (2), i.e., V. =W = S,/S. Initially the
system is prepared in the ground state of the Hamiltonian
(3) and we consider the following sudden quench process.
At t =0, an external magnetic field along the z direction
is added, with strength A; then we investigate numerically
the evolution of the OTOC defined in Eq. (2) under the
postquench Hamiltonian Hy = H + AS,, where H is provided
by Eq. (3). The evolution of the operator W in the Heisenberg
representation can be expressed as W (1) = el We= st

Varying the strength of the external field, one can drive the
system through the critical energy of the ESQPT. The critical
strength A, which takes the LMG system to the critical energy
E. =0, can be easily obtained through the semiclassical
approach. The final result reads [20]

Ae = (4 = Sa), 4)

where « is such that o < . = 0.8.
To calculate numerically the OTOC in the LMG model,

we diagonalize the pre- and postquench Hamiltonians of the

model in the basis |S, m, ), where —S < m, < S. In this basis,

the nonzero elements of the Hamiltonian matrix (3) are

2(1 — @)
S

(S.my = LHIS my) = S/SE+ 1) = m(m, D).

(Sv mx|H|Sv m}() = - mi—i—aS,

III. RESULTS

We present numerical simulation results for the OTOC (2)
in the LMG model obtained by the exact diagonalization of
the Hamiltonian. In Fig. 1 we plot the OTOC time evolution
for a system size N = 400, o = 0.4, and different values of
A. According to Eq. (4), the critical value of the external field
strength in this case is A, = 1. Several remarkable features
can be observed in Fig. 1. First, the imaginary part of F(¢)
is always zero, regardless of the A values. Second, the be-
havior of the real part of the OTOC, which we denote by
FR(t), clearly depends on whether the value of A is below
or above the critical value A, = 1. Specifically, as shown in
Fig. 1(a), Fg(?) is characterized by a small-amplitude oscil-
lation around a large positive value for A < A, [see the inset
in Fig. 1(a)]. Figure 1(b) displays the system evolution for
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FIG. 1. Time evolution of the OTOC F (¢) for three different A
values in the LMG model: (a) A = 0.1, (b) A = 1, and (c) A = 2. Red
solid (blue dot-dashed) lines are the real (imaginary) part of OTOC.
The control parameter value is « = 0.4 and the system size N = 400.
The inset in (a) shows a close-up in the evolution of F(¢) within
0 < ¢ < 20. All quantities are unitless.

A = A. = 1, where F(t), after a fast decrease to its minimum
value, irregularly oscillates around a small nonzero positive
value. However, when A > A, the oscillation pattern radically
changes, transforming into a damped oscillation, as can be
seen in Fig. 1(c). Once enough time passes, Fr(t) reaches zero
and the time-independent steady-state value of F(¢) equals
Zero.

The above-mentioned results confirm our assumption that
the existence of an ESQPT in the system has a strong impact
on the OTOC dynamical properties. In fact, the ESQPT is
clearly disclosed by the singular behavior of the OTOC at
the critical strength of the external field A.. In addition, states

(a)g 5

0.5

0 0.2 0.4 0.6
«

with energies above or under the critical energy value, in
the different phases of the ESQPT, can be distinguished by
the remarkable distinct OTOC dynamical behavior. Moreover,
Fig. 1 evidences that the steady-state value of F(¢) is finite
when A < A, while it is zero for A > A.. To clarify this, we
study the steady-state value of F (¢), which can be obtained by
calculating the long-time averaged value of Fg(?),

— I
F = Tlgnoo ?/0 Fr(t)dt, (5)
where T is the total evolution time.

The aforementioned features of F (¢) strongly indicate that
F can be identified as an order parameter for the ESQPT in
the LMG model. To verify this statement, we evaluate F in
the LMG model, obtaining the results shown in Fig. 2. It is
worth mentioning that, in order to capture all the intricacies
of Fg(t) in the numerical simulation, the total evolution time
T in Eq. (5) should be large enough. In the present work, the
total evolution time is 7 = 10%, and we have checked that the
results obtained for larger T values are qualitatively similar.
We define the quantity 7 = F /F (A = 0), which is obtained
by normalizing the long-time averaged value of Fg(¢) by the
A = 0 value of F. This is the quantity depicted in Figs. 2(a)
and 2(b).

In Fig. 2(a) we present the normalized long-time averaged
value of the OTOC F as a function of the o and A parameters
for a system size N = 400. We first note that F is a continuous
function of « and A and it drops to zero once the white
dot-dashed line that indicates the critical values A is crossed.
In Fig. 2(b) we depict vertical cuts of Fig. 2(a) for « = 0.2
and 0.4. In both cases, F decreases and vanishes once A
reaches the critical value A.. This is the expected dependence
for a ground-state QPT order parameter and therefore an
analysis of the scaling properties of the long-time averaged
OTOC value is germane to this discussion.
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FIG. 2. (a) Heat map depicting the normalized long-time averaged OTOC value F as a function of o and A for N = 400. The white
dot-dashed line indicates the critical value of A, obtained from Eq. (4). (b) Normalized long-time averaged OTOC value F as a function
of A for o« = 0.2 (blue circles) and 0.4 (red squares) for N = 400. The left inset shows the critical value F° =F().) as a function of the
system size N (on a log-log scale) for (a, A.) = (0.4, 1.0) (red squares) and (e, A.) = (0.2, 1.5) (blue circles). The right inset shows F as
a function of |A — A%| (on a log-log scale) in the neighborhood of the critical point for a system size N = 400 and control parameter values
o = 0.2 (blue circles) and & = 0.4 (red squares). In both panels F is obtained normalizing F, for each « value, by its A = 0 initial value, i.e.,

F = F/F (% = 0). All quantities are unitless.
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From the behavior of F in both panels of Fig. 2, it seems
reasonable to expect that the value of F when A = ¢, denoted
by F*, scales with the system size in such a way that it tends
to zero in the thermodynamic limit. In order to check this
point, we have included the left inset of Fig. 2(b), where F*
is depicted as a function of the system size N for A, = 1.0
and 1.5 on a log-log scale. Using a least-squares fit, we find
that the N' dependence of F* follows a power law F*~ o« N~*
for both A. values, with a finite-size scaling exponent p =~
0.084(8). A second aspect of interest is what happens, for a
given system size, when A — A%. We have depicted in the
right inset of Fig. 2(b) the dependence of F as a function of
A —A%|, on a log-log scale, for N =400 and o = 0.2 and
0.4. The normalized long-time averaged value of the OTOC
decreases following a power law when A tends to A2, F
[A — A%, regardless of the value of « or N. By employing a
least-squares fit, we find that for a different control parameter
and system size values, y; =~ 0.36(1), which differs from the
exponent obtained for the ground-state QPT order parameter
[76]. The aforementioned results confirm that the presence
of an ESQPT in the LMG system is clearly revealed by the
long-time averaged value of the OTOC and indicate that F
may play the role of an order parameter for the ESQPT.

So far, we have discussed the possibility of using an OTOC
to probe the ESQPT in the LMG model parameter space, veri-
fying that the long-time averaged value of the OTOC behaves
as an order parameter for the ESQPT. However, as already
mentioned, it is well known that ESQPTs are characterized by
a singularity in the density of states at the critical energy in
the mean-field limit. In order to further confirm our claim that
the OTOC may be an order parameter for the ESQPT in the
LMG model, we proceed further by studying the OTOC time
dependence for different energy levels.

To this end, we investigate the properties of the micro-
canonical OTOC [37,44], defined as

Fy(t) = (nW )V OW 1)V (0)|n), (6)

where, as previously, V. = W = S, /S and |n) is the nth eigen-
state of the LMG Hamiltonian (3), whose energy is E,. We
fix the parameter o, compute the Heisenberg representation of
W, W(t) = e™"We=H" and calculate the time dependence of
F,(t) for different energy levels.

We plot in Fig. 3 the time dependence of F,(¢) for three
representative energies of the system: one that lies below
the critical energy [Fig. 3(a)], the closest level to the critical
energy level [Fig. 3(b)], and a third one, well above the
critical energy [Fig. 3(c)]. From this figure one can see that
the imaginary part of F,(t) is always zero, or close to zero,
in the three cases considered. For the ground state n = 0 [cf.
Fig. 3(a)], the real part of F,(¢) oscillates around a finite value
with a small amplitude [see the inset of Fig. 3(a)]. Increasing
the energy level n gradually makes the real part of F,(t)
oscillate around a smaller value, simultaneously increasing
the oscillation amplitude. In the case of the energy level
closest to the critical energy, both the imaginary and real
parts of F, () oscillate around zero with irregular patterns [cf.
Fig.3(b)]. Once E > E,, the real part of F,,(¢), F;, g(¢), exhibits
small oscillations around zero, of an amplitude that decreases
with time. This indicates that the steady-state value of F, () is

R
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FIG. 3. Time evolution of the LMG microcanonical OTOC F,(t)
for different initial states: (a) |n =0) with an energy E,/N =
—0.4167, (b) |n=149) with E,/N = —6.5419 x 107*, and (c)
[n=219) with E,/N = 0.1467. Red solid lines are the real part
of F,(t) and blue dot-dashed lines denote the imaginary part of
F,(¢). Other parameter values are « = 0.4 and N = 300. The inset
in (a) shows a close-up of the evolution of F,(¢) with 0 < ¢ < 20.
The axes in all figures are unitless.

zero. Therefore, the long-time averaged value of F, () is close
to zero in the neighborhood of the critical energy.

The F,(t) features shown in the three panels of Fig. 3 imply
a drastic change of the dynamical properties of the micro-
canonical OTOC at E = E, = 0, something that is consistent
with the role played by the ESQPT critical energy in the
LMG model. Hence, the existence of an ESQPT at the critical
energy E, = 0 in the LMG model can be unambiguously de-
tected from the microcanonical OTOC dynamics. Moreover,
one can also expect that states belonging to different phases
of the ESQPT may be characterized, in energy space, by
different long-time averaged values. Therefore, in a similar
way as in Eq. (5), we compute a long-time averaged value
of F, r(t). To check this we calculate the steady-state value
of F,(t), denoted by F,, over a time interval T = 10*. The
obtained results are plotted in Fig. 4, where we plot .7-',1,
defined normalizing F, by Fo, F.=F, /fo, as a function of
the rescaled system energy levels &, = 2(E, — Ey)/(Emax —
Ey). Here Ej is the ground-state energy and Ey,,x denotes the
maximum energy value.

From Fig. 4(a) one can be aware that F, is nonzero for
&, < &%, vanishing gradually as the energy of the system
approaches the ESQPT critical energy. This is akin to the
behavior exhibited by a ground-state QPT standard order
parameter [76]. The transition point, at which the value of Fa
becomes zero, is in the vicinity of the rescaled critical energy
gY as N — oo. It is worth emphasizing that F, undergoes
an abrupt change around the critical energy. This can be
explained as an effect of the system’s finite size. In fact,
finite-size systems have a set of eigenstates with energies close
to the critical one. Hence, the value of ]_-"n for these eigenstates
will be very small. Outside this region, the eigenstates with
&, < &2 will lead to finite F, values and at the boundary of
this region F, exhibits an abrupt change. The width of this
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FIG. 4. (a) Normalized long-time averaged value of the micro-
canonical OTOC F, as a function of the rescaled energy &, for
different system size values N with o = 0.4. The purple arrow
indicates the rescaled critical energy of the ESQPT with o = 0.4.
The inset shows the variation of F,’s increase or decrease amplitude
D, (see the text for its definition) near the critical energy with
the system size N. (b) Normalized long-time averaged value of the
microcanonical OTOC F, as a function of the rescaled energy &, for
different values of & with N = 300. The blue and red arrows indicate
the rescaled critical energy & for o = 0.2 and @ = 0.6, respectively.
The inset shows F,, as a function of |8, — £?| (on a log-log scale) in
the neighborhood of the critical energy for « = 0.2 (blue circles) and
o = 0.6 (red squares). In both panels the long-time averaged value of
the microcanonical OTOC has been normalized by its initial value for
the ground state n = 0, i.e., F,, = F,/F, while the eigenenergies are
rescaled as &, = 2(E, — Ey)/(Emax — Eo), where Ej is the ground-
state energy and E,, is the highest eigenstate energy. All quantities
are unitless.

region decreases as N increases, and one can expect that the
sudden change amplitude of F, in the neighborhood of the
critical point will eventually disappear in the thermodynamic
limit. The inset of Fig. 4(a) shows how the sudden change in
the vicinity of the critical energy, which we denoted by D,
changes with the system size N. Here D, is defined as the
difference between the maximum and minimum values of F,
in the region n € [n, — 15, n. 4+ 5], where n, is the number of
energy levels with E,,, ~ E. = 0. We have carefully checked

that the abrupt change in .7-",1 is indeed located in the above
region. Clearly, for different values of «, D,, quickly decreases
and approaches zero for increasing N. The above-mentioned
behavior of F, can be clearly observed for other o values
different from o = 0.4, for a given system size [cf. Fig. 4(b)].
Furthermore, the inset in Fig. 4(b) shows that the decay of
F, close to the critical energy also follows a power law,
ie., Fn x |&, — &%|", with y, ~ 0.69(5), irrespective of the
o value.

The results shown in the above figures support our claim
that the ESQPT in the LMG model has a strong impact on
the OTOC dynamics. The ESQPT existence can be clearly
detected from the OTOC time dependence and its dynamical
behavior. In particular, the OTOC long-time averaged value
can be used as an order parameter for the ESQPT.

IV. CONCLUSION

To summarize, we have investigated in detail how an
OTOC in a two-level quantum many-body system (the LMG
model) is affected by the existence of an ESQPT, character-
ized by the divergence in the local density of states. We have
shown that the ESQPT has significant effects on the OTOC
dynamics. As a consequence, the calculation of the OTOC
dynamics for the system eigenstates allowed us to detect the
presence of an ESQPT in the spectrum, estimate the critical
energy value for this ESQPT, and distinguish between the
different phases.

The definition of an order parameter for ESQPTs like
the one presented in this work is still an open problem [3]
which is the subject of current studies [77]. The connection
between the OTOC and the ESQPT that we have presented
provides a possible venue to define an order parameter for
ESQPTs, offering a deeper understanding on these quantum
phase transitions. We should point out that, even though the
ESQPT studied in this work is a particular one, characterized
by a divergence of the density of states at the critical energy
in the thermodynamic limit, we expect that our results are still
valid for other ESQPT types, e.g., those ESQPTs identified
by a divergence in the first-order derivative of the density of
states with respect to the energy. Another relevant issue is
the identification of the requirements that operators W and
V should fulfill in order that the OTOC can be used as a
detector between the different quantum phases. Very recent
semianalytical results [78] imply that to distinguish phases
in many-body systems through OTOCs, W and V should
be chosen as the order parameter of the equilibrium phase
transition. However, in order to get a deeper perspective and
to reach more general conclusions on the relation between
OTOCs and quantum phase transitions, further work is still
needed. We hope that our present results encourage others to
explore the dynamic signatures of ESQPTs via OTOCs in the
future.

Finally, the successful measurement of OTOCs in recent
experiments involving different quantum many-body systems
[66-68] may pave the way to an experimental test of the ob-
tained results in quantum simulators. This provides a promis-
ing venue for both theoretical and experimental investigation
of ESQPTSs in quantum interacting systems.
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