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Geometric decoherence in diffusive open quantum systems

Da-Wei Luo ,1,2 Hai-Qing Lin,2 J. Q. You,3 Lian-Ao Wu,4,5 Rupak Chatterjee,1 and Ting Yu1,*

1Center for Quantum Science and Engineering and Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
2Beijing Computational Science Research Center, Beijing 100094, China

3Department of Physics and State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
4Department of Theoretical Physics and History of Science, The Basque Country University (UPV/EHU), PO Box 644, 48080 Bilbao, Spain

5Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain

(Received 14 June 2019; published 10 December 2019)

Based on a generic quantum open system model, we study the geometric nature of decoherence by
defining a complex-valued geometric phase through stochastic pure states describing nonunitary, noncyclic, and
nonadiabatic evolutions. The ensemble average of the complex geometric phases for the pure stochastic states
yields a conventional geometric phase together with an amplitude factor. We show that the decoherence process
described by the decaying amplitude can be a geometric quantity independent of the system’s dynamics. It is a
remarkable fact that the geometric phase of a quantum system can serve as an ideal realization of quantum gates
due to its robustness against dynamical errors; however, in this paper we show that, for some open quantum
systems, a desirable geometric phase may be accompanied by an unwanted robust geometric decoherence factor.
Two exactly solvable models are studied to demonstrate that, while the decoherence is a purely dynamical effect
for a dephasing two-level model, the decoherence in a dissipative two-level model can be a geometric process.
Finally, we show that such a geometric decoherence effect may be eliminated by a nonperturbative control
scheme.
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I. INTRODUCTION

The dynamics and decoherence processes of quantum open
systems have been under intense research [1] in various dif-
ferent fields, most prominently in quantum foundation [2,3],
quantum optics [4], and quantum information [5]. The deco-
herence process is mostly understood as a dynamical process
due to the coupling to an external environment. As all quan-
tum systems are interacting with their surroundings to some
degree, the theory of open system dynamics provides a com-
plete description of the quantum system under consideration
[6,7]. The environment or bath that the system is embedded in
is commonly modeled as a set of bosons, fermions, or spins,
and the initial state of the bath along with other details such as
the modes’ frequencies and coupling strengths can be encoded
in a bath correlation function, summarizing the profile of the
bath to account for its influences on the system being studied.
The quantum open system models can be treated in many
different ways, giving rise to different decoherence effects.
One of the major motivations of this paper is to identify under
what conditions the quantum decoherence may be described
as a geometric quantity varying with time and to quantify the
geometric decoherence for different types of environmental
noises. A primitive approach to quantum open systems is to
treat the bath as essentially memoryless, where the dynamics
of the system is not influenced by the history of the bath, and is
generally known as the Markovian approximation. While it is
a somewhat valid approximation for weakly coupled systems,
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it has been realized that, for more general cases, this Marko-
vian description is inadequate, and fails to capture some very
interesting memory effects. To fully describe the open system
dynamics, many approaches have been developed to deal
with the non-Markovian open systems [1], such as the path
integral approach and the stochastic Schrödinger equation
approach. A very notable example of the latter is the quantum
state diffusion equation [8], which has been systematically
developed to deal with systems linearly coupled to bosonic as
well as fermionic baths, without specifying the exact details
of the system Hamiltonian or the coupling mechanism. Exact
or approximate analytical solutions can be derived for many
interesting systems [8–12]. Exact master equations may also
be obtained [13], and various numerical methods have also
been proposed to deal with arbitrary systems [14–16].

The geometric phase associated with quantum evolutions
[17–19] has offered a lot of insight into many interesting
phenomena such as quantum phase transitions [20] and the
spin Hall effects [21]. The geometric phase is an observable
quantity that’s dependent only on the path traced out by the
state in the parametric manifold, or in the projective Hilbert
space, and is independent of other details such as speed of
the evolution or the equation of motion, which does not need
to be a Schrödinger-like equation [19,22,23]. Over the past
decades, various extensions to the original adiabatic geometric
phase have been proposed, including the nonadiabatic AA
phase [24] and noncyclic or non-Hermitian case [22,25,26],
as well as non-Abelian systems [27,28], where one may get
a matrix-valued extension of the geometric phase, which is
under very active scrutiny due to its potential use in holonomic
quantum computation [29–31]. Mathematically, the geometric
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phase can best be understood via a parallel transport using
a connection on a fiber bundle [19,22] or as the holonomy
transform [32]. The purpose of this paper is to discuss the
geometric processes of a quantum open system coupled to
a quantum environment modeled by a set of bosons. Our
stochastic Schrödinger equation based on a general quantum
open system allows for a versatile treatment of generalized
complex geometric phases in the presence of various environ-
mental noises ranging from non-Markovian to Markov noises
beyond the general nonunitary quantum dynamics [22,25].
Our method can easily identify the decoherence process as-
sociated with the open system’s evolution being geometric
or dynamic. It should be noted that other types of open
system extensions of the geometric phase are also discussed
using either a purification scheme to deal with mixed states
[33], Markovian trajectories [34,35] or considering adiabatic
evolutions [36], and a recent extension to non-Markovian
systems where the environments have memory effects [37].
In this paper, by using stochastic pure states generated by the
stochastic Schrödinger equation, we systematically study the
geometry of decoherence of open systems with a complex
geometric phase [38–42], whose imaginary contribution is
interpreted as a decoherence factor [43]. For this purpose,
our focus is primarily on the decaying amplitude information.
One of the advantages of our method is that we can directly
take into account the environment information such as mem-
ory times, coupling strengths, and correlations between two
environments.

The organization of this paper is as follows. In Sec. II,
we define the complex geometric phase of a general open
quantum system based on the stochastic pure states governed
by a diffusive stochastic Schrödinger equation. To see its con-
nection to geometry in a more transparent way, we rewrite the
complex phase as a connection one form. The ensemble aver-
age of the pure state trajectories will yield the desired informa-
tion on the geometric dynamics of the open quantum systems.
In Sec. III, we study two exactly solvable models consisting of
a two-level system embedded in a non-Markovian multimode
bosonic bath. It is found that the decoherence of a single
two-level pure dephasing model is a purely dynamical effect,
namely, the imaginary part of the geometric phase vanishes.
However, for the dissipative model, the geometric compo-
nent describing the decoherence process can be efficiently
identified. We show the geometric decaying factor persists
in various environmental memory time scales including the
Markovian limit. In Sec. IV, we show how to combat the
adversary geometric decoherence effect of the bath, where
a nonperturbative control known as the leakage elimination
operator (LEO) [44] is utilized to correct the open system
trajectory so that the state stays close to the closed system
evolution. As a result, we get a geometric phase that’s close
to the target closed system one, while correcting for the detri-
mental influence of the environment. We conclude in Sec. V,
while some useful material can be found in the Appendix.

II. COMPLEX GEOMETRIC PHASE FOR
OPEN QUANTUM SYSTEMS

Let us consider a generic quantum system embedded in
a bosonic bath (T = 0), with the total Hamiltonian being

(setting h̄ = 1)

H = Hs +
∑

k

(gkL†bk + g∗
kLb†

k ) +
∑

k

ωkb†
kbk, (1)

where Hs is the system Hamiltonian, L is called the Lind-
blad operator describing the system-bath coupling mecha-
nism, and bk (b†

k) is the annihilation (creation) operator of
the kth bath mode. The influences of the bath on the open
system are encoded in a bath correlation function α(t, s) =∑

k |gk|2e−iωk (t−s). In the Markovian case, the correlation
function becomes a δ function, but the Markovian approxi-
mation may not be a valid choice for many realistic physical
systems and can fail to correctly predict the properties of
the system under consideration. In the case of decoherence
process, the decoherence time may take place on time scales
that can be of the same order as the correlation time of
the environment; then the standard Markov approximation
is not valid anymore. The general non-Markovian dynamics
of the open quantum system may be obtained systematically
through a projection onto the coherent state basis |z〉 = |z1〉 ⊗
|z2〉 ⊗ · · · of the bath modes in the interaction picture with
respect to the bath. We can then get a stochastic Schrödinger
equation living in the system Hilbert space known as
the non-Markovian quantum state diffusion (NMQSD)
equation [8]

∂t |ψz∗ (t )〉 = [−iHs + Lz∗
t − L†Ō(t, z∗)]|ψz∗ (t )〉

= −iHeff |ψz∗ (t )〉, (2)

where z∗
t = −i

∑
k g∗

kz∗
k exp(iωkt ), Ō(t, z∗) = ∫ t

0 α(t, s) δ
δz∗

s
is

the average of the functional derivative weighted by the
memory function, and the pure state |ψz∗ (t )〉 is called a
quantum trajectory. Defining an ensemble average M(F ) =∫

d2z|z|2F/π , we can see that M(zt z∗
s ) = α(t, s) and the

reduced density operator of the system is given by ρ =
M(|ψz∗ (t )〉〈ψz(t )|). For many systems, the Ō operator can
be analytically obtained, giving an exact non-Markovian de-
scription of the dynamics of the system. Furthermore, an exact
master equation can also be obtained. For general systems,
various numerical techniques have been developed to tackle
the problem. The stochastic Schrödinger equation (2) dictates
the dynamics of the pure state trajectory evolving under
an effective non-Hermitian Hamiltonian. Especially in the
Markovian regime, this equation describes the conditioned
system state when the bath is continuously measured [45].

For the open system described by (2), a stochastic complex
geometric phase can be defined for the pure state |ψz∗ (t )〉. It
has been known that for an arbitrary pure state |ψ〉 governed
by an effective Hamiltonian Heff , there exists an adjoint state
|ψ̃〉 evolving under H†

eff so that the norm 〈ψ̃ |ψ〉 is conserved
during evolution. One then tracks this pair of states in the
projective Hilbert space, which gives, in general, a complex-
valued geometric phase. This approach has the advantage of
tracking the geometric effects of non-Hermitian evolutions.
Since, in the NMQSD approach, the reduced density operator
is given by the ensemble average of |ψz∗ 〉〈ψz|, changes in the
norm of the trajectories may be understood as the weight pi

of some normalized pure state decomposition of the density
operator ρ = ∑

i pi|ψi〉〈ψi|. Accordingly, we can track the
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geometric component of the dissipation by using the complex-
valued extension of the geometric phase.

We start by reviewing the complex geometric phase for-
mulation for nonunitary, noncyclic evolutions. Consider a
generic quantum state |ψ (t )〉 evolving under H (t ) [here H (t )
is a generic non-Hermitian operator] and its adjoint |ψ̃ (t )〉
evolving under H†(t ). One first defines the complex phase
between two states |a〉, |b〉 with their respective adjoints [46],

exp[iϕ] =
√

〈ã|b〉
〈b̃|a〉 . (3)

In this setting, the dynamical phase can be written as βdyn =
− ∫ T

0 ds〈ψ̃ (s)|H (s)|ψ (s)〉. To prove this, we may remove
the dynamical phase to form a horizontal vector |ψh(t )〉 =
exp[−iβdyn]|ψ (t )〉 and its corresponding adjoint |ψ̃h(t )〉 =
exp[−iβ∗

dyn]|ψ̃ (t )〉. It can be checked that the parallel trans-
port condition 〈ψ̃h(t )|∂t |ψh(t )〉 is satisfied so that the gener-
alized phase it acquires is purely geometric. Formally, one
may write the geometric phase as the total phase minus the
dynamical phase,

β = βtot − βdyn

= −i ln

⎡
⎣

√
〈ψ̃ (0)|ψ (t )〉
〈ψ̃ (t )|ψ (0)〉

⎤
⎦ + i

∫ t

0
ds〈ψ̃ (s)|∂s|ψ (s)〉. (4)

Based on our stochastic Schrödinger equation approach, one
can identify |ψ (t )〉 = |ψz∗ (t )〉 and the corresponding adjoint
|ψ̃ (t )〉 = |ψ̃z(t )〉 evolving under the effective Hamiltonian
H†

eff = Hs − iL†zt + iŌ†(t, z)L to obtain the complex-valued
geometric phase for a single quantum trajectory |ψz∗ 〉. Fol-
lowing [25] to define a generalized reference section on the
appropriate bundle

|χ (t )〉 =
√

〈ψ̃ (t )|ψ (0)〉
〈ψ̃ (0)|ψ (t )〉 |ψ (t )〉 ≡ exp[−iϕ(t )]|ψ (t )〉. (5)

This reference section satisfies the following conditions.
(i) The initial wave function |ψ (0)〉 and the initial reference

section coincide.
(ii) π [|ψ (t )〉] = π [|χ (t )〉], where π [. . .] is the map to

the projective Hilbert space P . This means that both wave
functions project to the same curve in P .

(iii) |χ (t )〉 stays in phase with |χ (0)〉 at all times, where
the phase is defined under Eq. (3).

With a corresponding adjoint reference section

〈χ̃ (t )| = 〈ψ̃ (t )|
√

〈ψ̃ (0)|ψ (t )〉
〈ψ̃ (t )|ψ (0)〉 , (6)

the complex noncyclic geometric phase may now be given by
an integral of a connection one-form

β = i
∫

〈χ̃ (s)|∂s|χ (s)〉ds. (7)

It can also be proved that the reference section and hence
the complex geometric phase is gauge-invariant under a
transformation |ψ (t )〉 → exp[iθ (t )]|ψ (t )〉, where θ (t ) may be

complex. This definition does not need an explicitly closed
curve in the projective Hilbert space, but one can still join both
ends with a geodesic to form a closed curve, so that one can
formally write the geometric phase as a surface integral over a
solid angle to highlight its geometric nature. To see this is the
case, consider the covariant derivative Ds = ∂s − As, where
the connection is given by As = 〈ϕ̃(s)|∂s|ϕ(s)〉. By letting
|u′〉 = Ds|ϕ(s)〉, one has an inner product 〈ũ′|u′〉 that is gauge
invariant under |ψ (t )〉 → exp[iθ (t )]|ψ (t )〉. This gives a met-
ric on the projective space dl2 = 〈ũ′|u′〉ds2, where dl2 is the
square distance between points π [|ϕ(s)〉] and π [|ϕ(s + ds)〉].
Using a variation procedure, one can derive the following
geodesic equation (see the Appendix):

Ds|u′〉 = D2
s |ϕ〉 = [

∂2
s − ∂sAs − As∂s + A2

s

]|ϕ〉 = 0. (8)

Formally, a similar one exists for the adjoint. Using the
parallel transport condition and the gauge invariance, one can
show that the connection one-form Eq. (7) disappears along
this geodesic. It is worth pointing out that this set of NMQSD
equations are invariant under the gauge transformation L →
L eiϕ [35,47], since the phase factor can be absorbed into
the coupling strength gk → gkeiϕ . The noise in the NMQSD
equation transforms accordingly as z∗

t → w∗
t = eiϕz∗

t , and the
Ō operator becomes the functional derivative with respect
to the transformed noise w∗

t . Also note that the ensemble
average M[wtw

∗
s ] = M[zt z∗

s ] = α(t, s) is only dependent on
the norm |gk|2 and is gauge invariant under such transform,
meaning wt and zt represent the same set of stochastic pro-
cesses. Therefore, the transformed equation represents the
same set of equations as Eq. (2), and the geometric phase we
obtain from them inherits this gauge invariance. The same
argument also holds for the model with multiple Lindblad
operators Lm, where the phase transformation is given by
L′

m = Lmeiϕm (m = 1, 2, . . . , N) [48].

III. EXAMPLES

After introducing a complex geometric phase for a generic
quantum open system (4), the imaginary part of this com-
plex phase factor will give rise to a geometric amplitude,
which is expected to describe quantum decoherence process.
By definition, this amplitude factor is purely geometric. We
now illustrate the complex-valued geometric phase under
the NMQSD to highlight the geometry of the decoherence
process. Consider an exactly solvable model: the two-level
dissipative model with system Hamiltonian Hs = ω

2 σz and
coupling operator L = λσ−. This model is exactly solvable
[8,10]. Choosing a bosonic bath with a Lorentz spectrum,
the bath correlation function is given by an exponential
function,

α(t, s) = γ�

2
exp[−γ |t − s|] exp[−iω0(t − s)], (9)

and, in this case, the Ō operator is given by Ō(t ) = F (t )σ−,
where Ḟ (t ) = γ λ

2 − [γ + i(ω0 − ω)]F (t ) + λF (t )2, with � =
1. The initial state here is characterized by the Bloch angle
θ , |ϕ〉 = [cos θ/2, sin θ/2]T . The total phase, after taking the
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FIG. 1. Imaginary part of the geometric phase βI as a function of
the initial state condition θ and (a) the non-Markovian parameter γ of
the bath correlation function with λ = 1 and (b) the coupling strength
λ with γ = 1, at t = 2π/ω. Oscillatory behavior can be observed
as θ changes when γ or λ are big enough. With small γ or λ, the
imaginary part can be very close to zero.

ensemble average, is given by

β̄tot = M

⎡
⎣−i ln

√
〈ψ̃ (0)|ψ (t )〉
〈ψ̃ (t )|ψ (0)〉

⎤
⎦

=−i

2
ln

[
g(t ){g(t )[cos θ+1] − [cos θ−1]eiωt }
−g(t )[cos θ − 1] + [cos θ + 1]eiωt

]
, (10)

where g(t ) = exp [−λ
∫ t

0 F (s)ds] [46]. The averaged dynami-
cal contribution is given by

β̄dyn(t ) = −
∫ t

0
ds

[
ω

2
cos θ − iλF (s)

2
(cos θ + 1)

]
. (11)

The geometric phase can then be readily calculated. In Fig. 1
we show the imaginary part of the geometric phase as a
function of the initial state parameter θ and the bath memory
parameter γ as well as the coupling strength λ. Here the
oscillatory behavior of the phase is beginning to show itself
when γ or λ is not too small. However, in the regime where
λ or γ is indeed small, then the imaginary geometric phase
becomes invisible, indicating that the dissipation in the regime
is dictated by a dynamical effect. To get a clearer picture of
this oscillatory behavior, we plot the imaginary geometric
phase as a function of the coupling strength λ and the memory
parameter γ in Fig. 2. Then one easily sees that there exists a
region with small λ or γ and the imaginary part (amplitude) is

FIG. 2. Imaginary part of the geometric phase βI as a function
of the coupling strength λ and the non-Markovian parameter γ of
the bath correlation function, with θ = 1 and t = 2π/ω. It can be
readily seen that when γ or λ are small, the imaginary part of the
complex geometric phase is very close to zero, meaning at this region
the dissipation is mainly dynamical rather than geometrical in nature.

small. Moreover, we can expand the geometric phase in terms
of the power of λ and see that (choosing ω0 = 0 and ω = 1)

β̄ ≈ t

2
cos θ + arg

(
cos

t

2
− i cos θ sin

t

2

)

− iγ (eit − 1)2 sin2 θ
2 cos θ (cos θ + 1)e−γ t

8(γ − i)2
(

cos2 θ sin2 t
2 + cos2 t

2

)
× [1 + e(γ−i)t (γ t − it − 1)]λ2 + O(λ4). (12)

The first two terms are clearly independent of λ corresponding
to the closed quantum system case. The terms containing O(λ)
do not exist and the first-order term is represented by O(λ2).
We may also expand the geometric phase in the powers of γ .
In addition to the similar closed system terms, the first order
reads

− 2λ2 sin2 t
2 (t − sin t + i cos t − i)

cos 2θ + 2 sin2 θ cos t + 3

× sin2 θ

2
cos θ (cos θ + 1)γ + O(γ 2). (13)

In the Markov limit γ → ∞, we recover the standard
Markovian case, F (t ) = λ/2, and the complex geometric
phase becomes

β̄M = π − 1

2
i

[
− 2 tanh−1

(
cos θ tanh

πλ2

2

)

+ π cos θ (λ2 + 2i)

]
(14)

at t = 2π/ω, which can generally be complex. When the
coupling strength λ ∼ 0, we return to the closed system case
as expected. Indeed, the imaginary part of βM is on the order
of λ2.

On the other hand, one can consider an analytically solv-
able example of a two-level system in a pure dephasing
environment, that is, the total Hamiltonian (1) contains the
system Hamiltonian Hs = ωσz/2 and the coupling operator
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L = λσz. The Ō operator for this model is just
∫ t

0 α(t, s)ds L.
Choosing an initial state characterized by the Bloch angle
θ , |ϕ〉 = [cos θ/2, sin θ/2]T , one can analytically solve the
NMQSD equation (2) and its dual adjoint evolving under
H†

eff = Hs − iL†zt + iŌ(t )†L, and use Eq. (4) to obtain the
phase. The total phase for a particular trajectory in this model
is explicitly given by

βtot = − i ln

⎡
⎣

√
〈ψ̃z∗ (0)|ψz∗ (t )〉
〈ψ̃z∗ (t )|ψz∗ (0)〉

⎤
⎦

= iλ2
∫ t

0
A(s) ds

− 1

2
i ln

[
(cos θ+1)e2λ

∫ t
0 z∗

s ds − (cos θ−1)eiωt

−(cos θ − 1)e2λ
∫ t

0 z∗
s ds + (cos θ + 1)eiωt

]
,

(15)

where A(t ) = ∫ t
0 α(t, s)ds [46]. Due to the existence of z∗

s
terms in both the numerator and denominator in the second
term, one cannot directly use the Novikov theorem to compute
the ensemble mean over the noise. Noticing that in the second
term only λ accompanies the noise terms, we can expand it in
powers of λ, where it is found that no zt z∗

s pair exists, and the
mean is given by

β̄tot = iλ2
∫ t

0
A(s) ds + arctan

[
cos

ωt

2
,− cos θ sin

ωt

2

]
,

(16)

where arctan[x, y] = arctan(y/x), which takes into account
the quadrant of point (x, y). The dynamic part may be
calculated in a similar fashion,

β̄dyn = iλ2
∫ t

0
ds A(s) − 1

2
ωt cos θ. (17)

Interestingly, it is found that the ensemble average geometric
phase is the same as the closed system case,

β̄ = 1

2
ωt cos θ + arctan

[
cos

ωt

2
,− cos θ sin

ωt

2

]
. (18)

At t = 2π/ω, β = π (cos θ + 1). In this case, the geometric
phase is robust against dephasing effects. Under this definition
of the geometric phase, the pure dephasing process for the
two-level system is a dynamical effect.

IV. LEAKAGE CONTROL OF DECOHERENCE

To see how to combat the detrimental effect of the bath on
the system’s dynamics, we note that a wide range of control
strategies have been developed. In the dynamical decoupling
control [49], when the control pulses are applied to the system
of interest, it is assumed that the external pulses can be treated
perturbatively such that the open system evolves under the
pulse Hamiltonian alone during the pulse’s active time. In a
non-Markovian open system setting, this assumption may not
be accurate. Therefore, here we may apply a nonperturbative
control strategy [44] which treats the additional control con-
sistently, and has the additional advantage that only the time

integral of the control plays a significant role, making it more
resilient against control fluctuations. As an example, we con-
sider a three-level system H0 = diag(ω/2,−ω/2, 0), with the
system-bath coupling operator L = λ[|3〉〈1| + |3〉〈2|]. The
corresponding LEO control Hamiltonian is given by R(t ) =
c(t )diag(1, 1, 0), where c(t ) is the control function, so the
total system Hamiltonian together with the control part is
given by Hs(t ) = H0 + R(t ). This model can be exactly solved
by using the NMQSD approach [44], where the Ō(t ) =
F1(t )|3〉〈1| + F2(t )|3〉〈2| operator is noise independent, with

∂t F1(t ) = α(0)λ + F1(t )

2
{2λ[F1(t ) + F2(t )]

− 2γ + iω + 2ic(t )},

∂t F2(t ) = α(0)λ + F2(t )

2
{2λ[F1(t ) + F2(t )]

− 2γ − iω + 2ic(t )}. (19)

While an analytical solution for the trajectory is absent,
there is a convenient way to do the ensemble average for
this example. For this model with an initial system state of
[cos θ/2, sin θ/2, 0]T , we find that the first two elements of
the state vector and its adjoint are all noise independent.
Therefore, the total phase is noise independent in this case.
However, the dynamical phase is noise dependent. To ana-
lytically treat its ensemble average, we define an operator
P(t ) = |ψz∗ (t )〉〈ψ̃z∗ (t )|. Since the adjoint state |ψ̃z(t )〉 follows
H†, P(t ) is a function of z∗

t only. Using the Novikov theorem,
one can show that the ensemble average of the dynamical
phase can be written as

M[φd ] = −
∫ t

0
dsM[〈ψ̃z∗ (s)|Heff (s)|ψz∗ (s)〉]

= −
∫ t

0
ds tr[Hs(s)ρ̃(s) − iL†Ō(s)ρ̃(s)], (20)

where ρ̃(t ) = M[P(t )] follows

∂t ρ̃(t ) = −i[Hs(t ), ρ̃(t )] − [L†Ō(t ), ρ̃(t )]. (21)

Choosing a sine-function control field c(t ) = cx(1 + sin �ct )
with cx = 10, �c = 50, in Fig. 3, we plot the geometric
phases as functions of time for both the LEO controlled
and uncontrolled systems. As a comparison, the geometric
phase for the closed system described by H0 is also plotted.
It can be seen from Fig. 3 that the environmental effect ad-
versely affects the geometric phase and makes it deviate from
the target determined by the closed system’s evolution. The
nonzero imaginary part gives rise to the so-called geometric
decoherence. Under the LEO control, the open system can be
brought back to a desirable quantum state that is close to the
target state, thereby restoring the geometric phase and at the
same time suppressing the geometric decoherence by bringing
the imaginary part of the generalized geometric phase close to
zero.

V. CONCLUSION AND DISCUSSION

In conclusion, we study the geometric decoherence for a
set of general quantum open systems embedded in a bosonic
bath through defining a stochastic complex-valued extension
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FIG. 3. Complex geometric phase for a three-level system as a
function of time, where the target (solid blue line) corresponds to the
closed system case, the dotted orange line and the red dash-dotted
line represent the real and imaginary part of the geometric phase,
respectively. The green (purple) dashed line is the real (imaginary)
part of the geometric phase obtained after the LEO control is
applied, where the imaginary part of the geometric phase in the
controlled system is close to zero, |βI | < 0.005. The open system
parameters are γ = 0.3 and λ = 1, with an initial state parameter
θ = 1.2.

of the geometric phase for a nonunitary quantum system. The
quantum open system coupled to a multimode bosonic bath
is shown to be governed by a stochastic Schrödinger equation
known as the NMQSD equation; the reduced density operator
for the open system may be recovered by the ensemble
average of the pure state trajectories, which evolve under
a non-Hermitian Hamiltonian. We associate the imaginary
part of the complex geometric phase of the open system
with the dissipation and dephasing induced by the bath. By
using the two-level systems as illustrative examples, we show
that the decoherence of the dephasing model is purely a
dynamical effect. For the dissipative two-level system, how-
ever, there exists a nonzero imaginary part of the geometric
phase, indicating the onset of a geometric component to the
dissipation of the open quantum system. As expected, when
the coupling strength λ is small, the imaginary part is shown
to be small consistent with our general understanding of the
decoherence processes. Our approach allows a more general
discussion on the geometric decoherence of open quantum
systems across the parameter ranges including both Markov
and non-Markovian regimes. We also show that a nonpertur-
bative control scheme can be employed to correct the open
system trajectory. As an example, we use a three-level sys-
tem as an example to show the leakage elimination operator
control can correct the system state so that the state can stay
close to the closed system, thus generating a robust geomet-
ric phase without the side effect created by the geometric
decoherence.

It should also be noted that akin to the real-valued geo-
metric phases in open systems [33,34,37], one may define
geometric entities differently, and obtain different geometric
phases. For example, a specific model considered in [43] using

Markov master equations in an adiabatic evolution setting al-
lows one to define a geometric phase from one density matrix
element whose evolution equation is known. In this definition,
an imaginary geometric contribution inversely proportional to
T2 is obtained, whereas with our general approach the pure
dephasing model includes no imaginary part.

The method presented in this paper may be extended to
other open quantum systems that interact with fermionic
baths via a fermionic NMQSD equation [50–52]. Another
promising direction lies in the application of our approach
to study the quantum phase transition in a non-Markovian
open system setting [53], where it will be very interesting
to study the connection of the geometric or topological as-
pects with interesting phenomenon in quantum phase tran-
sitions such as symmetry-breaking and the thermalization
process. We leave these interesting open problems to further
investigations.
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APPENDIX: PROOF ON THE GEODESIC EQUATION

Let |u′〉 = Ds|ϕ〉 and, denoting |u〉 = ∂s|ϕ〉, we have |u′〉 =
|u〉 − 〈ϕ̃|u〉|ϕ〉. From the normalization condition, we also
have 〈ϕ̃|u〉 = −〈ũ|ϕ〉 and δ〈ϕ̃|ϕ〉 = 0 = 〈δϕ̃|ϕ〉 + 〈ϕ̃|δϕ〉.
Therefore, the variation of

∫ 〈ũ′|u′〉dl is given by

� = δ

∫
[〈ũ|u〉 − 〈ũ|ϕ〉〈ϕ̃|u〉]dl (A1)

=
∫

dl[〈δũ|u〉 + 〈ũ|δu〉 (A2)

−〈δũ|ϕ〉〈ϕ̃|u〉 − 〈ũ|δϕ〉〈ϕ̃|u〉 − 〈ũ|ϕ〉〈δϕ̃|u〉
−〈ũ|ϕ〉〈ϕ̃|δu〉]. (A3)

After some algebra, it can be shown that

� =
∫

dl[〈δũ|u′〉 + 〈ϕ̃|u〉〈δϕ̃|u′〉]

+
∫

dl[〈ũ′|δu〉 − 〈ũ′|δϕ〉〈ϕ̃|u〉 (A4)

Integrating by parts and letting the variation δϕ be zero at both
ends, we have∫

dl〈δϕ̃|[|∂l u
′〉 − 〈ϕ̃|u〉|u′〉] = 0, (A5)

which needs to hold for all variational δϕ̃. This then gives us
the geodesic equation in Eq. (8).
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